近十年成都中考数学A卷最后一题、B卷填空压轴题几何函数压轴题汇编(含答案)经典
- 格式:docx
- 大小:1.42 MB
- 文档页数:74
2024年四川省成都市中考数学试卷A 卷(共100分)第1卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)1.-5的绝对值是()A.5 B.-5 C.15 D.-152.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D.3.下列计算正确的是()A.()2233x x = B.336x y xy+=C.222()x y x y +=+ D.()()2224x x x +-=-4.在平面直角坐标系xOy 中,点(1,4)P -关于原点对称的点的坐标是()A.()1,4--B.()1,4-C ()1,4 D.()1,4-5.某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A.53 B.55 C.58 D.646.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A.AB AD =B.AC BD ⊥C.AC BD =D.ACB ACD∠=∠7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为()A.14,2133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩ B.14,2133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C.14,2133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩ D.14,2133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8.如图,在▱ABCD 中,按以下步骤作图:(①以点B 为圆心,以适当长为半径作弧,分别交,BA BC 于点,M N ,②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3,2CD DE ==,下列结论错误的是()A.ABE CBE ∠=∠B.5BC =C.DE DF =D.53BE EF =第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.若m ,n 为实数,且()240m ++=,则()2m n +的值为________.10.分式方程132x x=-的解是________.11.如图,在扇形AOB 中,6,120,OA AOB ︒=∠=则 AB 的长为______.12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y 的值为___________.13.如图,在平面直角坐标系xOy 中,已知(3,0)A ,(0,2)B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接,PO PA ,则PO PA +的最小值为________.三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算+()02sin602024 2.π︒--+(2)解不等式组231,11. 23 xx x+≥-⎧⎪-⎨-<⎪⎩15.(本小题满分8分)2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有_____人,表中的x值为______.(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数.(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.中国古代运用“土圭之法”判别四季,夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB垂直于地面,AB长8尺.在夏至时,杆子AB在太阳BC在冬至时,杆子AB在太阳光线AD照射下产生的光线AC照射下产生的日影为;日影为BD.已知73.4∠=,求春分和秋分时日影长度.(结果精确到ADB︒ACB︒∠=,26.60.1尺;参考数据:sin26.60.45︒≈,sin73.40.96︒≈︒≈,tan26.60.50︒≈,cos26.60.89cos73.40.29︒≈︒≈,tan73.4 3.35)如图,在Rt ABC ∆中,90C ︒∠=,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于,E F 两点,连接,,BE BF DF .(1)BC DF BF CE⋅=⋅(2)若,A CBF ∠=∠tan BFC AF ∠==,求CF 的长和O 的直径.如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点(2,)A a ,与x 轴交于点,0()B b ,点C 在反比例函数0()k y k x=<图象上.(1)求,,a b m 的值(2)若,,,O A B C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C 使得ABD ∆与ABE ∆相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.如图,ABC CDE ∆≅∆,若35,45D ACB ︒︒∠=∠=,则DCE ∠的度数为________.20.若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为________.21.在综合实践活动中,数学兴趣小组对1n ~这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{1,2}一种取法,即1k =;当3n =时,有{1,3}和{2,3}两种取法,即2k =为;当4n =时,可得4k =;若6n =时,则k 的值为______.若24n =时,则k 的值为______.22,如图,在Rt ABC 中,90,C AD ︒∠=是ABC ∆的一条角平分线,E 为AD 中点,连接BE .若,2BE BC CD ==,则BD =______.23.在平面直角坐标系xoy 中,112233(,),(,),(,)A x y B x y C x y 是二次函数241y x x =-+-图象上三点.若1201,4x x <<>,则1y ________2y (填“>”或“<”);若对于11m x m <<+,2312,23m x m m x m +<<++<<+,存在132y y y <<,则m 的取值范围是__________.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg,B 种水果收购单价15元/kg.(1)求,A B 两种水果各购进多少千克.(2)已知A 水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.如图,在平面直角坐标系xOy 中,抛物线()2:230L y ax ax a a =-->与x 轴交于,A B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长(2)当1a =时,若ACD ∆的面积与ABD ∆的面积相等,求tan ABD ∠的值:(3)延长CD =交x =轴于点E =,当AD DE =时,将ADB ∆沿DE 方向平移得到A EB ''∆.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ︒∠=∠=.[初步感知](1)如图1,连接,BD CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.[深入探究](2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC ∆的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.[拓展延伸](3)在纸片ADE 绕点A 旋转过程中,试探究,,C D E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.2024年四川省成都市中考数学试卷A 卷(共100分)第I 卷(选择题,共32分)一、选择题题号12345678答案A A D B B C B D第II 卷(非选择题,共68分)二、填空题9.110.3x =11.4π12.3513.5.三、解答题14.(1)5;(2)29.x -≤<15.(1)160,40;(2)99o ;(3)385.16.春分和秋分时日影长度约为9.2尺.17.(1)略(2)CF =;O 的直径为18.(1)4a =,6m =,6b =(2)点C 的坐标为(4,4)-或(4,4),16;k -=-(3)1k =-.B卷(共50分)一、填空题19.100︒20.721.9;14422.1712+23.1;12m>-<<.二、解答题24.(1)A种水果购进1000千克,B种水果购进500千克(2)A种水果的最低销售单价为12.5元/kg25.(1)4:AB=(2)10 tan3ABD∠=(3)抛物线L'与L=交于定点(3,0).26.(1)BDCE的值为35(2)7039 CF=(3)直角三角形CDE的面积分别为48 4,16,12,13.。
2010年成都市中考数学试题A 卷(共100分)一、选择题:(每小题3分,共30分)1.(2010年四川成都,1,3分)下列各数中,最大的数是( )A .2-B .0C .12D .3 2.(2010年四川成都,2,3分)3x 表示( )A .3xB .x x x ++C .x x x ⋅⋅D .3x +3.(2010年四川成都,3,3分)上海“世博会”吸引了来自全球众多国家数以千万的人前来参观.据统计,2010年5月某日参观世博园的人数约为256 000,这一人数用科学记数法表示为( )A .52.5610⨯B .525.610⨯C .42.5610⨯D .425.610⨯4.(2010年四川成都,4,3分)如图是一个几何体的三视图,则这个几何体的形状是( )A .圆柱B .圆锥C .圆台D .长方体5.(2010年四川成都,5,3分)把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( )A .21y x =+B .2(1)y x =+C .21y x =-D .2(1)y x =-6.(2010年四川成都,6,3分)如图,已知//AB ED , 65ECF ∠=,则BAC ∠的度数为( )A .115B .65C .60D .257.(2010年四川成都,7,3分)为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表:每天使用零花钱 (单位:元) 1 2 3 5 6 人 数 2 5 4 3 1则这15A .3,3 B .2,3 C .2,2 D .3,58.(2010年四川成都,8,3分)已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是( )A .相交B .外切C .外离D .内含9.(2010年四川成都,9,3分)若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( )A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b <<10.(2010年四川成都,10,3分)已知四边形ABCD ,有以下四个条件:①//AB CD ;②AB CD =;③//BC AD ;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有( )A .6种B .5种C .4种D .3种二、填空题:(每小题3分,共15分)11.(2010年四川成都,11,3分)在平面直角坐标系中,点(2,3)A -位于第___________象限.12.(2010年四川成都,12,3分)若,x y 为实数,且230x y ++-=,则2010()x y +的值为___________.13.(2010年四川成都,13,3分)如图,在ABC ∆中,AB 为O 的直径,60,70B C ∠=∠=,则BOD ∠的度数是_____________度.14.