旋转圆法求粒子轨道
- 格式:doc
- 大小:698.50 KB
- 文档页数:7
数学圆法巧解磁场中的临界问题一、应用技巧1.“放缩圆”法适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法1如图所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是()A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线不一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同【答案】 BC【解析】 由t=θ2πT知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,轨迹线弧长s=rθ,运动时间越长,θ越大,但半径r不一定大,s也不一定大,故A错误,B正确.由周期公式T=2πmqB知,电子做圆周运动的周期与电子的速率无关,所以电子在磁场中的运动周期相同,若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,由r= mvqB可知它们的速率不同,故C正确,D错误.2.“旋转圆”法适用条件速度大小一粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射定,方向不同入初速度为v0,则圆周运动半径为R=mv0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=mvqB的圆上界定方法将一半径为R=mv0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法2如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。
18.4.带电粒子在磁场中运动的临界、多解问题要点一. 带电粒子在磁场中运动的临界问题1.临界问题的特点带电粒子在磁场中运动,由于速度或大小的变化,往往会存在临界问题,如下所示为常见的三种临界草图。
临界特点:(1)粒子刚好穿出磁场的条件:在磁场中运动的轨迹与边界相切.(2)根据半径判断速度的极值:轨迹圆的半径越大,对应的速度越大.(3)根据圆心角判断时间的极值:粒子运动转过的圆心角越大,时间越长.(4)根据弧长(或弦长)判断时间的极值:当速率一定时,粒子运动弧长(或弦长)越长,时间越长.2.解题思路分析思路:以临界问题的关键词“恰好”“最大”“至少”“要使......”等为突破口,寻找临界点,确定临界状态,画出临界状态下的运动轨迹,建立几何关系求解.往往采用数学方法和物理方法的结合:1.利用“矢量图”“边界条件”结合“临界特点”画出“临界轨迹”。
2.利用“三角函数”“不等式的性质”“二次方程的判别式”等求临界极值。
一般解题流程:3.探究“临界轨迹”的方法1. “伸缩圆”动态放缩法定点粒子源发射速度大小不同、方向相同的同种带电粒子时,其轨迹半径不同,相当于定点圆在“伸缩”。
特点:1.速度越大,轨迹半径越大。
2.各轨迹圆心都在垂直于初速度方向的直线上。
应用:结合具体情境根据伸缩法,可以分析出射的临界点,求解临界半径。
2. “旋转圆”旋转平移法定点粒子源发射速度大小相同、方向不同的同种带电粒子时,其轨迹半径相同,相当于定点圆在“旋转”特点:1.半径相同,方向不同。
2.各轨迹圆心在半径为R的同心圆轨迹上。
旋转圆的应用:结合具体情境,可以分析圆心角、速度偏向角、弦切角、弧长、弦长的大小;求解带电粒子的运动时间.应用情景1.(所有的弦长中直径最长)速度大小相同、方向不同的同种带电粒子,从直线磁场边界上P点入射。
M点是粒子打到直线边界上的最远点(所有的弦长中直径最长).应用情景2.(所有的弦长中直径最长)速度大小相同方向不同的同种带电粒子,从圆形磁场边界上的P射入磁场;①若轨迹半径>磁场半径当PM距离为磁场直径时,粒子出射点与入射点之间的距离最远、共有弦最长、时间最长。
确定带电粒子在磁场中运动轨迹的三种巧妙方法(一)对称法1.如图8220所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。
现将带电粒子的速度变为v 3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B .2Δt C.13Δt D .3Δt解析:选B(二)旋转圆法2. (多选)如图8221所示,扇形区域AOC 内有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S 。
