复变函数与积分变换复习重点及精选习题
- 格式:pdf
- 大小:798.79 KB
- 文档页数:43
复习题2一.单项选择题1.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是()(A)),(y x u 在),(00y x 处连续(B)),(y x v 在),(00y x 处连续(C)),(y x u 和),(y x v 在),(00y x 处连续(D)),(),(y x v y x u +在),(00y x 处连续2.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为()(A)3-(B)2-(C)1-(D)13.函数)(z f 在点z 可导是)(z f 在点z 解析的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既非充分条件也非必要条件4.下列命题中,正确的是()(A)设y x ,为实数,则1)cos(≤+iy x (B)若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C)若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D)若)(z f 在区域D 内解析,则)(z if 在D 内也解析5.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ()(A)iπ2-(B)0(C)iπ2(D)iπ46.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ()(A)1sin -(B)1sin (C)1sin 2i π-(D)1sin 2i π7.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2()(A)i6561-(B)i 6561+-(C)i 6561--(D)i6561+8.复变函数1)(-=z e z f 在复平面上()(A)无可导点(B)有可导点,但不解析(C)仅在零点不解析(D)处处解析9.使得22z z =成立的复数z 是()(A)不存在的(B)唯一的(C)纯虚数(D)实数10.设z 为复数,则方程i z z +=+2的解是()(A)i +-43(B)i +43(C)i -43(D)i --4311.ii 的主值为()(A)0(B)1(C)2πe(D)2eπ-12.ze 在复平面上()(A)无可导点(B)有可导点,但不解析(C)有可导点,且在可导点集上解析(D)处处解析13.设z z f sin )(=,则下列命题中,不正确的是()(A))(z f 在复平面上处处解析(B))(z f 以π2为周期(C)2)(iziz e e z f --=(D))(z f 是无界的14.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2()(A)i 6561-(B)i 6561+-(C)i 6561--(D)i 6561+15.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为()(A)2iπ(B)2i π-(C)0(D)(A)(B)(C)都有可能16.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz zzc c c 212sin ()(B)i π2-(B)0(C)iπ2(D)iπ417.设()()F f t F ω=⎡⎤⎣⎦则()0sin F f t t ω=⎡⎤⎣⎦().A .()()00j2F F ωωωω+--⎡⎤⎣⎦B.()()00j2F F ωωωω++-⎡⎤⎣⎦C.()()0012F F ωωωω+--⎡⎤⎣⎦D.()()0012F F ωωωω++-⎡⎤⎣⎦18.设()()F f t F ω=⎡⎤⎣⎦则()()1F t f t -=⎡⎤⎣⎦().A .()()F F ωω'- B.()()F F ωω'--C.()()j F F ωω'- D.()()j F F ωω'--19.积分=-⎰=231091z dz z z ()(A)0(B)i π2(C)10(D)5i π20.积分21sin z z zdz ==⎰()(A)0(B)61-(C)3i π-(D)iπ-21.复数ii+=1z 位于复平面第()象限.A .一B .二C .三D .四22.下列等式成立的是().A .Lnz Lnz 77=;B .)1arg()1(r =g A ;C .112=i;D .)z z Re(z z =。
复变函数复习卷及参考答案一、填空题1、复数1z i =+的三角表示式=2(cossin )44i pp+;复指数表示式=42ie p 。
2、复数()13z i =+的z =2;23Argz k pp =+;arg 3z p=;13z i =-。
3、62111i i i -æö==-ç÷+èø。
10125212131i i i i i +-=+-=-。
4、()()31123513253x y i x i y i x y +=ì++-=-Þí-=-î,求解方程组可得,45,1111x y -==。
5、()()231,f z z z =-+则()61f i i ¢-=--。
6、()n3L i -ln 226i k i pp =-+;ln()ie 12i p=+。
7、()(2)1321,(13)2ik i iiee i p p p -++==+。
8、32282(cossin)33k k i p pp p++-=+;0,1,2k =。
1224(4)2i i -==±。