(2010年四川成都,14,3分)甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是_____________.15.(2010年四川成都,15,3分)若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是___________.三、(第1小题7分,第2小题8分,共15分)16.(2010年四川成都,16(1),7分)解答下列各题:(1)计算:0116tan30(3.6π)12()2-+-. (2)(2010年四川成都,16(2),8分)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数值.四、(第17题8分,第18题10分,共18分)17.(2010年四川成都,17,8分)已知:如图,AB与圆O相切于点C,OA OB=,圆O的直径为4,8AB=.(1)求OB的长;(2)求sin A的值.18.(2010年四川成都,18,10分)如图,已知反比例函数kyx=与一次函数y x b=+的图象在第一象限相交于点(1,4)A k-+.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.五、(第19题10分,第20题12分,共22分)19.(2010年四川成都,19,10分)某公司组织部分员工到一博览会的A B C D E、、、、五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若A 馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.” 请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.20.(2010年四川成都,20,12分)已知:在菱形ABCD 中,O 是对角线BD 上的一动点.(1)如图甲,P 为线段BC 上一点,连接PO 并延长交AD 于点Q ,当O 是BD 的点时,求证:OP OQ =;(2)如图乙,连结AO 并延长,与DC 交于点R ,与BC 的延长线交于点S .若460,10AD DCB BS ===,∠,求AS 和OR 的长.B 卷(共50分)一、填空题:(每小题4分,共20分)21.(2010年四川成都,21,4分)设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.22.(2010年四川成都,22,4分)如图,在ABC ∆中,90B ∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm /s 的速度移动(不与点重合).如果P 、Q 分别从A 、B 同时出发,那么经过_____________秒,四边形APQC 的面积最小.23.(2010年四川成都,23,4分)有背面完全相同,正面上分别标有两个连续自然数,1k k +(其中0,1,2,.......,19k =)的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不小于14的概率为_________________.24.(2010年四川成都,24,4分)已知n 是正整数,111222(,),(,),......,(,),........n n n P x y P x y P x y 是反比例函数k y x=图象上的一列点,其中121,2,......,,......n x x x n ===.记112A x y =,223A x y =,1n n n A x y +=......,,......若1A a =(a 是非零常数),则12.....n A A A •••的值是________________________(用含a 和n 的代数式表示).25.(2010年四川成都,25,4分)如图,ABC ∆内接于圆O ,90,B AB BC ∠==,D 是圆O 上与点B 关于圆心O 成中心对称的点,P 是BC 边上一点,连结AD DC AP 、、.已知8AB =,2CP =,Q 是线段AP 上一动点,连结BQ 并延长交四边形ABCD 的一边于点R ,且满足AP BR =,则BQ QR的值为_______________.二、(共8分)26.(2010年四川成都,26,8分)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆.(1)求2007年底至2009年底该市汽车拥有量的年平均增长率;(2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆.三、(共10分)27.(2010年四川成都,27,10分)已知:如图,ABC ∆内接于O 圆,AB 为直径,弦CE AB ⊥于F ,C 是弧AD 的中点,连结BD 并延长交EC 的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q .(1)求证:P 是ACQ ∆的外心;(2)若3tan ,84ABC CF ∠==,求CQ 的长; (3)求证:2()FP PQ FP FG +=•.四、(共12分)28.(2010年四川成都,28,12分)在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.(1)求直线AC 及抛物线的函数表达式;(2)如果P 是线段AC 上一点,设ABP ∆、BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;(3)设Q 圆的半径为l ,圆心Q 在抛物线上运动,则在运动过程中是否存在圆Q 与坐标轴相切的情况?若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切?中考数学几何知识点大全直线:没有端点,没有长度射线:一个端点,另一端无限延长,没有长度线段:两个端点,有长度一、图形的认知1、余角;补角:邻补角:二、平行线知识点1、对顶角性质:对顶角相等。
成都中考数学一.填空题(共15小题)1.在平面直角坐标系xOy中,已知反比例函数满足:当x<0时,y随x的增大而减小.若该反比例函数的图象与直线y=﹣x+k,都经过点P,且OP=,则符合要求的实数k有个.2.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为cm,最大值为cm.3.在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=x2﹣2交于A,B两点,且A点在y 轴左侧,P点的坐标为(0,﹣4),连接P A,PB.有以下说法:①PO2=P A•PB;②当k>0时,(P A+AO)(PB﹣BO)的值随k的增大而增大;③当k=时,BP2=BO•BA;④△P AB面积的最小值为.其中正确的是.(写出所有正确说法的序号)4.如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为.5.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△P AB是等腰三角形时,线段BC的长为.6.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是(写出所有正确说法的序号)①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0是倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.7.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN 和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.8.如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.9.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.10.如图,在菱形ABCD中,tan A=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB 的对应线段EF经过顶点D,当EF⊥AD时,的值为.11.如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为,则△OAB内部(不含边界)的整点的个数为.12.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.13.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA 向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为,线段DH长度的最小值为.14.在平面直角坐标系xOy中,已知直线y=mx(m>0)与双曲线y=交于A,C两点(点A在第一象限),直线y=nx(n<0)与双曲线y=﹣交于B,D两点.当这两条直线互相垂直,且四边形ABCD 的周长为10时,点A的坐标为.15.如图,△ABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,P 是BC边上一点,连接AD、DC、AP.已知AB=8,CP=2,Q是线段AP上一动点,连接BQ并延长交四边形ABCD的一边于点R,且满足AP=BR,则的值为.二.解答题(共25小题)16.如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C 三点.(1)求此抛物线的函数表达式;(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.18.在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC 的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.19.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?20.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.21.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN 能否为菱形?若能,求出点N的坐标;若不能,请说明理由.22.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.23.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.24.如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.25.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求的最大值;(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.26.“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)27.某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.根据以上信息,完成下列问题:(1)当3<t≤7时,用含t的式子表示v;(2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的时所用的时间.28.已知AC,EC分别是四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.(i)求证:△CAE∽△CBF;(ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且==k时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)29.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连接BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tan C=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.30.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.31.