某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有部分粒子从边界OC 射出磁场。
已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最长时间等于T 2(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的时间不可能为( )A.T 12B.T 8C.T 4D.T 3 解析:选AB 粒子在磁场中做匀速圆周运动,粒子在磁场中出射点和入射点的连线即为轨迹的弦。
初速度大小相同,轨迹半径R =m v qB 相同。
设OS =d ,以S 为圆心,将轨迹圆逆时针旋转。
当出射点D 与S 点的连线垂直于OA 时,DS 弦最长,轨迹所对的圆心角最大,周期一定,则粒子在磁场中运动的时间最长。
由此得到:轨迹半径为:R =32d ,当出射点E 与S 点的连线垂直于OC 时,弦ES 最短,轨迹所对的圆心角最小,则粒子在磁场中运动的时间最短。
则:SE =32d ,由几何知识,得θ=60°,最短时间:t min =T 6。
所以,粒子在磁场中运动时间范围为16T ≤t ≤T 2,故不可能的是A 、B 。
(三)放缩圆法3.如图8222所示,一足够长的矩形区域abcd 内充满磁感应强度为B ,方向垂直纸面向里的匀强磁场,现从矩形区域ad 边中点O 射出与Od 边夹角为30°,大小为v 0的带电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力忽略不计,求:(1)试求粒子能从ab 边上射出磁场的v 0的大小范围;(2)粒子在磁场中运动的最长时间和在这种情况下粒子从磁场中射出所在边上位置的范围。
带电粒子旋转圆问题
当一个带电粒子在有界磁场中旋转成圆形轨道时,其运动可由洛伦兹力和向心力共同决定。
洛伦兹力是由磁场和带电粒子的电荷性质决定的力,它始终垂直于带电粒子的速度和磁场方向。
向心力则是由带电粒子的质量和速度决定的力,它指向圆心,使得带电粒子保持在圆形轨道上。
首先,考虑洛伦兹力的作用。
洛伦兹力的大小与带电粒子的电荷大小、速度以及磁场强度相关。
在磁场中,洛伦兹力会使带电粒子受到一个向心力的作用,引导其沿着圆形轨道运动。
洛伦兹力的方向始终垂直于速度和磁场的方向,这使得带电粒子的速度方向会不断发生变化,从而导致其轨道是一个圆形。
其次,向心力也会参与其中。
向心力始终指向圆心,使得带电粒子保持在圆形轨道上。
向心力的大小与带电粒子的质量和速度有关。
在带电粒子绕圆形轨道运动时,向心力和洛伦兹力相等,使得带电粒子保持运动的稳定性。
需要注意的是,带电粒子的质量、电荷大小、速度和磁场强度等因素会影响带电粒子在有界磁场中旋转圆的半径和速度。
通过调节磁场强度或改变粒子的性质,可以实现对带电粒子旋转圆运动的调控。
总之,在有界磁场中,带电粒子旋转成圆形轨道的问题涉及到洛伦兹力和向心力的相互作用。
这种运动是通过调节带电粒子的性质和磁场强度来实现的,可以用来研究电磁场中粒子的运动规律。
高中物理确定带电粒子在磁场中运动轨迹的四种方法-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远射出的时间差是多少解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
模型/题型:磁场常见模型·集合一、缩放圆和旋转圆模型 1. 缩放圆模型特征:带电粒子从某一点以速度方向不变而大小在改变(或磁感应强度变化)射入匀强磁场,在匀强磁场中做半径不断变化的匀速圆周运动。
把其轨迹连续起来观察,好比一个与入射点相切并在放大或缩小的“动态圆”,如图。
解题时借助圆规多画出几个半径不同的圆,可方便发现粒子轨迹特点,达到快速解题的目的。
2. 环形磁场临界问题临界圆临界半径 221R R r +=2-12R R r =勾股定理(R 2-R 1)2=R 12+r2解得:)R R (R r 1222-=3. 旋转圆模型特征:带电粒子从某一点以大小不变而方向不限定(如0—180°范围内)的速度射入匀强磁场中,这类问题都可以归结为旋转圆问题,把其轨迹连续起来观察可认为是一个半径不变的圆,根据速度方向的变化以出射点为旋转轴在旋转如图。
解题时使用圆规或硬币都可以快捷画出其轨迹,达到快速解答试题的目的。
同时还要注意,粒子在做圆周运动时的绕行方向不随旋转而改变(即同旋性)。
