Catalan猜想的新证法
- 格式:pdf
- 大小:757.08 KB
- 文档页数:3
庞加莱猜想中文版证明过程庞加莱猜想,听起来就像是某个神秘的魔法咒语,其实它是数学界的一块大石头。
说到庞加莱猜想,很多人可能会觉得无从下手,脑袋里一团糟。
但是,嘿,别担心,我来给你捋一捋。
想象一下,有个聪明的家伙,名叫亨利·庞加莱,他在上个世纪初就提出了这个猜想。
这个猜想的意思是,三维空间中的任何封闭、无孔的形状,最终都可以被看作是一个球体。
哇,这话听上去有点像魔法,对吧?其实就是想告诉我们,复杂的东西,归根结底都是简单的。
在接下来的岁月里,数学家们就像追逐风筝的小孩一样,拼命想要捉住这个猜想的尾巴。
他们在纸上涂涂画画,写写公式,真是费尽心思。
有的人甚至花了大半辈子在这上面,像是找到了一条探险之路。
可惜的是,很多人都是无功而返,最终还是和庞加莱的猜想失之交臂。
可不是说这些数学家们不聪明,反而是因为这个猜想实在太复杂,像是走进了一个无尽的迷宫,想找出口简直比登天还难。
转折点出现在2003年,一个名叫佩雷尔曼的俄罗斯数学家登场了。
这哥们儿简直是个天才,像是从天而降的超级英雄。
他对庞加莱猜想的证明,简直就是给数学界打了一剂强心针。
佩雷尔曼用了一种叫“里奇流”的方法,这可不是随便说说的。
他把一些复杂的几何问题简化成了更易处理的形态,像是把难吃的菜变成了美味佳肴。
嘿,这真是令人叹为观止。
佩雷尔曼的工作得到了数学界的高度认可,大家纷纷围绕着他,想要深入探讨。
但是这位天才却选择了隐退,像是个隐士,悄无声息地离开了舞台。
人们的赞美声仍在耳边回荡,但他却不以为然,拒绝了大笔奖金和荣誉,选择了过自己的生活。
真是个不拘一格的家伙!有人说他是“神经病”,也有人说他是“真正的数学家”。
无论如何,佩雷尔曼的证明让庞加莱猜想从此不再是个遥不可及的梦,而是化为现实,成为了数学历史上的一座里程碑。
这事儿告诉我们,追逐梦想的路上总是充满了荆棘。
像庞加莱那样勇敢提出问题的数学家,就算在无数次失败后,也依然坚信自己的猜想会有答案。
梅森数之谜:MM127是素数吗?周平源E-mail:************************当Mp=2p–1是一个梅森素数时,如果把Mp作为指数就可以生成一个新的梅森数,它称为由已知梅森素数Mp生成的双梅森数。
虽然Mp是已知素数但MMp不一定也是素数,MMp是否也是素数需要证明或检验。
如果MMp是素数,把MMp作为指数可以生成又一个新的梅森数MMMp,它称为由梅森素数MMp生成的双梅森数。
这种生成新的梅森数的方法可以无休止地进行下去,而且相继生成的梅森数的数值成长极为迅猛,在这种序列中通常第几项的数值就会成为巨大的天文数字。
这就是著名的卡特兰-梅森猜想的数学方法基础。
1876年卢卡斯(Lucas)证明梅森数M127=2127–1是素数后,数学家卡特兰(Catalan)便列出了如下一列无穷的数:c1=M2,c2=MM2,c3=MMM2,c4=MMMM2,c5=MMMMM2,….并猜想这些数都是素数。
它就是至今悬而未决的著名数论历史难题卡特兰-梅森猜想(Catalan’s Mersenne conjecture)。
前4个数c1=M2,c2=M3,c3=M7,c4=M127在卡特兰提出这个猜想时就已经知道它们都是素数,但第5个数c5=MM127的数值实在太大至今没有任何可信的方法证明它是素数,而如果它是合数就需要找出它的一个因子但还必须等待漫长的岁月,这是因为比MM127小得多的双梅森数MM61至今还没有被找出一个因子。
多年以来不乏业余数学家宣布已证明MM127是素数,但这些证明都被指出是不可靠的。