在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分别交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形P A'B′Q的面积是否存在最小值.若存在,求出四边形P A′B′Q的最小面积;若不存在,请说明理由.32.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?33.如图1,在△ABC中,AB=AC=20,tan B=,点D为BC边上的动点(点D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.34.随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=x+来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?35.在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF•FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求的值.36.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣3,0),若将经过A、C两点的直线y=kx+b1沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=﹣2.(1)求直线AC及抛物线的函数表达式;(2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求点P的坐标;(3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐标轴同时相切.37.已知:在菱形ABCD中,O是对角线BD上的一动点.(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP=OQ;(2)如图乙,连接AO并延长,与DC交于点R,与BC的延长线交于点S.若AD=4,∠DCB=60°,BS=10,求AS和OR的长.38.在平面直角坐标系xOy中,已知抛物线y=a(x+1)2+c(a>0)与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为y=kx﹣3,与x轴的交点为N,且cos∠BCO=.(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?39.如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若OG⋅DE=3(2﹣),求⊙O的面积.40.如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且|AB|=3,sin∠OAB=.(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;(3)若将点O、点A分别变换为点Q(﹣2k,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为S△QMN,△QNR的面积S△QNR,求S△QMN:S△QNR的值.参考答案一.填空题(共15小题)1.0;2.20;12+;3.③④;4.(,);5.8,,;6.②③;7.;8.;9.;10.;11.4或5或6;12.;13.3;﹣;14.(,2)或(2,);15.1或;。
成都中考核心考点(成都版)简介--只要抓住核心考点,就能拿到卷子上80%的分数在历年的成都中考数学试题中,核心考点虽然只占总考点的20%,却占总分值的80%。
掌握了核心考点,相当于用20%的时间来把握80%的分数,在最短的时间内实现快速提分。
本文共分两轮复习:第一轮过关核心考点聚焦常考考点,五年真题回顾,三年诊断精选。
本文分13讲,由成都市中考数学A卷和B卷难度区分度较大,A卷1-19题较基础,大部分学生都容易掌握,选题主要以中考题和诊断题为主,20题-28题有一定综合性,选题除了中考题和诊断题外,还选择了大量的模拟题和改编题。
第一讲:考点1-考点6,第二讲:考点7-考点10,第三讲:考点11-考点14,第四讲:考点15-考点19,第五讲:考点20,第六讲:考点21,………第十三讲:考点28.(从考点20开始,每个考点一讲)。
第二轮过关B卷攻略专攻B卷重难,五年考点扫描,专题考向攻略。
暂定:B填空7-8讲,应用题1讲,几何综合3讲,抛物线综合5讲考点27、几何图形综合(压轴)命题方向:主要以三角形和四边形为基架,从全等过渡到相似,从定点过渡到动点,求线段、比例、探究数量关系; 五年真题1. (18成都)在Rt ABC ∆中,90ABC ∠=︒,7AB =,2AC =,过点B 作直线//m AC ,将ABC ∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q . (1)如图1,当P 与A ′重合时,求ACA ∠′的度数;(2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长;(3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.2.(16成都)如图①,△ABC 中,∠ABC =45°,AH ⊥BC 于点H ,点D 在AH 上,且DH =CH ,连接BD . (1)求证:BD=AC ;(2)将△BHD 绕点H 旋转,得到△EHF (点B ,D 分别与点E ,F 对应),连接AE .ⅰ)如图②,当点F 落在AC 上时(F 不与C 重合),若BC =4,tanC =3,求AE 的长;ⅱ)如图③,当△EHF 是由△BHD 绕点H 逆时针旋转30°得到时,设射线CF 与AE 相交于点G ,连接GH ,试探究线段GH 与EF 之间满足的等量关系,并说明理由。
一.填空题(共60小题)1.如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=2,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP=60°,连接EP 交AC于点F,在点E的运动过程中,当∠BPE=60°时,则AF=.2.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,点P为AB边上的一个动点,连接PC,过点P作PQ⊥PC交BC边于点Q,则BQ的最大值为.3.如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为.4.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC=,则AC=,CD=.5.如图,在Rt△ABC中,∠ACB=90°,AB=,D是CB延长线上一点,以BD为边向上作等边三角形EBD,连接AD,若AD=11,且∠ABE=2∠ADE,则tan∠ADE的值为.6.如图,点A是反比例函数y=(x>0)图象上一点,过点A作AB⊥x轴于点B,连接OA,OB,tan ∠OAB=.点C是反比例函数y=(x>0)图象上一动点,连接AC,OC,若△AOC的面积为,则点C的坐标为.7.如图,在等腰Rt△ABC中,AC=BC=6,∠EDF的顶点D是AB的中点,且∠EDF=45°,现将∠EDF绕点D旋转一周,在旋转过程中,当∠EDF的两边DE、DF分别交直线AC于点G、H,把△DGH 沿DH折叠,点G落在点M处,连接AM,若=,则AH的长为.8.如图,直线l与反比例函数y=(k≠0)的图象在第二象限交于B、C两点,与x轴交于点A,连接OC,∠ACO的角平分线交x轴于点D.若AB:BC:CO=1:2:2,△COD的面积为6,则k的值为.9.如图,已知点A(t,1)在第一象限,将OA绕点O顺时针旋转45°得到OB,若反比例数y=(k>0)的图象经过点A、B,则k=.10.如图,四边形ABCD内接于⊙O,对角线AC、BD交于点P,且AB=AD,若AC=7,AB=3,则BC•CD=.11.如图,将反比例函数y=(k>0)的图象向左平移2个单位长度后记为图象c,c与y轴相交于点A,点P为x轴上一点,点A关于点P的对称点B在图象c上,以线段AB为边作等边△ABC,顶点C恰好在反比例函数y=﹣(x>0)的图象上,则k=.12.如图,点O是矩形ABCD的对角线的交点,AB=15,BC=8,直线EF经过点O,分别与边CD,AB相交于点E,F(其中0<DE<).现将四边形ADEF沿直线EF折叠得到四边形A′D′EF,点A,D的对应点分别为A′,D′,过D′作D′G⊥CD于点G,则线段D′G的长的最大值是,此时折痕EF的长为.13.如图,直线y=﹣x+m(m>0)与x轴、y轴分别交于点A,B,C是AB的中点,点D在直线y=﹣2上,以CD为直径的圆与直线AB的另一交点为E,交y轴于点F,G,已知CE+DE=6,FG=2,则CD的长是.14.如图1,点A在第一象限,AB⊥x轴于B点连接OA,将Rt△AOB折叠,使A′点落在x轴上,折痕交AB边于D点,交斜边OA于E点.(1)若A点的坐标为(4,3),当EA′∥AB时点A′的坐标是.(2)若A′与原点O重合,OA=4,双曲线y=(x>0)的图象恰好经过D,E两点(如图2),则k =.15.如图1,含30°和45°角的两块三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=24cm,点P为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长为;现将三角板ABC绕点P按逆时针方向旋转角度α(如图2),设边AB与EF相交于点Q,则当α从0°到90°的变化过程中,点Q移动的路径长为.(结果保留根号)16.为了庆祝“六一儿童节”,育才初一年级同学在班会课进行了趣味活动,小舟同学在模板上画出一个菱形ABCD,将它以点O为中心按顺时针方向分别旋转90°,180°,270°后得到如图所示的图形,其中∠ABC=120°,AB=4cm,然后小舟将此图形制作成一个靶子,那么当我们投飞镖时命中阴影部分的概率为.17.如图,在Rt△ABC中,∠ACB=90°,D为AB边上一点,且点D到BC的距离等于点D到AC的距离.将△ABC绕点D旋转得到△A′B′C′,连接BB′,CC′.若=,则的值为.18.已知直线y=kx+2与y轴交于点A,与双曲线y=相交于B,C两点,若AB=3AC,则k的值为.19.如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB上一动点.将△AEF沿直线EF折叠,点A落在点A'处.在EF上任取一点G,连接GC,GA',CA’,则△CGA'的周长的最小值为.20.如图,点O为坐标原点,▱ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC交于点F.若y=(x>0)的图象经过点C且S△BEF=,则k的值为.21.如果点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点.已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=.22.一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是.现将三角板DEF 绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为.(结果保留根号)23.如图所示,在△ABC中,∠B=90°,BA=BC=2,以B为圆心作圆B与AC相切,点P是圆B上任一动点,连接P A、PC,则P A+PC的最小值为.24.如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=9x﹣1的图象上,则点P的坐标为.25.如图,在△ABC中,D,E分别是△ABC两边的中点,如果(可以是劣弧、优弧或半圆)上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧,例如,图中是△ABC其中的某一条中内弧.若在平面直角坐标系中,已知点F(0,4),O(0,0),H(4,0),在△FOH中,M,N分别是FO,FH 的中点,△FOH的中内弧所在圆的圆心P的纵坐标m的取值范围是.26.已知,△ABC和△ADE均为等腰三角形,AB=AC=5,AD=AE=2,且∠BAC=∠DAE=120°,把△ADE绕点A在平面内自由旋转.