4. 旋转圆五大特征 ①半径相等 R=mv/qB②都过发射点③圆心分布在一圆周上④旋转方向相同(同旋性)⑤同时发射,同时刻在同一圆周上,最大范围π(2R )25. 旋转圆中粒子运动的空间范围问题最近点:A (OA =2Rsinθ) 最远点:B (OB 为直径) 圆中最大的弦长是直径 左边界:相切点A ; 右边界:OB 为直径边界点:相切点B 、C× × × ×× × × × ×× × × ×v 0R 1 R 2× × × ×× × × × ×× × ××v 0 R 1R 2× × × ×× × × × ×× × ××v 0R 1R 2× × × × × × × × × ×× × × × ×v 0A B O ●● θ( ABC6.圆形有界磁场中的旋转圆问题r<R r>R r=R在磁场中运动的最远距离为OA=2r在磁场中运动的最长时间为t max=αrv0=αmqB(sinα2=Rr)离开磁场速度方向垂直于入射点与磁场圆心的连线二、磁聚焦/磁发散模型⭐规律1:磁聚焦:如果磁场圆半径等于粒子的轨迹圆半径,带电粒子从圆形有界磁场边界上的某点射入磁场,则粒子的出射方向与磁场圆上入射点处的切线方向平行。
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
2023年高考物理《磁场》常用模型最新模拟题精练专题10.正方形边界磁场模型一.选择题1.(2023山东名校联考)如图所示,正方形区域内有匀强磁场,现将混在一起的质子H 和α粒子加速后从正方形区域的左下角射入磁场,经过磁场后质子H 从磁场的左上角射出,α粒子从磁场右上角射出磁场区域,由此可知()A .质子和α粒子具有相同的速度B .质子和α粒子具有相同的动量C .质子和α粒子具有相同的动能D .质子和α粒子由同一电场从静止加速【参考答案】A 【名师解析】根据洛伦兹力提供向心力得qvB =mv 2R ,所以v =qBR m ,设质子的比荷为q m ,则α粒子的比荷为2q4m ,质子的半径是α粒子的一半,所以二者的速度相同,故A 正确,B 、C 错误;如果由同一电场从静止加速,那么qU =12mv 2,所以v =2qUm,由于质子和α粒子比荷不同,所以速度不同,所以不是从同一电场静止加速,所以D 错误。
2.(2022南昌一模)如图所示,边长为L 的正方形ABCD 边界内有垂直纸面向里的匀强磁场B ,E 为AD 上一点,ED =33L 。
完全相同的两个带电粒子a 、b 以不同速度分别从A 、E 两点平行AB 向右射入磁场,且均从C 点射出磁场。
已知a 粒子在磁场中运动的时间为t ,不计粒子的重力和相互作用,则b 粒子在磁场中运动的时间为()A.13t B.12t C.23t D.34t 【参考答案】C 【名师解析】根据题意可知粒子做圆周运动的轨迹如图所示由图可知a粒子运动轨迹所对的圆心角为90aθ=︒根据几何知识有222 2233R L L R ⎛⎫-+=⎪⎪⎝⎭得b粒子的轨道半径223 3R L =,3 sin2233bLθ==所以b粒子运动轨迹所对的圆心角为60bθ=︒根据2mTqBπ=,360t Tθ=︒,所以23b ba attθθ==b粒子在磁场中运动的时间为2233b at t t==。
选项C正确。
考点12:旋转圆法--带电粒子在磁场中运动的临界问题当粒子的入射速度大小确定而方向不确定时,所有不同方向入射的粒子的轨迹圆是一样大的,只是位置绕入射点发生了旋转,从定圆的动态旋转(作图)中,也容易发现“临界点”.另外,要重视分析时的尺规作图,规范而准确的作图可突出几何关系,使抽象的物理问题更形象、直观,如图. ①适用条件a.速度大小一定,方向不同粒子源发射速度大小一定,方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若入射初速度为v 0,由q v 0B =m v 20R 得圆周运动半径为R =m v 0qB .b.轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点O 为圆心、半径R =m v 0qB 的圆(这个圆在下面的叙述中称为“轨迹圆心圆”)上. ②界定方法将半径为R =m v 0qB 的圆的圆心沿着“轨迹圆心圆”移动,从而探索出临界条件,这种方法称为“旋转圆法”.1.如图所示,平行边界MN 、PQ 间有垂直纸面向里的匀强磁场,磁场的磁感应强度大小为B ,两边界间距为d ,MN 上有一粒子源A ,可在纸面内沿各个方向向磁场中射入质量均为m 、电荷量均为q 的带正电的粒子,粒子射入磁场的速度v =2qBd3m ,不计粒子的重力,则粒子能从PQ 边界射出的区域长度为( ) A .d B.23dC.233dD.32d答案 C解析 粒子在磁场中运动的半径R =m v qB =23d ,粒子从PQ 边射出的两个边界粒子的轨迹如图所示:由几何关系可知,从PQ 边射出粒子的区域长度为s =2⎝⎛⎭⎫23d 2-⎝⎛⎭⎫13d 2=233d ,C 项正确.2.