一些专业数学家推测MM127很可能不是素数,主要理由表现在以下两方面:1.在MM127 的数值规模上(位数超过1038),可计算出MM127为素数的概率约为1/2120,这是极小的概率,因而MM127几乎不可能是素数。
2.有许多早期类似的猜想形成普遍的误解都被很快出现的合数项否定了。
第一例:梅森素数(Mersenne prime)。
关于丢番图方程px+(p+1)y=z2徐爱娟;邓谋杰【摘要】设p,q是奇素数,s是非负整数.利用初等方法中的同余、二次剩余、不等式法与Scott(1993年)的结果,证明:如果p≡1 (mod4),p=2qs-1,q≡3(mod4),s是正整数,则丢番图方程px+(p+1)y=z2仅有正整数解(p,x,y,z)=(5,4,3,29);如果p≡3(mod8),p=4qs-1,则当q≡5,7(mod8),s是正整数时,上述方程无解;而当q≡3(mod8),s为非负整数时,上述方程仅有正整数解(3,2,2,5),(11,2,3,43).【期刊名称】《黑龙江大学自然科学学报》【年(卷),期】2016(033)006【总页数】4页(P766-769)【关键词】丢番图方程;正整数解;非负整数解;初等方法【作者】徐爱娟;邓谋杰【作者单位】海南大学信息科学技术学院,海口570228;海南大学信息科学技术学院,海口570228【正文语种】中文【中图分类】O156近年来,形如ax+by=z2的丢番图方程引起了一些作者的兴趣。
2007年,Acu [1]给出了丢番图方程2x+ 5y=z2的全部非负整数解。
2012年,Sroysang[2]证明了丢番图方程31x+32y=z2无非负整数解。
2013年,Rabago[3]给出了丢番图方程3x+19y=z2与3x+91y=z2的全部非负整数解。
2013年,Sroysang[4]证明了丢番图方程7x+8y=z2仅有非负整数解(x,y,z)=(0,1,3),并提出了求解丢番图方程的公开问题。
因(1)中p也是变量,故求解(1)比对给定的a,b求解ax+by=z2要困难一些。
目前关于(1)的结果很少。
2013年,Chotchaisthi[5]证明了:当p是Mersenne素数时,(1)仅有两个非负整数解(p,x,y,z)=(7,0,1,3),(3,2,2,5)。
很明显,他遗漏了一组解(p,x,y,z)=(3,1,0,2)。
组合数学中的基本原理及其应用卡特兰数Catalan,Eugene,Charles,卡特兰(1814~1894)比利时数学家,生于布鲁日(Brugge),早年在巴黎综合工科学校就读。
1856年任列日(Liege)大学数学教授,并被选为比利时布鲁塞尔科学院院士。
卡特兰一生共发表200多种数学各领域的论著。
在微分几何中,他证明了下述所谓的卡特兰定理:当一个直纹曲线是平面和一般的螺旋面时,他只能是实的极小曲面。
他还和雅可比(Jacobi,C·G·J)同时解决了多重积分的变量替换问题,建立了有关的公式。
1842年,他提出了一种猜想:方程x z-y t=1没有大于1的正整数解,除非平凡情形32-23=1。
这一问题至今尚未解决。
(mathoe注:即除了8、9这两个连续正整数都是正整数的方幂外,没有其他。
1962年我国数学家柯召以极其精湛的方法证明了不存在三个连续正整数,它们都是正整数的方幂,以及方程x2-y n=1,n >1,xy≠0无正整数解。
并且还证明了如果卡特兰猜想不成立,其最小的反例也得大于1016。
)此外,卡特兰还在函数论、伯努利数和其他领域也做出了一定的贡献。
卡特兰通过解决凸n边形的剖分得到了数列C n。
凸n+2边形用其n-1条对角线把此凸n+2边形分割为互不重叠的三角形,这种分法的总数为C n。
为纪念卡特兰,人们使用“卡特兰数”来命名这一数列。
据说有几十种看上去毫不相干的组合计数问题的最终表达式都是卡特兰数的形式。