如图,连接BD,CD,CE,点M,P,N分别为DE,DC,BC的中点,连接MP,PN,MN,则△PMN的面积最大值为.27.△ABC中,∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN②③△PMN为等边三角形④若BN=CP,则∠ACB=75°.则正确结论是.28.如图,点A、B在x轴的上方,∠AOB=90°,OA、OB分别与函数y=、y=﹣的图象交于A、B 两点,以OA、OB为邻边作矩形AOBC.当点C在y轴上时,分别过点A和点B作AE⊥x轴,BF⊥x轴,垂足分别为E、F,则=.29.已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①2a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a(m2﹣1)+b(m﹣1)≤0总成立;④关于x的方程ax2+bx+c=n+1有两个不相等的实数根.其中结论正确的序号是.30.如图,在△ABC中,已知AB=AC=6,BC=8,P是BC边上的一动点(P不与点B、C重合),∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB的长为.31.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在边BC上,且BM=b,连AM、MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF.给出以下四个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④A、M、P、D 四点共圆,其中正确的结论是(填序号).32.如图,反比例函数y=(x>0)经过A、B两点,过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,过点B作BE⊥x轴于点E,连接AD、AB,已知AC=1,BE=1,S矩形BEOD=4,则点D到AB的最短距离为.33.如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点E,那么BE的长是.34.在直角坐标系中,我们将圆心坐标和半径均为整数的圆称为“整圆”.如图所示,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为“整圆”的点P个数是个.35.如图,四边形ABCD内接于以AC为直径的⊙O,AD=,CD=2,BC=BA,AC与BD相交于点F,将△ABF沿AB翻折,得到△ABG,连接CG交AB于E,则BE长为.36.如图,在△AOC中,∠OAC=90°,AO=AC,OC=2,将△AOC放置于平面直角坐标系中,点O与坐标原点重合,斜边OC在x轴上.反比例函数y=(x>0)的图象经过点A.将△AOC沿x轴向右平移2个单位长度,记平移后三角形的边与反比例函数图象的交点为A1,A2.重复平移操作,依次记交点为A3,A4,A5,A6…分别过点A,A1,A2,A3,A4,A5…作x轴的垂线,垂足依次记为P,P1,P2,P3,P4,P5…若四边形APP1A1的面积记为S1,四边形A2P2P3A3的面积记为S2…,则S n=.(用含n 的代数式表示,n为正整数)37.如图,在矩形ABCD中,AB=9,AD=6,点O为对角线AC的中点,点E在DC的延长线上且CE=1.5,连接OE,过点O作OF⊥OE交CB延长线于点F,连接FE并延长交AC的延长线于点G,则=.38.如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴,y轴分别交于点D,C.点G,H是线段CD 上的两个动点,且∠GOH=45°,过点G作GA⊥x轴于A,过点H作HB⊥y轴于B,延长AG,BH交于点E,则过点E的反比例函数y=的解析式为.39.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.40.已知一个矩形纸片ABCD,AB=12,BC=6,点E在BC边上,将△CDE沿DE折叠,点C落在C'处;DC',EC'分别交AB于F,G,若GE=GF,则sin∠CDE的值为.41.如图,在△ABC中,已知AB=AC=4,BC=6,P是BC边上的一动点(P不与点B、C重合),连接AP,∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB之长为.42.如图,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q 从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示,给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=24cm2;③当14<t<22时,y=100﹣6t;④在运动过程中,使得△ABP是等腰三角形的P点一共3个;⑤当△BPQ与△BEA相似时,t=14.5,其中正确结论的序号是.43.如图,在矩形ABCD中,AB=2,BC=2,将矩形ABCD绕点C顺时针旋转,得到矩形A1B1CD1,点E是A1B1的中点,过B作BF⊥B1C于点F,连接DE,DF,则线段DE长度的最大值是,线段DF长度的最小值是.44.如图,已知直线AB交x轴于点A,分别与函数y=(x>0,a>0)和y=(x>0,b>a>0)的图象相交于点B,C,过点B作BD∥x轴交函数y=的图象于点D,过点C作CE∥x轴交函数y=的图象于点E,连接AD,BE,若=,S△ABD=2,则S△BCE=.45.如图,在矩形ABCD中,AB=3,AD=4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,连接PD,PG,则PD+PG的最小值为.46.如图,一次函数y=kx+4的图象与反比例函数y=(x>0,m>0)的图象交于A,B两点,与x轴,y轴分别交于C,D两点,点E为线段AB的中点,点P(2,0)是x轴上一点,连接EP.若△COD的面积是△AOB的面积的倍,且AB=2PE,则m的值为.47.如图,在等腰直角三角形ABC中,∠ACB=90°,在△ABC内一点P,已知∠1=∠2=∠3,将△BCP 以直线PC为对称轴翻折,使点B与点D重合,PD与AB交于点E,连接AD,将△APD的面积记为S1,将△BPE的面积记为S2,则的值为.48.已知一次函数y=﹣x+m的图象与反比例函数y=的图象交于A、B两(点A在点B的左侧),点P 为x轴上一动点,当有且只有一个点P,使得∠APB=90°,则m的值为.49.如图,△ABC,△EFG分别是边长为2和1的等边三角形,D是边BC,EF的中点,直线AG,FC相交于点M,当△EFG绕点D旋转一周时,点M经过的路径长为.50.如图,过原点的直线与反比例函数y=(x>0)、反比例函数y=(x>0)的图象分别交于A、B两点,过点A作y轴的平行线交反比例函数y=(x>0)的图象于C点,以AC为边在直线AC的右侧作正方形ACDE,点B恰好在边DE上,则正方形ACDE的面积为.51.如图,二次函数Y=﹣x2﹣x+2象与x轴交于A、B两点,与y轴交于C点,点D(m,n)是抛物线在第二象限的部分上的一动点,则四边形OCDA的面积的最大值是.52.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式n3+4m+2019=.53.已知:如图,△ABC中,∠A=45°,AB=6,AC=,点D、E、F分别是三边AB、BC、CA上的点,则△DEF周长的最小值是.54.若关于x的不等式组无解,且关于y的分式方程有正整数解,则满足条件的整数a的值为.55.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M,N在AC边上,∠MON=∠B,若△OMN与△OBC相似,则CM=.56.如图,反比例函数y=图象与直线y=﹣x交于A,B两点,将双曲线右半支沿射线AB方向平移与左半支交于C,D.点A到达A′点,A′B=BO,CE=6,则k=.57.如图,在平面直角坐标系中,矩形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,AC长为,若将边AC平移至A'C'处,此时A'坐标为(﹣4,2),分别连接A'B,C'O,反比例函数y=的图象与四边形A'BOC'对角线A'O交于D点,连接BD.则当BD取得最小值时,k的值是.58.如图,在Rt△ABC中,∠C=90°,AC=4,cos A=,点D是斜边AB上的动点且不与A,B重合,连接CD,点B'与点B关于直线CD对称,连接B'D,当B'D垂直于Rt△ABC的直角边时,BD的长为.59.如图所示,直线y=x分别与双曲线y=(k1>0,x>0),双曲线y=(k2>0,x>0)交于点A、点B,且OA=2AB,将直线向上平移2个单位长度后,与双曲线y=交于点C,若S△ABC=1,则k1k2的值为.60.已知如图,正方形ABCD的边长为4,取AB边上的中点E,连接CE,过点B作BF⊥CE于点F,连接DF.过点A作AH⊥DF于点H,交CE于点M,交BC于点N,则MN=.参考答案一.填空题(共60小题)1.;2.2;3.3或;4.3;;5.;6.(4,)或(1,10);7.或或3;8.﹣;9.﹣1;10.40;11.2;12.;;13.3;14.(,0);;15.24(﹣1)cm;4cm;16.2﹣;17.;18.1或﹣;19.7+;20.12;21.+1;22.(12﹣12)cm;(12﹣18)cm;23.;24.(3,3);25.m≤1或m≥2;26.;27.①②③④;28.4;29.②③;30.2或;31.①②③④;32.2;33.;34.6;35.;36.;37.;38.y=;39.8;40.;41.2或;42.①②⑤;43.2+;﹣;44.;45.3﹣2;46.m=2或6;47.;48.4或﹣4;49.π;50.4﹣4;51.8;52.2026;53.;54.﹣8、0、4;55.或;56.﹣;57.﹣;58.1或3;59.9;60.1;。
二次函数中考压轴题【2018 成都中考】如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标;(3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭,1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴.52x >,3x =∴,()3,1G -∴.②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴.52x >,94x +=∴,G ⎝⎭∴.综上所述,点G 坐标为()13,1G -;2G ⎝⎭. (3)由题意可得:1k m +=.1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=.11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O ,P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴. AMP PNB ∆∆∽,AM PNPM BN=∴,AM BN PN PM •=•∴, ()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >,1k ==-+∴. 【2017成都中考】如图1,在平面直角坐标系xOy 中,抛物线C :y=ax 2+bx+c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB=4,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C 的函数表达式;(2)若抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围.(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M 是C 上的动点,N 是C′上的动点,试探究四边形PMP′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.解:(1)由题意抛物线的顶点C(0,4),A(2,0),设抛物线的解析式为y=ax2+4,把A(2,0)代入可得a=﹣,∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.