如图所示,在边长ab =1.5L 、bc =3L 的矩形区域内存在着垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O 处有一粒子源,可以垂直磁场向区域内各个方向发射速度大小相等的同种带电粒子.若沿Od 方向射入的粒子从磁场边界cd 离开磁场,该粒子在磁场中运动的时间为t 0,圆周运动半径为L ,不计粒子的重力和粒子间的相互作用.下列说法正确的是( )A.粒子带负电C.粒子的比荷为πBt 0D.粒子在磁场中运动的最长时间为2t 0 2.D[由题设条件作出以O 1为圆心的轨迹圆弧,如图所示,由左手定则可知该粒子带正电,选项A 错误;由图中几何关系可得sin θ=32L L =32,解得θ=π3,可得T =6t 0,选项B 错误;根据洛伦兹力公式和牛顿第二定律可得T =2πm qB ,解得m q =3t 0Bπ,选项C 错误;根据周期公式,粒子在磁场中运动时间t =mαqB ,在同一圆中,半径一定时,弦越长,其对应的圆心角α越大,则粒子在磁场中运动时间最长时的轨迹是以O 2为圆心的圆弧,如图所示,由图中几何关系可知α=2π3,解得t =2t 0,选项D 正确.]3.如图所示,平行边界MN 、PQ 间有垂直纸面向里的匀强磁场,磁场的磁感应强度大小为B ,两边界间距为d ,MN 上有一粒子源A ,可在纸面内沿各个方向向磁场中射入质量均为m 、电荷量均为q 的带正电的粒子,粒子射入磁场的速度v =2qBd3m ,不计粒子的重力,则粒子能从PQ 边界射出的区域长度为( ) A .d B.23dC.233dD.32d答案 C解析 粒子在磁场中运动的半径R =m v qB =23d ,粒子从PQ 边射出的两个边界粒子的轨迹如图所示:由几何关系可知,从PQ 边射出粒子的区域长度为s =2⎝⎛⎭⎫23d 2-⎝⎛⎭⎫13d 2=233d ,C 项正确.4.如图所示,在0≤x ≤3a 的区域内存在与xOy 平面垂直的匀强磁场,磁感应强度大小为B .在t =0时刻,从原点O 发射一束等速率的相同的带电粒子,速度方向与y 轴正方向的夹角分布在0°~90°范围内.其中,沿y 轴正方向发射的粒子在t =t 0时刻刚好从磁场右边界上P (3a ,3a )点离开磁场,不计粒子重力,下列说法正确的是( )A .粒子在磁场中做圆周运动的半径为3aB .粒子的发射速度大小为4πa t 0C .带电粒子的比荷为4π3Bt答案 D解析 根据题意作出沿y 轴正方向发射的带电粒子在磁场中做圆周运动的运动轨迹如图所示, 圆心为O ′,根据几何关系,可知粒子做圆周运动的半径为r =2a ,故A 错误;沿y 轴正方向发射的粒子在磁场中运动的圆心角为2π3 ,运动时间t 0=2π3×2a v 0,解得:v 0=4πa3t 0,选项B 错误;沿y 轴正方向发射的粒子在磁场中运动的圆心角为2π3,对应运动时间为t 0,所以粒子运动的周期为T =3t 0,由Bq v 0=m ⎝⎛⎭⎫2πT 2r ,则q m =2π3Bt 0,故C 错误;在磁场中运动时间最长的粒子的运动轨迹如图所示,由几何知识得该粒子做圆周运动的圆心角为4π3,在磁场中的运动时间为2t 0,故D 正确.5.如图所示,半径为r 的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场边界上A 点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k ,速度大小为2kBr 。
确定带电粒子在磁场中运动轨迹的方法带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
下面举几种确定带电粒子运动轨迹的方法。
一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。
由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°=又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型特训目标特训内容目标1旋转圆模型(1T-4T)目标2放缩圆模型(5T-8T)目标3平移圆模型(9T-12T)目标4磁聚焦模型(13T-16T)【特训典例】一、旋转圆模型1如图所示,在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中有一粒子源,粒子源从O点在纸面内同时向各个方向均匀地发射带正电的粒子,其速率为v、质量为m、电荷量为q。