9、1sin 2e e i i --=;221cos ()22i e e pp p -=+;10 、21024z dzz z ==++ò ;1212z dz i z p ==-ò 。
11、设31cos ()zf z z -=,则0z =是(一级极点);31cos 1Re [,0]2z s z -=。
1()s i n f z z=,0z =是本性奇点。
二、判断下列函数在何处可导?何处解析?在可导处求出导数。
(1)()22f z x iy=+;解:22,,2,0,0,2u u v v u x v y x y xyxy¶¶¶¶======¶¶¶¶,一阶偏导连续,因此当,x y y x u v u v ==-时,即x y =时可导,在z 平面处处不解析。
第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。
一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 .8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________. 9、设i z 21=,i z -=12,则)(21z z Arg = _ _____。
10、设4i e 2z π=,则Rez=____________. Im()z = 。
z11、。
方程0273=+z 的根为_________________________________。
12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 . 13、方程3)Im(=-z i 表示的曲线是__________________________.14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________。
15、不等式114z z -++<所表示的区域是曲线 的内部.16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。
复变函数与积分变换第一课一、复数的加减乘除举例:①(2+3i)+(3+4i)=(2+3)+(3+4)i=5+7i例例2:已知z=3+3i,w= − ,试求Re(w),Im(w)。
+w=z−1=3+3i−1=2+3i=18+ 1 iz+i 3+3i+i 3+4i 25 25Re(w)=18,Im(w)= 125 25三、求某复数的共轭复数例1:已知z=9−10i,试求。
例2例1∴ |z|=√12 + 12=√2∵ arg(z)∈(−π,π]∴ arg(z)=π4Arg(z)=π+2kπ,k=0,±1,±2···4例2:已知w=−2+2i,试求w 的模、辐角、辐角主值。
∵ Re(w)=−2,Im(w)=2五、复数的开方例 1:求 √|z|=|16|=16,θ=arg(16)=04 1 0+2kπ 0+2kπ √16=16 4 (cos4 + isin 4 ) =2(cos kπ + isin kπ),k=0,1,2,32 2例 1∴ 三角式 z=4[cos (− 5 π) + isin (− 5 π)]6 6i·(−5π) 指数式 z=4e 6例2:将z=4(° + °)化为代数式、指数式。
r=4,θ=30°∴ x=rcosθ=4cos30°=2√3y=rsinθ=4sin30°=2∴ 代数式z=2√3+2ii·30°i·π指数式z=4e =4e 6复变函数与积分变换第二课一、将由x、y 表示的方程化为复数形式例1:将2x+3y=1 化为复数形式。
x = z+z将{ 2代入原方程y = z−z2i则例1将即x=2= ⋯三、将{= ⋯ 形式的参数方程化为复数形式化为复数形式。
例1:将{ = += +z=x+yi=(t+1)+i·(t2+1)= ⋯四、将复数形式的参数方程化为{= ⋯ 形式/一般形式例1:将z=(1+i)t+2+i 化为一般形式。
复变函数与积分变换期末考试复习知识点复变函数与积分变换期末考试复习知识点复习要点一题型1、填空题(每题3分,共18分)2、单项选择题(每题3分,共21分)3、计算题(每题6分,共36分)4、解答题(4小题,共25分)二知识点第一章复数与复变函数1、会求复数的各种表示式(一般式、三角式、指数式)。
一般式:z=x+yi三角式:z=r(cosθ+isinθ)指数式:z=reiθ2、会求复数(各种表示式)的模、辐角、辐角主值。
3、掌握复数的四则运算、共轭运算、乘幂运算、方根运算。
4、理解区域、有界域、无界域、单连通域与多连通域等概念。
5、会用复变数的方程来表示常用曲线及用不等式表示区域。
6、理解复变函数的概念。
7、了解复变函数的极限与连续性的概念,会求常见的复变函数的极限。
例:1.1;1.2习题一:1.2(2)(3);1.3;1.5第二章解析函数1、理解可导与解析的联系与区别(在一点;在一个区域)。
对于点:解析→可导→连续对于区域:解析可导2、会判别常见函数的解析性,会求常见函数的奇点。
3、了解柯西黎曼方程。
4、掌握各类初等函数(指数函数、对数函数、幂函数、三角函数)的定义、性质。
例:1.4;2.1;3.1;3.2习题二:2.3(1)(2)(3);2.4;2.9(1)(2)(3);2.10;2.12(1)(3)第三章复变函数的积分1、熟悉复积分的概念及其基本性质。
2、了解复积分计算的一般方法。
3、会求常见的各类积分(包括不闭路径、闭路径)。
本章的主要方法如下,但要注意适用的积分形式。
(1)牛顿莱布尼茨公式。
(2)柯西积分定理。
(3)柯西积分公式。
(4)高阶导数公式。
(5)复合闭路定理。
注意:上述方法中的(3)(4)(5)可与第五章中的留数定理的应用结合起来复习。
例:1.1;2.1;2.2;3.1;4.1习题三:3.1(1);3.3;3.4;3.5;3.6;3.7第四章级数1、理解复数项级数的相关概念(收敛、发散、绝对收敛、条件收敛)。