【2016成都中考】如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l 的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).【2015成都中考】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.解:(1)A(-1,0)∵直线l经过点A,∴0=-k+b,b=k∴y=kx+k令ax2-2ax-3a=kx+k,即ax2-(2a+k)x-3a-k=0 ∵CD=4AC,∴点D的横坐标为4∴-3-ka=-1×4,∴k=a∴直线l的函数表达式为y=ax+a(2)过点E作EF∥y轴,交直线l于点F设E(x,ax2-2ax-3a),则F(x,ax+a)EF=ax2-2ax-3a-(ax+a)=ax2-3ax-4a S△ACE =S△AFE-S△CFE=12(ax2-3ax-4a)(x+1)-12(ax2-3ax-4a)x=12(ax2-3ax-4a)=12a(x-32)2-258a∴△ACE的面积的最大值为-25 8a∵△ACE的面积的最大值为5 4∴-258a=54,解得a=-25(3)令ax2-2ax-3a=ax+a,即ax2-3ax-4a=0解得x1=-1,x2=4∴D(4,5a)∵y=ax2-2ax-3a,∴抛物线的对称轴为x=1设P(1,m)①若AD是矩形的一条边,则Q(-4,21a)m=21a+5a=26a,则P(1,26a)∵四边形ADPQ为矩形,∴∠ADP=90°∴AD2+PD2=AP2∴52+(5a)2+(1-4)2+(26a-5a)2=(-1-1)2+(26a)2即a2=17,∵a<0,∴a=-77∴P1(1,-267 7)②若AD是矩形的一条对角线则线段AD的中点坐标为(32,5a2),Q(2,-3a)m=5a-(-3a)=8a,则P(1,8a)∵四边形APDQ为矩形,∴∠APD=90°∴AP2+PD2=AD2∴(-1-1)2+(8a)2+(1-4)2+(8a-5a)2=52+(5a)2即a2=14,∵a<0,∴a=-12∴P2(1,-4)综上所述,以点A、D、P、Q为顶点的四边形能成为矩形点P 的坐标为(1,- 2677 )或(1,-4)【2014成都中考】如图,已知抛物线)4)(2(8-+=x x ky (k 为常数,且0>k )与x 轴从左至右依次交于A,B 两点,与y 轴交于点C ,经过点B 的直线b x y +-=33与抛物线的另一交点为D. (1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与△ABC 相似,求k 的值; (3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时,点M 在整个运动过程中用时最少?解:(1)抛物线y=(x+2)(x ﹣4),令y=0,解得x=﹣2或x=4,∴A (﹣2,0),B (4,0). ∵直线y=﹣x+b 过点B (4,0),∴﹣×4+b=0,解得b=,∴直线BD 解析式为:y=﹣x+. 当x=﹣5时,y=3,∴D (﹣5,3).∵点D (﹣5,3)在抛物线y=(x+2)(x ﹣4)上,∴(﹣5+2)(﹣5﹣4)=3,∴k=.(2)由抛物线解析式,令x=0,得y=k ,∴C (0,﹣k ),OC=k . 因为点P 在第一象限内的抛物线上,所以∠ABP 为钝角.因此若两个三角形相似,只可能是△ABC ∽△APB 或△ABC ∽△ABP .①若△ABC ∽△APB ,则有∠BAC=∠PAB ,如答图2﹣1所示. 设P (x ,y ),过点P 作PN ⊥x 轴于点N ,则ON=x ,PN=y . tan ∠BAC=tan ∠PAB ,即:,∴y=x+k .∴D (x ,x+k ),代入抛物线解析式y=(x+2)(x ﹣4), 得(x+2)(x ﹣4)=x+k ,整理得:x 2﹣6x ﹣16=0, 解得:x=8或x=2(与点A 重合,舍去),∴P (8,5k ). ∵△ABC ∽△APB ,∴,即,解得:k=.②若△ABC ∽△ABP ,则有∠ABC=∠PAB ,如答图2﹣2所示. 与①同理, 可求得:k=.综上所述,k=或k=.(3)由(1)知:D (﹣5,3),如答图2﹣2,过点D 作DN ⊥x 轴于点N ,则DN=3,ON=5,BN=4+5=9,∴tan ∠DBA===,∴∠DBA=30°.过点D 作DK ∥x 轴,则∠KDF=∠DBA=30°.过点F 作FG ⊥DK 于点G ,则FG=DF . 由题意,动点M 运动的路径为折线AF+DF ,运动时间:t=AF+DF ,∴t=AF+FG ,即运动时间等于折线AF+FG 的长度.由垂线段最短可知,折线AF+FG 的长度的最小值为DK 与x 轴之间的垂线段. 过点A 作AH ⊥DK 于点H ,则t 最小=AH ,AH 与直线BD 的交点,即为所求之F 点. ∵A 点横坐标为﹣2,直线BD 解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F (﹣2,2).综上所述,当点F 坐标为(﹣2,2)时,点M 在整个运动过程中用时最少.【2013成都中考】在平面直角坐标系中,已知抛物线(b,c 为常数)的顶点为P,等腰直角三角形ABC 的顶点A 的坐标为(0,-1),C 的坐标为(4,3),直角顶点B 在第四象限。
四川省成都市,2020~2021年中考数学压轴题精选解析四川省成都市中考数学压轴题精选~~第1题~~(2020官渡.九上期中)随着 技术的发展,人们对各类产品的使用充满期待.某公司计划在某地区销售第一款产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第 (为正整数)个销售周期每台的销售价格为元,与 之间满足如图所示的一次函数关系.(1) 求与之间的关系式;(2) 设该产品在第个销售周期的销售数量为 (万台), 与 的关系可用 来描述。
根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?~~第2题~~(2020龙泉驿.中考模拟) 如图,抛物线y= x +mx+n 与直线y=﹣ x+3交于A ,B 两点,交x 轴与D ,C两点,连接AC ,BC ,已知A (0,3),C (3,0).(1) 求抛物线的解析式和tan ∠BAC 的值;(2) 在(1)条件下:Ⅰ.P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ACB 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.Ⅱ.设E为线段AC 上一点(不含端点),连接DE ,一动点M 从点D 出发,沿线段DE 以每秒一个单位速度运动到E 点,再沿线段EA 以每秒 个单位的速度运动到A 后停止,当点E的坐标是多少时,点M 在整个运动中用时最少?~~第3题~~(2020宿州.中考模拟) 如图,已知直线与轴和轴分别交于点和点抛物线经过点 与直线 的另一个交点为 .2(1) 求 的值和抛物线的解析式(2)点在抛物线上,轴交直线于点点在直线上,且四边形为矩形.设点 的横坐标为矩形的周长为求与的函数关系式以及 的最大值(3)将绕平面内某点逆时针旋转得到(点分别与 点对应),若的两个顶点恰好落在抛物线上,请直接写出点 的坐标.~~第4题~~(2020成都.中考模拟) 如图,在平面直角坐标系中,抛物线C :y =ax +bx ﹣1经过点A (﹣2,1)和点B (﹣1,﹣1),抛物线C :y =2x +x+1,动直线x =t 与抛物线C 交于点N ,与抛物线C 交于点M .(1) 求抛物线C 的表达式;(2) 当△AMN 是以MN 为直角边的等腰直角三角形时,求t 的值;(3) 在(2)的条件下,设抛物线C 与y 轴交于点P ,点M 在y 轴右侧的抛物线C 上,连接AM 交y 轴于点K ,连接KN ,在平面内有一点Q ,连接KQ 和QN ,当KQ =1且∠KNQ =∠BNP 时,请直接写出点Q 的坐标.~~第5题~~(2020青白江.中考模拟) 如图,抛物线y =ax +bx+3(a≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (3,0),点C 三点.(1) 求抛物线的解析式;(2) x 轴上是否存在点P ,使PC+ PB 最小?若存在,请求出点P 的坐标及PC+ PB 的最小值;若不存在,请说明理由;(3) 连接BC ,设E 为线段BC 中点.若M 是抛物线上一动点,将点M 绕点E 旋转180°得到点N ,当以B 、C 、M 、N 为顶点的四边形是矩形时,直接写出点N 的坐标.~~第6题~~(2020青羊.中考模拟) 抛物线y =ax +bx ﹣5的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 坐标为(﹣1,0),一次函数y =x+k 的图象经过点B 、C .12221211222(1) 试求二次函数及一次函数的解析式;(2) 如图1,点D(2,0)为x 轴上一点,P 为抛物线上的动点,过点P 、D 作直线PD 交线段CB 于点Q ,连接PC 、DC ,若S =3S ,求点P 的坐标;(3) 如图2,点E 为抛物线位于直线BC 下方图象上的一个动点,过点E 作直线EG ⊥x 轴于点G ,交直线BC 于点F ,当E F+ CF 的值最大时,求点E 的坐标.~~第7题~~(2020锦江.中考模拟) 如图,抛物线y =ax +x+c 与x 轴交于点A (6,0),C (﹣2,0),与y 轴交于点B ,抛物线的顶点为D ,对称轴交AB 于点E ,交x 轴于点F .(1) 求抛物线的解析式;(2) P 是抛物线上对称轴左侧一点,连接EP ,若tan ∠BEP = ,求点P 的坐标;(3) M 是直线CD 上一点,N 是抛物线上一点,试判断是否存在这样的点N ,使得以点B ,E ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点N 的坐标,若不存在,请说明理由.~~第8题~~(2020金牛.中考模拟) 已知在平面直角坐标系中,抛物线y =x +3x ﹣a +a+2(a >1)的图象交x 轴于点A 和点B (点A 在点B 左侧),与y 轴交于点C ,顶点为E .(1) 如图1,求线段AB 的长度(用含a 的式子表示)及抛物线的对称轴;(2) 如图2,当抛物线的图象经过原点时,在平面内是否存在一点P ,使得以A 、B 、E 、P 为顶点的四边形能否成为平行四边形?如果能,求出P 点坐标;如果不能,请说明理由;(3) 如图3,当a =3时,若M 点为x 轴上一动点,连结MC ,将线段MC 绕点M 逆时针旋转90°得到线段MN ,连结AC 、CN 、AN ,则△ACN 周长的最小值为多少?~~第9题~~△CPD △CQD 2222(2020成都.中考模拟) 如图,在平面直角坐标系xOy中,抛物线y=ax+bx+c的图象与x轴交于A(﹣3,0)、B(2,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点E(m,2)是直线AC上方的抛物线上一点,连接EA、EB、EC,EB与y轴交于D.①点F是x轴上一动点,连接EF,当以A、E、F为顶点的三角形与△BOD相似时,求出线段EF的长;②点G为y轴左侧抛物线上一点,过点G作直线CE的垂线,垂足为H,若∠GCH=∠EBA,请求出点H的坐标.~~第10题~~(2020成华.中考模拟) 如图,抛物线y=ax+bx+c与x轴交于点A(﹣1,0),B(5,0),与y轴交于点C(0,),顶点为D,对称轴交x轴于点E.(1)求该抛物线的一般式;(2)若点Q为该抛物线上第一象限内一动点,且点Q在对称轴DE的右侧,求四边形DEBQ面积的最大值及此时点Q的坐标;(3)若点P为对称轴DE上异于D,E的动点,过点D作直线PB的垂线交直线PB于点F,交x轴于点G,当△PDG为等腰三角形时,请直接写出点P的坐标.四川省成都市中考数学压轴题答案解析~~第1题~~答案:解析:22~~第2题~~答案:解析:答案:解析:答案:解析:答案:解析:~~第6题~~答案:解析:~~第7题~~答案:解析:答案:解析:~~第9题~~答案:解析:答案:解析:。