PQ是在纸面内垂直磁场放置的厚度不计的挡板,挡板的P端与O点的连线与挡板垂直,距离为8mv5qB。
设打在挡板上的粒子全部被吸收,磁场区域足够大,不计带电粒子间的相互作用及重力,sin37°=0.6,cos37°=0.8。
则()A.若挡板长度为4mv5qB,则打在板上的粒子数最多B.若挡板足够长,则打在板上的粒子在磁场中运动的最短时间为127πm180qBC.若挡板足够长,则打在板上的粒子在磁场中运动的最长时间为πmqBD.若挡板足够长,则打在挡板上的粒子占所有粒子的14【答案】D【详解】A.设带电粒子的质量为m,带电量为q,粒子在磁场中受到的洛伦兹力提供做圆周运动的向心力。
设粒子做圆周运动的半径为r。
则有qvB=m v2r解得r=mvqB能打到挡板上的最远的粒子如图;由几何关系可知,挡板长度L=(2r)2-d2=6mv5qB选项A错误;BC.由以上分析知,当粒子恰好从左侧打在P点时,时间最短,如图轨迹1所示,由几何关系得粒子转过的圆心角为θ1=106°;对应的时间为t min=θ12πT=106°360°2πmqB=53πm90qB当粒子从右侧恰好打在P点时,时间最长,如图轨迹2所示,由几何关系得粒子转过的圆心角为θ2=254°对应的时间为t max=θ22πT=254°360°⋅2πmqB=127πm90qB选项BC 错误;D .如图所示,能打到屏上的粒子,在发射角在与x 轴成37°到127°范围内90°角的范围内的粒子,则打在挡板上的粒子占所有粒子的14,选项D 正确。
2022届高三物理二轮常见模型与方法综合特训专练专题18 磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型专练目标专练内容目标1旋转圆模型(1T—5T)目标2放缩圆模型(6T—10T)目标3平移圆模型(11T—15T)目标4磁聚焦模型(16T—20T)一、旋转圆模型1.如图甲所示的平面直角坐标系中,x轴上方有磁感应强度大小为B、垂直纸面向外的匀强磁场,在O点处有一粒子源,沿纸面不断地放出同种粒子,粒子的速率均为v,粒子射入磁场的速度方向与x轴正方向的夹角范围为60°—120°。
粒子的重力及粒子间的相互作用均不计。
图乙中的阴影部分表示粒子能经过的区域,其内边界与x轴的交点为E,外边界与x轴的交点为F,与y轴的交点为D(a,0)。
下列判断正确的是()A.粒子所带电荷为正电B.OF3C.粒子源放出的粒子的荷质比为v aBD.从点E离开磁场的粒子在磁场中运动的时间可能为23a v π【答案】CD【详解】A.由左手定则可知,粒子所带电荷为负电,选项A错误;B.则OD a R==则OF=2R=2a选项B错误;C.根据2vqvB mR=解得q v vm BR Ba==选项C正确;D.从点E离开磁场的粒子在磁场中转过的角度可能为120°,也可能是240°,则在磁场中运动的时间可能为233vT atπ==也可能是2433T atvπ=='选项D正确。
故选CD。
2.如图,一粒子发射源P位于足够长绝缘板AB的上方d处,能够在纸面内向各个方向发射速率为v、比荷为k的带正电的粒子,空间存在垂直纸面的匀强磁场,不考虑粒子间的相互作用和粒子重力。
已知粒子做圆周运动的半径大小恰好为d,则()A.磁感应强度的大小为d kvB.磁感应强度的大小为v kdC .同一时刻发射出的带电粒子打到板上的最大时间差为76dvπ D .同一时刻发射出的带电粒子打到板上的最大时间差为6kdvπ【答案】BC【详解】AB .根据牛顿第二定律2v qvB m d =根据题意q k m =解得v B kd =,A 错误,B 正确;CD .同一时刻发射出的带电粒子打到板上的最长时间和最短时间如图所示min 16t T =;max 34t T =粒子运动的周期为2dT v π=最大时间差为max min t t t ∆=-解得76d t vπ∆=,C 正确,D 错误。
动态圆的原理带电粒子垂直进入磁场,不计重力,带电粒子将在磁场中做圆周运动,如果是一个有界磁场,带电粒子将做部分圆周圆周运动,关于入射速度变化时,有以下三种常用的动态圆模型。
一、放缩圆法,粒子源发射出的粒子速度方向一定,大小不同,由于圆周运动速度越大,轨迹半径越大,从入射点放大或者缩小圆的半径,画出轨迹,寻找临界条件来解决问题。
二、旋转圆法,粒子源发射的粒子,速度大小一定,方向不同,那么带电粒子运动的圆心将在以入射点为圆心,圆周运动为半径为半径的圆周上,即就是轨迹圆圆心共圆,以入射点为定点,对这个等圆进行旋转,从而找到临界条件。