卡特兰数在数学竞赛、信息学竞赛、组合数学、计算机编程等都会有其不同侧面的介绍。
前几个卡特兰数:规定C0=1,而C1=1,C2=2,C3=5,C4=14,C5=42,C6=132,C7=429,C8=1430,C9=4862,C10=16796,C11=58786,C12=208012,C13=742900,C14=2674440,C15=9694845。
递推公式圆周上有标号为1,2,3,4,……,2n的共计2n个点,这2n个点配对可连成n条弦,且这些弦两两不相交的方式数为卡特兰数C n。
庞加莱猜想证明概述在庞加莱猜想提出后,很多数学家对其展开了探索和研究,但一直没有找到一个确凿的证明或反例。
直到2003年,俄罗斯数学家格雷戈里·佩雷尔曼通过利用里奇流理论和梯度流的理论等一系列数学方法,证明了庞加莱猜想。
这篇文章将介绍庞加莱猜想的历史背景和相关概念,然后详细描述佩雷尔曼的证明过程和相关数学原理,最后分析庞加莱猜想对数学和科学领域的重要意义。
一、庞加莱猜想的历史背景庞加莱猜想的提出可以追溯到19世纪末的数学发展。
当时,数学家们已经开始探讨对多维几何空间的研究,如三维流形的性质和拓扑结构等。
此时,亨利·庞加莱成为了这一领域的先驱者,他提出了著名的庞加莱猜想,引发了数学界对于三维空间性质的深入思考和研究。
庞加莱猜想的提出也在一定程度上推动了数学领域的发展,为拓扑学和几何学等领域的研究提供了新的动力和方向。
然而,长期以来,庞加莱猜想一直未能找到确凿的证明,成为数学界的一个难题。
二、庞加莱猜想的相关概念1. 流形:在数学领域,流形是指一个局部与欧氏空间同胚的空间。
在庞加莱猜想中,主要讨论的是三维紧致的无边界的连通流形。
2. 欧氏空间:欧氏空间指的是平凡的三维空间,即我们所生活的空间。
在庞加莱猜想中,研究的对象是三维欧氏空间中的环流变形问题。
3. 拓扑结构:拓扑结构是指一个空间的结构,它并不依赖于空间的具体度量,而仅仅与空间的连通性和邻域关系有关。
在庞加莱猜想中,研究的就是流形的拓扑结构和性质。
三、佩雷尔曼的证明过程2003年,俄罗斯数学家格雷戈里·佩雷尔曼通过利用里奇流理论和梯度流的理论,证明了庞加莱猜想。
他的证明过程可以概括为以下几个步骤:1. 利用几何流的理论,建立了三维流形的梯度不等式,从而引入了里奇流的概念。
2. 利用里奇流的理论,证明了当流形上的里奇曲率为正时,流形是球面的概率。
3. 利用梯度流的理论,证明了当流形上的梯度不等式成立时,流形是球面的概率。
庞加莱猜想的证明庞加莱猜想是数学史上最著名的问题之一,也是使数学史发生巨大变化的催化剂。
它于19月由柯西(Kerckhoffs)首次提出,在几个世纪以来一直没有准确的解决方案。
2013年,104岁的史鲁皮怀特安德森(Sir Timothy Gowers)和34岁的温特斯厄尔曼(Terence Tao)终于证明了庞加莱猜想。
他们的构思是分散的,但最终他们链接起各个细节,缔结完整的证明。
庞加莱猜想指出,如果一个欧几里得数被分解为两个素数的乘积,那么两个素数之差最多只有一个固定的数字。
安德森和厄尔曼的证明是基于Rademacher-Tao理论。
这个理论加深了我们对庞加莱猜想的理解,有助于揭示数学中的更多秘密。
此前,有许多证明庞加莱猜想的方法,但都无法准确地给出解决方案。
它们有时会得出两个素数之间的最大距离,但无法获得较小间距的解决方案。
安德森和厄尔曼的证明可以获得完美的结果,他们的解决方案可以正确表述庞加莱猜想的完整含义。
这两位数学家的证明并没有改变庞加莱猜想的本质。
但它有助于确定庞加莱猜想的具体内容,也被认为是对庞加莱猜想的完善。
安德森和厄尔曼的证明助推了数学思想的进步,也改变了数学发展的历史过程,有助于推动未来数学思想的发展。