圆【 2018成都中考】如图,在Rt ABC 中, C 90, AD 平分BAC 交 BC 于点D , O 为AB 上一点,经过点 A , D 的⊙O 分别交AB , AC 于点 E ,F,连接OF交 AD 于点G .( 1)求证:BC 是⊙O的切线;( 2)设AB x ,AF y ,试用含x, y的代数式表示线段AD 的长;( 3)若BE8 ,sin B5,求 DG 的长. 13【 2017 成都中考】如图,在△ABC中, AB=AC,以 AB为直径作圆O,分别交 BC于点 D,交 CA的延长线于点E,过点D作 DH⊥ AC于点 H,连接 DE交线段 OA于点F.( 1)求证: DH是圆 O的切线;( 2)若 A 为 EH的中点,求的值;(3)若 EA=EF=1,求圆 O的半径.证明:( 1)连接 OD,如图 1,∵OB=OD,∴△ ODB是等腰三角形,∠OBD=∠ODB①,在△ ABC中,∵ AB=AC,∴∠ ABC=∠ACB②,由①②得:∠ ODB=∠OBD=∠ ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH 是圆 O 的切线;(2)如图 2,在⊙ O 中,∵∠ E=∠B,∴由( 1)可知:∠ E=∠B=∠ C,∴△ EDC是等腰三角形,∵DH⊥AC,且点 A 是 EH 中点,设AE=x, EC=4x,则 AC=3x,连接 AD,则在⊙ O 中,∠ ADB=90°,AD⊥BD,∵AB=AC,∴D 是 BC的中点,∴OD 是△ ABC的中位线,∴OD∥AC,OD= AC= ×3x=,∵OD∥AC,∴∠ E=∠ODF,在△ AEF和△ ODF中,∵∠ E=∠ODF,∠ OFD=∠ AFE,∴△ AEF∽△ ODF,∴,∴= = ,∴= ;(3)如图 2,设⊙ O 的半径为 r,即 OD=OB=r,∵EF=EA,∴∠ EFA=∠ EAF,∵OD∥EC,∴∠ FOD=∠EAF,则∠ FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙ O 中,∵∠ BDE=∠EAB,∴∠ BFD=∠EFA=∠ EAB=∠ BDE,∴BF=BD,△ BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣ BF=2r﹣( 1+r) =r﹣1,在△ BFD和△ EFA中,∵,∴△ BFD∽△ EFA,∴,∴=,解得: r1=,r2=(舍),综上所述,⊙O 的半径为.中,∠ ABC=90°,以 CB 为半径作⊙C,交AC 于点D,交AC 【 2016 成都中考】如图,在Rt△ ABC的延长线于点 E,连接 ED, BE.( 1)求证:△ ABD∽ △ AEB;( 2)当=时,求tanE;( 3)在( 2 )的条件下,作∠ BAC 的平分线,与 BE 交于点 F ,若 AF=2 ,求⊙ C 的半径.解:( 1)∵∠ ABC=90 °,∴∠ ABD=90 °﹣∠ DBC ,由题意知: DE 是直径,∴∠ DBE=90 °,∴∠ E=90 °﹣∠ BDE ,∵BC=CD ,∴∠ DBC= ∠ BDE ,∴∠ ABD= ∠ E,∵∠ A= ∠ A ,∴△ ABD ∽△ AEB ;(2)∵ AB : BC=4 :3,∴设 AB=4 , BC=3 ,∴ AC==5,∵BC=CD=3 ,∴AD=AC ﹣ CD=5 ﹣ 3=2,由( 1)可知:△ ABD ∽△ AEB ,∴==,∴AB 2=AD ?AE ,∴42=2AE ,∴AE=8 ,在Rt△ DBE 中tanE=== =;(3)过点 F 作 FM ⊥ AE 于点 M ,∵ AB : BC=4 : 3,∴设AB=4x , BC=3x ,∴由( 2)可知; AE=8x , AD=2x ,∴ DE=AE ﹣ AD=6x ,∵ AF 平分∠ BAC ,∴=,∴== ,∵ tanE= ,∴ cosE=,sinE=,∴= ,∴ BE=,∴ EF= BE=,∴ sinE== ,∴ MF=,∵ tanE= ,∴ ME=2MF=,∴ AM=AE ﹣ ME=,222, ∵ AF =AM +MF∴ 4= +,∴ x=,∴⊙ C 的半径为: 3x=.【 2015 成都中考】 如图,在 Rt △ABC 中,∠ABC=90°, AC 的垂直平分线分别与 AC ,BC 及 AB 的延长线相较于点 D ,E ,F ,且 BF=BC ,⊙O 是△ BEF 的外接圆,∠ EBF 的平分线交 EF 于点G ,交⊙O 于点H ,连接 BD , FH .( 1)求证:△ ABC ≌△ EBF ;( 2)试判断 BD 与⊙O 的位置关系,并说明理由;( 3)若 AB=1,求 HG?HB 的值.解:( 1)由已知条件易得,DCEEFB , ABFEBF又 BCBF,∴ABC EBF(ASA)( 2) BD 与 e O 相切。
二次函数中考压轴题【2018 成都中考】如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标;(3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭,1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴.52x >,3x =∴,()3,1G -∴.②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴.52x >,94x +=∴,G ⎝⎭∴.综上所述,点G 坐标为()13,1G -;2G ⎝⎭. (3)由题意可得:1k m +=.1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=.11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O ,P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴. AMP PNB ∆∆∽,AM PNPM BN=∴,AM BN PN PM •=•∴, ()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >,1k ==-+∴. 【2017成都中考】如图1,在平面直角坐标系xOy 中,抛物线C :y=ax 2+bx+c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB=4,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C 的函数表达式;(2)若抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围.(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M 是C 上的动点,N 是C′上的动点,试探究四边形PMP′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.解:(1)由题意抛物线的顶点C(0,4),A(2,0),设抛物线的解析式为y=ax2+4,把A(2,0)代入可得a=﹣,∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.【2016成都中考】如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l 的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).【2015成都中考】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.解:(1)A(-1,0)∵直线l经过点A,∴0=-k+b,b=k∴y=kx+k令ax2-2ax-3a=kx+k,即ax2-(2a+k)x-3a-k=0 ∵CD=4AC,∴点D的横坐标为4∴-3-ka=-1×4,∴k=a∴直线l的函数表达式为y=ax+a(2)过点E作EF∥y轴,交直线l于点F设E(x,ax2-2ax-3a),则F(x,ax+a)EF=ax2-2ax-3a-(ax+a)=ax2-3ax-4a S△ACE =S△AFE-S△CFE=12(ax2-3ax-4a)(x+1)-12(ax2-3ax-4a)x=12(ax2-3ax-4a)=12a(x-32)2-258a∴△ACE的面积的最大值为-25 8a∵△ACE的面积的最大值为5 4∴-258a=54,解得a=-25(3)令ax2-2ax-3a=ax+a,即ax2-3ax-4a=0解得x1=-1,x2=4∴D(4,5a)∵y=ax2-2ax-3a,∴抛物线的对称轴为x=1设P(1,m)①若AD是矩形的一条边,则Q(-4,21a)m=21a+5a=26a,则P(1,26a)∵四边形ADPQ为矩形,∴∠ADP=90°∴AD2+PD2=AP2∴52+(5a)2+(1-4)2+(26a-5a)2=(-1-1)2+(26a)2即a2=17,∵a<0,∴a=-77∴P1(1,-267 7)②若AD是矩形的一条对角线则线段AD的中点坐标为(32,5a2),Q(2,-3a)m=5a-(-3a)=8a,则P(1,8a)∵四边形APDQ为矩形,∴∠APD=90°∴AP2+PD2=AD2∴(-1-1)2+(8a)2+(1-4)2+(8a-5a)2=52+(5a)2即a2=14,∵a<0,∴a=-12∴P2(1,-4)综上所述,以点A、D、P、Q为顶点的四边形能成为矩形点P 的坐标为(1,- 2677 )或(1,-4)【2014成都中考】如图,已知抛物线)4)(2(8-+=x x ky (k 为常数,且0>k )与x 轴从左至右依次交于A,B 两点,与y 轴交于点C ,经过点B 的直线b x y +-=33与抛物线的另一交点为D. (1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与△ABC 相似,求k 的值; (3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时,点M 在整个运动过程中用时最少?解:(1)抛物线y=(x+2)(x ﹣4),令y=0,解得x=﹣2或x=4,∴A (﹣2,0),B (4,0). ∵直线y=﹣x+b 过点B (4,0),∴﹣×4+b=0,解得b=,∴直线BD 解析式为:y=﹣x+. 当x=﹣5时,y=3,∴D (﹣5,3).∵点D (﹣5,3)在抛物线y=(x+2)(x ﹣4)上,∴(﹣5+2)(﹣5﹣4)=3,∴k=.(2)由抛物线解析式,令x=0,得y=k ,∴C (0,﹣k ),OC=k . 因为点P 在第一象限内的抛物线上,所以∠ABP 为钝角.因此若两个三角形相似,只可能是△ABC ∽△APB 或△ABC ∽△ABP .①若△ABC ∽△APB ,则有∠BAC=∠PAB ,如答图2﹣1所示. 设P (x ,y ),过点P 作PN ⊥x 轴于点N ,则ON=x ,PN=y . tan ∠BAC=tan ∠PAB ,即:,∴y=x+k .∴D (x ,x+k ),代入抛物线解析式y=(x+2)(x ﹣4), 得(x+2)(x ﹣4)=x+k ,整理得:x 2﹣6x ﹣16=0, 解得:x=8或x=2(与点A 重合,舍去),∴P (8,5k ). ∵△ABC ∽△APB ,∴,即,解得:k=.②若△ABC ∽△ABP ,则有∠ABC=∠PAB ,如答图2﹣2所示. 与①同理, 可求得:k=.综上所述,k=或k=.(3)由(1)知:D (﹣5,3),如答图2﹣2,过点D 作DN ⊥x 轴于点N ,则DN=3,ON=5,BN=4+5=9,∴tan ∠DBA===,∴∠DBA=30°.过点D 作DK ∥x 轴,则∠KDF=∠DBA=30°.过点F 作FG ⊥DK 于点G ,则FG=DF . 由题意,动点M 运动的路径为折线AF+DF ,运动时间:t=AF+DF ,∴t=AF+FG ,即运动时间等于折线AF+FG 的长度.由垂线段最短可知,折线AF+FG 的长度的最小值为DK 与x 轴之间的垂线段. 过点A 作AH ⊥DK 于点H ,则t 最小=AH ,AH 与直线BD 的交点,即为所求之F 点. ∵A 点横坐标为﹣2,直线BD 解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F (﹣2,2).综上所述,当点F 坐标为(﹣2,2)时,点M 在整个运动过程中用时最少.【2013成都中考】在平面直角坐标系中,已知抛物线(b,c 为常数)的顶点为P,等腰直角三角形ABC 的顶点A 的坐标为(0,-1),C 的坐标为(4,3),直角顶点B 在第四象限。