第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。
一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 。
8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________.9、设i z 21=,i z -=12,则)(21z z Arg = _ _____.10、设4i e 2z π=,则Rez=____________. Im()z = 。
z11、.方程0273=+z 的根为_________________________________.12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 。
13、方程3)Im(=-z i 表示的曲线是__________________________. 14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________. 15、不等式114z z -++<所表示的区域是曲线 的内部。
16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctan y z x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
《复变函数和积分变换》一.(本题30分,其每小题各3分)1. 方程()t i 1z +=(t 为实参数)给出的曲线是 ;2. 复数3i 1+的指数形式是 ____3. 计算34-________4.函数()224z z 1z +-,z=0为 级极点,2i z ±=为 级极点5. 若∑==0n n n 2nz )(z f ,则其收敛半径 ; 6.计算留数:⎪⎭⎫⎝⎛0,z cosz Res 3 ;7. 函数()()()y ,x iv y ,x u z f +=在()y ,x z =可微的充要条件为 _____8. 曲线y x :=C 在映射z1)(=z f 下的像是_______ 9. C 为以a 为圆心,r 为半径的圆周,计算()⎰-Cna z dz(n 为正整数) ;10. 判断n1n 25i 1∑∞=⎪⎭⎫⎝⎛+的敛散性 .二、计算题(25分,每小题各5分)(1)、计算积分⎰CRezdz 其中积分路径C 为: ①连接由原点到1+i 的直线段;②连接由原点到点1的直线段及连接由点1到点1+i 的直线段所组成的折线.(2)、已知:()()3z e 1zsinzz f -=求:]0),z (f [Re s(3)、计算()()10dz z 1ln rz <<+⎰=r 4)、计算()()dz i z z 9zC2⎰+-,其中2||=z C 为正向圆周:。
(5)计算dz e 1z z 12⎰=.三、求积分()dz 1z z e 4z 22z⎰=-(7分)四、求解析函数),(),()(y x v y x u z f +=,已知()233x y x y ,x u -= ,且()i 0f =. (7分)五、验证()()0x xyarctgy ,x v >=在右半z 平面内满足Laplace 方程,即0,0=∆=∆ψϕ;其中22yx ∂∂+∂∂=∆, 并求以此为虚部的解析函数()z f .(8分六、(8分)求函数()()()2z 1z 1z f --=分别在如下区域展成洛朗展式(1).1|1|0<-<z (2)0<2z -<1.七、求实轴在映射iz 2i+=ω下的象曲线(8分)八、求函数()()0t 0,t 1,t f >⎪⎩⎪⎨⎧>≤=δδδ的傅立叶变换(7分)答案一、(1)直线y=x (2)i32k 2e⎪⎭⎫ ⎝⎛+ππ (3)一;二 (4)()()3i 12;2;3i 12313231--+--(5)2 (6)21- (7)①函数u(x,y),v(x,y)在(x,y)可微 ②u(x,y),v(x,y)在(x,y)满足C.-R.条件.即x y y x v u ,v u -==. (8)x=-y (9)⎩⎨⎧>=1n ,01n ,i 2π (10发散二、(1) ①连接原点到点1+i 的直线段的参数方程为: z=(1+i)t 1)t (0≤≤故 ⎰CRezdz =()[]{}()dt i 1t i 1Re 10++⎰ =()⎰+1tdt i 1=2i 1+ ②连接由原点到点1的直线段的参数方程为: z=t 1)t (0≤≤,连接由点1到点1+i 的直线段参数方程为: z=(1-t)+(1+i)t 1)t (0≤≤,即 z=1+it 1)t (0≤≤,故 ⎰C Rezdz =()[]⎰⎰++101idt it 1Re Retdt =⎰⎰+110dt i tdt =i 21+ (2)由题可知被积函数只有z=0一个奇点。
复变函数与积分变换复习题汇总一、填空题1、31i +的三角函数表示为_____________________; ii +-12的指数函数表示为______________________; 2、=-)1ln(___________________;3、i 有两个根,他们分别是_________________和_______________;4、)3(3)(2323xy x i y x y z f -+-=,则=)(z f ___________________;5、31ze z -的孤立奇点为Z=______________,其类型为_________________; 6、=-]01[Re 42,ze s z________________; 7、)(2]1[ωπδ=g ,则=]2[cos t g __________________;8、£=][0t