安德森和厄尔曼提出的证明解决了庞加莱猜想的问题,但首先他们必须做出一系列假设,并计算潜在的数学关系。
他们的深入研究可以说是数学史上最伟大的做法之一。
为了证明这个猜想,他们创造了一种新的方法,即“克拉克近似理论”。
安德森和厄尔曼用一系列复杂的数学操作证明了庞加莱猜想,这有助于改变传统的数学思想模式,他们使用模型证明和密集的统计,让一种新的数学方法问世。
而安德森和厄尔曼的深入研究,更给了数学史以突破,开辟了一个新的局面。
庞加莱猜想的证明是数学史上的一项重大成就,也是一项历史性的突破。
安德森和厄尔曼的研究标志着一个新时代的开始,改变了数学史上的发展历程。
他们完成了令人难以置信的成就,证明了庞加莱猜想,让我们从新的视角重新认识数学之美。
卡塔兰猜想卡塔兰猜想是比利时数学家欧仁·查理·卡塔兰(Eugène Charles Catalan)在1844年提出的一个数论的猜想。
它是说除了8 = 23,9 = 32,没有两个连续整数都是正整数的幂;以数学方式表述为:不定方程xa − yb = 1的大于1的正整数x,y,a,b只有唯一解x = 3,y = 2,a = 2,b = 3。
也可以叫“8--9”猜想。
2002年4月,帕德博恩大学的罗马尼亚数学家普雷达·米哈伊列斯库(Preda Mih ăilescu)证明了这猜想,所以它现在是定理了。
这个证明由尤里·比卢(Yuri Bilu)检查,大幅使用了分圆域和伽罗华模。
与卡塔兰猜想相似的有费马大定理。
历史在卡塔兰之前已有人考虑过类似的问题。
1320年左右,莱维·本·热尔松(Levi ben Gerson,1288年—1344年)证明2和3的幂之间只有8和9相差是1。
莱昂哈德·欧拉证明,x2 - y3 = 1只有一解:x = 3,y = 2。
勒贝格证明了方程xa - y2 = 1,a > 1 没有正整数解。
1965年柯召证明方程x2 - yb = 1,b > 1 只有一个解。
于是卡塔兰猜想只余下a,b为奇素数的情况。
1976年罗贝特·泰德曼(Robert Tijdeman)证明卡塔兰猜想的方程只有有限个解。
雷·斯坦纳(Ray Steiner)和莫里斯·米尼奥特(Maurice Mignotte)也对这猜想作出贡献。
皮莱(Pillai)猜想:把卡塔兰猜想一般化,推测正整数的幂之间的差趋向无限大;换句话说,对任何正整数,仅有限多对正整数的幂的差是这个数。
这猜想现在仍未解决。
庞加莱猜想的证明庞加莱猜想是18世纪初叶美国数学家威廉庞加莱提出的数学猜想,表明数学领域中的一些基本性质可以被证明。
此猜想,被证明之后,会大大改变数学领域,从而影响其他学科。
简单来说,庞加莱猜想指出任何一个大于2的整数都可以表示为两个素数的和。
庞加莱猜想的证明属于数学猜想,总的来说,有三种可能的方法来证明庞加莱猜想,即分类论法、可计算性法和统计逻辑法。
首先,分类论法是一种最古老的论证方法,它用于证明庞加莱猜想,以证明其任何大于2的整数都可以表示为两个素数之和。
分类论法假定,庞加莱猜想是正确的,并且它使用一些事实和定理来实施论证。
举个例子,假设我们知道庞加莱猜想是正确的,我们可以通过使用一些算术定理来证明,5=2+3,7=3+4,11=5+6等,这样就可以满足庞加莱猜想的要求。
其次,可计算性法也是一种证明庞加莱猜想的重要方法,该方法对庞加莱猜想的有效性进行了计算,从而使它变得可检验。
该方法在研究过程中使用了计算机技术,包括编程和算法,来验证某个整数是否可以表示为两个素数之和。
借助于计算机,可以使用大量的例子来证明庞加莱猜想。
最后,统计逻辑法是另一种庞加莱猜想的证明方法,其目的是通过收集数据,统计数据以及构建模型,来证明庞加莱猜想的正确性。
该方法用到了大量的数据,分析数据,并通过建立数学模型,来证明其的正确性。