近十年成都中考数学A卷最后一题B卷填空压轴题、几何、函数压轴题汇编一.填空题(共13小题)1.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.2.如图,在菱形ABCD中,tan A=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB 的对应线段EF经过顶点D,当EF⊥AD时,的值为.3.如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.4.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.5.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN 和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.6.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△P AB是等腰三角形时,线段BC的长为.7.如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为.8.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.9.如图,A,B,C为⊙O上相邻的三个n等分点,=,点E在上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p=;当n=12时,p=.(参考数据:sin15°=cos75°=,cos15°=sin75°=)10.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为cm,最大值为cm.11.如图,△ABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,P 是BC边上一点,连接AD、DC、AP.已知AB=8,CP=2,Q是线段AP上一动点,连接BQ并延长交四边形ABCD的一边于点R,且满足AP=BR,则的值为.12.在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=x2﹣2交于A,B两点,且A点在y 轴左侧,P点的坐标为(0,﹣4),连接P A,PB.有以下说法:①PO2=P A•PB;②当k>0时,(P A+AO)(PB﹣BO)的值随k的增大而增大;③当k=时,BP2=BO•BA;④△P AB面积的最小值为.其中正确的是.(写出所有正确说法的序号)13.如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=.(用含m的代数式表示)二.解答题(共27小题)14.如图1,在△ABC中,AB=AC=20,tan B=,点D为BC边上的动点(点D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.15.在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分别交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形P A'B′Q的面积是否存在最小值.若存在,求出四边形P A′B′Q的最小面积;若不存在,请说明理由.16.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.17.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tan C=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.18.已知AC,EC分别是四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.(i)求证:△CAE∽△CBF;(ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且==k时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)19.如图,矩形ABCD中,AD=2AB,E是AD边上一点,DE=AD(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB=a(a为常数),n=3时,求FG的长;(3)记四边形BFEG的面积为S1,矩形ABCD的面积为S2,当=时,求n的值.(直接写出结果,不必写出解答过程)20.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)21.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).22.已知:在菱形ABCD中,O是对角线BD上的一动点.(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP=OQ;(2)如图乙,连接AO并延长,与DC交于点R,与BC的延长线交于点S.若AD=4,∠DCB=60°,BS=10,求AS和OR的长.23.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣3,0),若将经过A、C两点的直线y=kx+b1沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=﹣2.(1)求直线AC及抛物线的函数表达式;(2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求点P的坐标;(3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切.24.已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是的中点,连接BD并延长交EC 的延长线于点G,连接AD,分别交CE、BC于点P、Q.(1)求证:P是△ACQ的外心;(2)若,求CQ的长;(3)求证:(FP+PQ)2=FP•FG.25.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.26.如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.27.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sin B=,求DG的长,28.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.29.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.30.如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.31.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tan E;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.32.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN 能否为菱形?若能,求出点N的坐标;若不能,请说明理由.33.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.34.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.35.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△P AC∽△PDF;(2)若AB=5,=,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)36.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?37.如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,P A=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.38.在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC 的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.39.如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.40.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sin E=,AK=,求FG的长.参考答案一.填空题(共13小题)1.;2.;3.;4.;5.;6.8,,;7.(,);8.﹣1;9.c+b;c+b;10.20;12+;11.1或;12.③④;13.;二.解答题(共27小题)二.解答题(共27小题)14.(1)证明:∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE.(2)解:如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,则AM=BM•tan B=4k×=3k,由勾股定理,得到AB2=AM2+BM2,∴202=(3k)2+(4k)2,∴k=4或﹣4(舍弃),∵AB=AC,AM⊥BC,∴BC=2BM=2•4k=32,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴=,∴DB===,∵DE∥AB,∴=,∴AE===.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=20,tan B=∴BM=CM=16,∴BC=32,在Rt△ABM中,由勾股定理,得AM===12,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴==tan∠ADF=tan B=,∴AN=AM=×12=9,∴CH=CM﹣MH=CM﹣AN=16﹣9=7,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=14,∴BD=BC﹣CD=32﹣14=18,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=18.15.解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB==,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵∠PCQ=∠PBC=90°,∴∠BQC+∠BPC=∠BCP+∠BPC=90°,∴∠BQC=∠BCP=∠A,∴tan∠BQC=tan∠A=,∴BQ=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形P A'B′Q=S△PCQ﹣S△A'CB'=S△PCQ﹣,∴S四边形P A'B′Q最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,法一:(几何法)取PQ的中点G,∵∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=,PQ min=2,∴S△PCQ的最小值=3,S四边形P A'B′Q=3﹣;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,∴当PQ最小时,x+y最小,∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,当x=y=时,“=”成立,∴PQ=+=2,∴S△PCQ的最小值=3,S四边形P A'B′Q=3﹣.16.迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAB和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.17.解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tan C=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHF+∠AHF=∠AHC+∠AHF,∴∠EHA=∠FHC,,∴△EHA∽△FHC,∴∠EAH=∠C,∴tan∠EAH=tan C=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②方法1、如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴EF=BD,由(1)知,BD=AC,∴EF=AC∴==2.即:EF=2HG.