s e ____________________; 9、n n n nz ∑∞+313的收敛半径是_______________; 10、=+-⎰cz z dz 422_____________,其中C :|z 正向; 11、bi a Z +=,a 与b 是实数,且00><b a,,则=Z arg ________; 12、z-11sin 有两个奇点,一个是Z=_______,是_________奇点;另一个是Z=________,是_________奇点;13、0=Z 是)(1z f 与)(2z f 的m 级和n 级极点,则0=Z 是)(1z f ·)(2z f 的___________级极点; 14、2)1(1)(z z f -=展为Z 的幂级数后的结果为________,其收敛半径为_____________; 15、exp z 的周期是________________;16、ω2cos 2的Fourier 逆变换为________________;二、证明题1、函数ixy x z f +=2)(在平面上处处不解析2、对于1|cos |1|sin |,2≤≤=z z i z 和均不成立三、判断正误(请在括号内划“√”或“×”)1、i i 2<;( )2、z 是任意复数,则22||z z =;( )3、)('0z f 存在,那么)(z f 在0z 处解析;( )4、u 和v 都是调和函数,v 是u 的共轭调和函数,则-u 是v 的共扼调和函数;()5、u 、v 都是调和函数,则u+iv 必为解析函数;( )6、iv u z f -=)(解析,则x vy uy v x u ∂∂=∂∂∂∂-=∂∂,;( )7、)(z f 解析,则下面的导数公式全部正确。
复变函数积分复习题答案复变函数积分是复分析中的一个重要概念,它涉及到复数域上的积分运算。
以下是一些复变函数积分的复习题及其答案。
题目1:证明如果函数\( f(z) \)在简单闭曲线\( C \)内是解析的,则\( \oint_C f(z) \, dz = 0 \)。
答案:根据柯西积分定理,如果函数\( f(z) \)在简单闭曲线\( C \)内是解析的,那么沿\( C \)的积分\( \oint_C f(z) \, dz \)等于零。
这是因为\( f(z) \)在\( C \)内是全纯的,即它满足柯西-黎曼方程,并且没有奇点。
题目2:计算积分\( \oint_C \frac{1}{z-1} \, dz \),其中\( C \)是单位圆\( |z| = 1 \)。
答案:这个积分可以看作是\( \frac{1}{z-a} \)形式的积分,其中\( a = 1 \)。
根据柯西积分公式,我们知道\( \oint_C \frac{1}{z-a} \, dz = 2\pi i \),当\( a \)在\( C \)内部时。
因为\( a = 1 \)在单位圆\( C \)内部,所以\( \oint_C \frac{1}{z-1} \, dz =2\pi i \)。
题目3:证明如果\( f(z) \)在\( C \)内是解析的,并且\( C \)是简单闭曲线,那么\( \oint_C f(z) \, dz = 0 \)。
答案:这个结论是柯西积分定理的直接结果。
柯西积分定理指出,如果\( f(z) \)在\( C \)内是解析的,并且\( C \)是简单闭曲线,那么\( \oint_C f(z) \, dz \)等于零。
这是因为\( f(z) \)在\( C \)内没有奇点,积分的路径\( C \)可以被任意地收缩到一个点,而不改变积分的值。
题目4:计算积分\( \oint_C \frac{e^z}{z^2+1} \, dz \),其中\( C \)是半径为2的圆。
《复变函数与积分变换》复习题一、判断题1、cos z 与sin z 在复平面内有界. ( )2、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛. ( )3、若函数()f z 在0z 处解析,则它在该点的某个邻域内可以展开为幂级数. ( )4、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数).( )5、若()f z 在区域D 内解析, 则对D 内任一简单闭曲线C ()0Cf z dz .( )6、若()f z 在0z 的某个邻域内可导,则函数()f z 在0z 解析. ( )7、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛. ( )8、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数).( )9、若0z 是()f z 的m 阶零点,则0z 是1/()f z 的m 阶极点. ( )10、若0lim ()zz f z 存在且有限,则0z 是函数()f z 的可去奇点.( )二、选择题 1.arg13i ( )A.-3π B.3πC.32πD.3n 2π+2 2.2z 在0z 复平面上( )A.不连续B.可导C.不可导D.解析3.设z xyi ,则下列函数为解析函数的是( )A.22()2f z x y xyB.()f z x iyC. ()2f z x i yD.()2f z xiy7.0z 是3sin zz 的极点,其阶数为( ) A.1 B.2 C.3 D.410.整数0k 则Res[cot ,]z =( )A.1kB.0C.1kD.k11、设复数1cossin33z i ,则arg z ( )A.-3B.6C.3D.2312、2w z 将z 平面上的实轴映射为w 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴13、下列说法正确的是( )。