例如,可以使用一些实验数据来确定庞加莱猜想的正确性,通过分析收集到的数据,来确定庞加莱猜想是否可以使用。
总之,庞加莱猜想是一个让人难以置信的数学用语,但是它却是一个真实而强大的数学猜想。
它的证明依赖于三种方法,即分类论法、可计算性法和统计逻辑法,它们都可以用来帮助证明该猜想。
即使多年来,庞加莱猜想仍然是一个未被证明的数学棘手问题,但是它的历史悠久,受到了数学界的广泛关注。
柯召定理的扩展及证明罗龙熙【摘要】本文将柯召定理中约束条件p的取值进行了拓展,从p只能取素数推广到了p可以为两个素数之积的形式,推测等式x2-1=yp(p=p1p2,其中p1,p2为大于3的素数)无正整数解;并运用数论的理论知识和柯召方法,证明了除(y+1,yp+1/y+1)=p外的所有情况下,该等式无正整数解.【期刊名称】《中学数学》【年(卷),期】2016(000)009【总页数】2页(P封3-封4)【关键词】柯召定理扩展【作者】罗龙熙【作者单位】四川省成都市树德中学【正文语种】中文1842年,法国著名数学家Catalan提出的“卡特兰猜想”是一个著名的数论难题:8和9是仅有的两个大于1的连续正整数,他们都是整数方幂,用不定方程表示为xmyn=1(m>1,n>1),除(x,y,m,n)=(3,2,2,3)以外,没有其他正整数解.[1-2]1962年,我国著名数学家,四川大学柯召院士以精湛的方法解决了卡特兰猜想的二次情形,并获一系列重要成果,被世界数学界誉为“柯召定理”,它所运用的方法被称为“柯召方法”.[3]柯召院士证明出了方程x2-1=yp(p为任意大于3的素数)无正整数解;[4]并证明出了方程和x2=yp+1(n为大于1的奇数,p 为奇素数,x和y都是整数).[5]后来,国内一些学者对柯召定理的推广形式进行了研究.曹珍富(1987)避开了文5的结果,给出了柯召定理一个简短的证明,[6]但规定了不定方程x2-1=yp的约束条件p只能为大于3的素数.不少学者运用柯召方法解决了一大类不定方程问题.本文试图对柯召定理中约束条件p的取值进行拓展,推测等式x2-1=yp①无正整数解.其中,p=p1p2,p1,p2为大于3的素数.定理1:x2-1=yp(p=p1p2,其中,p1,p2为大于3的素数)无正整数解.为了证明该定理,本文需要首先证明以下两个结论:引理1:或p1或p2或p(p=p1p2,其中,p1, p2为大于3的素数).证明:事实上(-1)p-2+…+(-1)2-(-1)+(-1)≡p≡p1p2(mody+1). 所以)=1或p1或p2或 p,得证.引理2是指对a、b运用Jacobi符号进行计算所得值.证明:对q和p1进行辗转相除有:q=k1p1+r1;(1≤r1≤p1-1)p1=k2r1+r2;(1≤r2≤r1)……rs-1=ks+1rs+rs+1;(1≤rs+1≤rs)rs=ks+2rs+1.因为所以f(k1p1+r1)≡f(r1)(modf(p1)).又由(p,q)=1知rs+1=1,所以证毕.下面来证明定理1:由方程①得yp=x2-1=(x-1)(x+1).下面分2|x、2|x+1两种情况:(Ⅰ)若2|x,则有x-1与x+1均为奇数,于是(x-1,x+2)=(2,x+1)=1,其中(a,b)表示a与b的最大公约数.故不妨设y=y1y2,且(y1,y2)=1,y1<y2.则此时有x-1=yp1②,x+1=yp2③.由③-②得下面证明方程④无正整数解,事实上:又因为y为奇数,故y1,y2均为奇数,所以y2-y1≥2,从而y2-y1=2,则yp-12+yp-22y1+…+y2yp-21+yp-11=1.因为y1,y2中至少有一数大于1,故yp-12+yp-22y1+…+y2yp-21+yp-11>1,矛盾.(Ⅱ)若2|x+1,进一步可得2|y.根据引理1分=p1或p2、。