三、平移圆法,粒子入射点在同一直线上,并且速度大小一定,方向一定,故这点带电粒子轨迹圆圆心是共线的,半径也是相同的,通过平移入射点,从而找到临界条件。
总之,动态圆是磁场章节难点,只有通过一定量代表性题目训练,去感知三种方法的应用,才可以达到融会贯通的效果。
地球磁场起源之谜:1. 谜题重重的地磁场地球是一个天然的大磁体,无论在陆地、海洋,还是天空,都能够感受到地磁场的存在。
我国古人很早以前就对地磁现象有所认识,中国古代四大发明之一的指南针,就是利用磁针在地磁场中的指极性制成的。
现在科学家们已基本掌握了地磁场的分布与变化规律,但是,对于地磁场的起源问题,学术界却一直没有找到一个令人满意的答案。
目前,关于地磁场起源的假说归纳起来可分为两大类,第一类假说是以现有的物理学理论为依据;第二类假说则独辟蹊径,认为对于地球这样一个宇宙物体,存在着不同于现有已知理论的特殊规律。
属于第一类假说的有旋转电荷假说。
它假定地球上存在着等量的异性电荷,一种分布在地球内部,另一种分布在地球表面,电荷随地球旋转,因而产生了磁场。
这一假说能够很自然地通过电与磁的关系解释地磁场的成因。
但是,这个假说却有一个致命缺点,首先它不能解释地球内外的电荷是如何分离的;其次,地球负载的电荷并不多,由它产生的磁场是很微弱的,根据计算,如果要想得到地磁场这样的磁场强度,地球的电荷储量需要扩大1亿倍才行,理论计算和实际情况出入很大。
带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
求3〕〕匀强磁场的磁感应强度B和射出点的坐标。
〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。
旋转圆法求粒子轨道在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
题型一:打中的区域的长度:(最值)规律要点:①最值相切:当带电粒子的运动与边界相切时(如图中a点),切点为带电粒子不能射出的磁场的最值点(或恰能射出磁场的临界点)。
②最值相交:当带电粒子的运动轨迹的直径与边界相交的点(如图中b点)为带电粒子射出边界的最远点(距O最远)课堂练习:1.如图8所示,S为电子源,它在纸面360°度范围内发射速度大小为v0,质量为m,电量为q的电子(q<0),MN是一块足够大的竖直挡板,与S的水平距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为mv0/qL,求挡板被电子击中的范围为多大?2.如图所示S为电子射线源能在图示纸面上和360°范围内向各个方向发射速率相等的质量为m、带电-e的电子,MN是一块足够大的竖直档板且与S的水平距离OS=L,档板左侧充满垂直纸面向里的匀强磁场:①若电子的发射速率为V 0,要使电子一定能经过点O ,则磁场的磁感应强度B 的条件? ②若磁场的磁感应强度为B ,要使S 发射出的电子能到达档板,则电子的发射速率多大?③若磁场的磁感应强度为B ,从S 发射出的电子的速度为meBL2,则档板上出现电子的范围多大?3.如图12所示,真空室内存在匀强磁场,磁场方向垂直于图中纸面向里,磁感应强度的大小B =0.6T ,磁场内有一块平面感光干板ab ,板面与磁场方向平行,在距ab 的距离为L=16cm 处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是v=3.0×106m/s ,已知α粒子的电荷与质量之比q/m =5.0×107C/kg ,现只考虑在图纸平面中运动的α粒子,求(1)α粒子在该磁场中运动半径多大? (2)ab 上被α粒子打中的区域的长度。
旋转圆法求粒子轨道
在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
题型一:打中的区域的长度:(最值)
规律要点:
①最值相切:当带电粒子的运动与边界相切时(如图中a点),切点为带电粒子不能射出的磁场的最值点(或恰能射出磁场的临界点)。
②最值相交:当带电粒子的运动轨迹的直径与边界相交的点(如图中b点)为带电粒子射出边界的最远点(距O最远)
课堂练习:
1.如图8所示,S为电子源,它在纸面360°度围发射速度大小为v0,质量为m,电量为q的电子(q<0),MN是一块足够大的竖直挡板,与S的水平距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为mv0/qL,求挡板被电子击中的围为多大?