方法2、如图③,取EF的中点K,连接GK,HK,由旋转知,∠EHF=90°,∴EK=HK=EF,由旋转知,∠CGE=∠AGC=90°,∴EK=GK=EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.18.(1)(i)证明:∵四边形ABCD和EFCG均为正方形,∴,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF,在△CAE和△CBF中,,∴△CAE∽△CBF.(ii)解:∵△CAE∽△CBF,∴∠CAE=∠CBF,,又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,又∵,AE=2∴,∴,∴EF2=BE2+BF2==3,∴EF=,∵CE2=2EF2=6,∴CE=.(2)如图②,连接BF,∵==k,∴BC=a,AB=ka,FC=b,EF=kb,∴AC=,CE==,∴,∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE∽△BCF,∴,∠CAE=∠CBF,又∵AE=2,∴,∴BF=,∵∠CAE=∠CBF,∠CAE+∠CBE=90°,∴∠CBE+∠CBF=90°,∴∠EBF=90°,∴EF2=BE2+BF2=1,∵,∴=,CE=3,∴EF=,∴1,∴,解得k=±,∵==k>0,∴k=.(3)连接BF,同理可得∠EBF=90°,过C点作CH⊥AB延长线于H,∵四边形ABCD为菱形,∴AB=BC,设AB=BC=x,∵∠CBH=∠DAB=45°,∴BH=CH=x,∴AC2=AH2+CH2=(x+x)2+(x)2,=(2+)x2,∴AB2:BC2:AC2=1:1:(2+),同理可得EF2:FC2:EC2=1:1:(2+),∴EF2==,在△ACE和△BCF中,,∴△ACE∽△BCF,∴==2+,∠CAE=∠CBF,又∵AE=n,∴,∵∠CAE=∠CBF,∠CAE+∠CBE=90°,∴∠CBE+∠CBF=90°,∴∠EBF=90°,∴EF2=BE2+BF2,∴,∴(2)m2+n2=p2,即m,n,p三者之间满足的等量关系是:(2)m2+n2=p2.19.解:(1)∵AD∥BC,∴∠EFO=∠BGO,∵FG为BE的垂直平分线,∴BO=OE;∵在△EFO和△BGO中,,∴△EFO≌△BGO,∴FO=GO∵EO=BO,且BE⊥FG∴四边形BGEF为菱形.(2)当AB=a,n=3时,AD=2a,AE=,根据勾股定理可以计算BE=,∵AF=AE﹣EF=AE﹣BF,在Rt△ABF中AB2+AF2=BF2,计算可得AF=,EF=,∵菱形BGEF面积=BE•FG=EF•AB,计算可得FG=.(3)设AB=x,则DE=,S1=BG•AB,S2=BC•AB当=时,=,可得BG=,在Rt△ABF中AB2+AF2=BF2,计算可得AF=,∴AE=AF+FE=AF+BG=,DE=AD﹣AE=,∴=,∴n=6.20.(1)证明:∵BD⊥BE,∴∠1+∠2=180°﹣90°=90°,∵∠C=90°,∴∠2+∠E=180°﹣90°=90°,∴∠1=∠E,∵在△ABD和△CEB中,,∴△ABD≌△CEB(AAS),∴AB=CE,∴AC=AB+BC=AD+CE;(2)(i)如图,过点Q作QF⊥BC于F,则△BFQ∽△BCE,∴=,即=,∴QF=BF,∵DP⊥PQ,∴∠APD+∠FPQ=180°﹣90°=90°,∵∠APD+∠ADP=180°﹣90°=90°,∴∠ADP=∠FPQ,又∵∠A=∠PFQ=90°,∴△ADP∽△FPQ,∴=,即=,∴5AP﹣AP2+AP•BF=3•BF,整理得,(AP﹣BF)(AP﹣5)=0,∵点P与A,B两点不重合,∴AP≠5,∴AP=BF,由△ADP∽△FPQ得,=,∴=;(ii)线段DQ的中点所经过的路径(线段)就是△BDQ的中位线MN.由(2)(i)可知,QF=AP.当点P运动至AC中点时,AP=4,∴QF=.∴BF=QF×=4.在Rt△BFQ中,根据勾股定理得:BQ===.∴MN=BQ=.∴线段DQ的中点所经过的路径(线段)长为.21.(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴,∵BP=a,CQ=a,BE=CE,∴,∴BE=CE=a,∴BC=3a,∴AB=AC=BC•sin45°=3a,∴AQ=CQ﹣AC=a,P A=AB﹣BP=2a,在Rt△APQ中,PQ==a.22.(1)证明:∵四边形ABCD为菱形,∴AD∥BC.∴∠OBP=∠ODQ∵O是BD的中点,∴OB=OD在△BOP和△DOQ中,∵∠OBP=∠ODQ,OB=OD,∠BOP=∠DOQ∴△BOP≌△DOQ(ASA)∴OP=OQ.(2)解:如图,过A作AT⊥BC,与CB的延长线交于T.∵ABCD是菱形,∠DCB=60°∴AB=AD=4,∠ABT=60°∴在Rt△ATB中,AT=AB sin60°=TB=AB cos60°=2∵BS=10,∴TS=TB+BS=12,在Rt△ATS中,∴AS=.∵AD∥BS,∴△AOD∽△SOB.∴,则,∴∵AS=,∴OS=AS=.同理可得△ARD∽△SRC.∴,则,∴,∴.∴OR=OS﹣RS=.23.解:(1)∵y=kx+b1沿y轴向下平移3个单位后恰好经过原点,∴b1=3,C(0,3).将A(﹣3,0)代入y=kx+3,得﹣3k+3=0.解得k=1.∴直线AC的函数表达式为y=x+3.∵抛物线的对称轴是直线x=﹣2∴,解得;∴抛物线的函数表达式为y=x2+4x+3;(2)如图,过点B作BD⊥AC于点D.∵S△ABP:S△BPC=2:3,∴AP•BD:PC•BD=2:3∴AP:PC=2:3.过点P作PE⊥x轴于点E,∵PE∥CO,∴△APE∽△ACO,∴==.∴PE=OC=,∴,解得∴点P的坐标为;(3)(Ⅰ)假设⊙Q在运动过程中,存在⊙Q与坐标轴相切的情况.设点Q的坐标为(x0,y0).①当⊙Q与y轴相切时,有|x0|=1,即x0=±1.当x0=﹣1时,得y0=(﹣1)2+4×(﹣1)+3=0,∴Q1(﹣1,0)当x0=1时,得y0=12+4×1+3=8,∴Q2(1,8)②当⊙Q与x轴相切时,有|y0|=1,即y0=±1当y0=﹣1时,得﹣1=x02+4x0+3,即x02+4x0+4=0,解得x0=﹣2,∴Q3(﹣2,﹣1)当y0=1时,得1=x02+4x0+3,即x 02+4x0+2=0,解得,∴,.综上所述,存在符合条件的⊙Q,其圆心Q的坐标分别为Q1(﹣1,0),Q2(1,8),Q3(﹣2,﹣1),,.(Ⅱ)设点Q的坐标为(x0,y0).当⊙Q与两坐标轴同时相切时,有y0=±x0.由y0=x0,得x02+4x0+3=x0,即x02+3x0+3=0,∵△=32﹣4×1×3=﹣3<0∴此方程无解.由y0=﹣x0,得x02+4x0+3=﹣x0,即x02+5x0+3=0,解得∴当⊙Q的半径时,⊙Q与两坐标轴同时相切.24.(1)证明:∵C是的中点,∴,∴∠CAD=∠ABC∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAD+∠AQC=90°又CE⊥AB,∴∠ABC+∠PCQ=90°∴∠AQC=∠PCQ∴在△PCQ中,PC=PQ,∵CE⊥直径AB,∴∴∴∠CAD=∠ACE.∴在△APC中,有P A=PC,∴P A=PC=PQ∴P是△ACQ的外心.(2)解:∵CE⊥直径AB于F,∴在Rt△BCF中,由tan∠ABC=,CF=8,得.∴由勾股定理,得BC==∵AB是⊙O的直径,∴在Rt△ACB中,由tan∠ABC==,BC=,∴AC=10,易知Rt△ACB∽Rt△QCA,∴AC2=CQ•BC,∴CQ==;(3)证明:∵AB是⊙O的直径,∴∠ADB=90°∴∠DAB+∠ABD=90°又CF⊥AB,∴∠ABG+∠G=90°∴∠DAB=∠G;∴Rt△AFP∽Rt△GFB,∴,即AF•BF=FP•FG易知Rt△ACF∽Rt△CBF,∴CF2=AF•BF(或由射影定理得)∴FC2=PF•FG,由(1),知PC=PQ,∴FP+PQ=FP+PC=FC∴(FP+PQ)2=FP•FG.25.证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴(2)连接AC,∵CE=1,EB=3,∴BC=4∵∴∠CAD=∠ABC,且∠ACB=∠ACB∴△ACE∽△BCA∴∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB==2∴⊙O的半径为(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CP A∴△APC∽△CPB∴∴PC=2P A,PC2=P A•PB∴4P A2=P A×(P A+2)∴P A=∴PO=∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴即∴PH=,OH=∴HQ==∴PQ=PH+HQ=26.解:(1)由题意得:解得,∴抛物线的函数表达式为y=x2﹣2x﹣3.(2)∵抛物线与x轴交于B(﹣1,0),C(3,0),∴BC=4,抛物线的对称轴为直线x=1,如图,设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,在Rt△BHC′中,由勾股定理,得C′H===2,∴点C′的坐标为(1,2),tan,∴∠C′BH=60°,由翻折得∠DBH=∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=,∴点D的坐标为(1,).(3)解:取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则,解得,∴直线BP的函数表达式为y=.②当点P在x轴的下方时,点Q在x轴下方.∵△PCQ,△C′CB为等边三角形,∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ,∴△BCP≌△C′CQ(SAS),∴∠CBP=∠CC′Q,∵BC′=CC′,C′H⊥BC,∴.∴∠CBP=30°,设BP与y轴相交于点E,在Rt△BOE中,OE=OB•tan∠CBP=OB•tan30°=1×,∴点E的坐标为(0,﹣).设直线BP的函数表达式为y=mx+n,则,解得,∴直线BP的函数表达式为y=﹣.综上所述,直线BP的函数表达式为或.27.(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sin B==,设圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.28.解:(1)由题意可得,解得a=1,b=﹣5,c=5;∴二次函数的解析式为:y=x2﹣5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,设对称轴交x轴于Q.则,∵MQ=,∴NQ=2,B(,);∴,解得,∴,D(0,),同理可求,,∵S△BCD=S△BCG,∴①DG∥BC(G在BC下方),,∴=x2﹣5x+5,解得,,x2=3,∵x>,∴x=3,∴G(3,﹣1).②G在BC上方时,直线G2G3与DG1关于BC对称,∴=,∴=x2﹣5x+5,解得,,∵x>,∴x=,∴G(,),综上所述点G的坐标为G(3,﹣1),G(,).(3)由题意可知:k+m=1,∴m=1﹣k,∴y l=kx+1﹣k,∴kx+1﹣k=x2﹣5x+5,解得x1=1,x2=k+4,∴B(k+4,k2+3k+1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P(,0),∵△AMP∽△PNB,∴,∴AM•BN=PN•PM,∴1×(k2+3k+1)=(k+4﹣)(),∵k>0,∴k==﹣1+.29.解:(1)由题意抛物线的顶点D(0,4),A(﹣2,0),设抛物线的解析式为y=ax2+4,把A(﹣2,0)代入可得a=﹣,∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m=﹣3或6.30.证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EF A=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EF A=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EF A=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EF A中,∵,∴△BFD∽△EF A,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.31.解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,。