2.如图所示S为电子射线源能在图示纸面上和360°围向各个方向发射速率相等的
质量为m、带电-e的电子,MN是一块足够大的竖直档板且与S的水平距离OS=L,档
板左侧充满垂直纸面向里的匀强磁场:
①若电子的发射速率为V 0,要使电子一定能经过点O ,则磁场的磁感应强度B 的条件? ②若磁场的磁感应强度为B ,要使S 发射出的电子能到达档板,则电子的发射速率多大?
③若磁场的磁感应强度为B ,从S 发射出的电子的速度为m
eBL
2,则档板上出现电子的围多大?
3.如图12所示,真空室存在匀强磁场,磁场方向垂直于图中纸面向
里,磁感应强度的大小B =0.6T ,磁场有一块平面感光干板ab ,板面与磁场方向平行,在距ab 的距离为L=16cm 处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是v=3.0×106m/s ,已知α粒子的电荷与质量之比q/m =5.0×107C/kg ,现只考虑在图纸平面中运动的α粒子,求
(1)α粒子在该磁场中运动半径多大? (2)ab 上被α粒子打中的区域的长度。
(2010年黄冈调考)3.如图所示,真空室有匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60T ,磁场有一块平行感光
a b
● S
图12
板ab ,板面与磁场方向平行,在距ab 的距离l =16cm 处,有一个点状的α粒子发射源S ,它向各个方向发射α粒子,α粒子的速度都是v =3.0×106m/s .已知α粒子的电量与质量之比q/m =5.0×107C/kg ,现只考虑在纸平面中运动的α粒子,求ab 上被α粒子打中的区域长度.
题型二:带电粒子在双直线边界磁场中的运动 一、求最值:
规律要点:
① 最值相切:当粒子源在一条边界上向纸面各个方向以相同速率发射同一粒子时,粒子能从另一边界射出的上、下最远点对应的轨迹分别与两边界相切,如图所示。
(第一行图)
② 对称性:过粒子源S 的垂线为ab 的中垂线。
如图所示,a 、b 之间有粒子射出,可得2
22d dr L ab -=。
二、速度最值: 质量m ,电荷量q 的带正电粒子,以与边界成任意角度的相同速率射入磁感应强度为B ,宽度为L 的匀强磁场区。
为使所有粒子都不能穿越该磁场,求粒子的最大速度。
速率相同的条件下,最容易穿越磁场的是沿磁场下边界向左射入的粒子,如果它对应的半径r=L /2(对应的轨迹圆弧如图中实线所示)将恰好到达磁场上边界,那么沿其他方向射入磁场的粒子必然不能穿越该磁场。
如果以垂直于下边界的速度v
L
B
n N 360θ
=射入的粒子恰好到达磁场上边界,对应的半径r ′=L (其轨迹圆弧如图中虚线所示),那么入射方向比它偏左的粒子将穿越磁场。
课堂练习: 1、强磁场宽度d=16cm,磁感应强度B=0.5T ,电子源在A 点以速度大小v=1.0×1010m/发射电子,在纸面不同方向,从A 点射入磁场(足够大)中,且在右侧边界处放一荧光屏(足够大),电子的比荷e/m=2×1011c/kg,求电子打中荧光屏的区域的长度 ?
题型三:粒子个数的计算
方法:计算带电粒子的辐射的的圆心角θ,再用公式 计算。
真空室存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B = 0.60T 。
磁场有一块足够大的平面感光平板ab ,板面与磁场方向平行。
在距ab 的距离为l = 10cm 处,有一个点状的α放射源S ,它仅在纸平面向各个方向均匀地发射α粒子。
设放射源每 秒发射n = 3.0×104个α粒子,每个α粒子的速度都是
v = 6.0×106m/s 。
已知α粒子的电荷与质量之比7
100.5⨯=m q
C/kg 。
求每分钟有多少个α
粒子打中ab 感光平板? 题型四:
综合练习:
(2010年全国卷1)2(21分) 如下图,在03x a ≤≤
区域存在与xy 平面垂直的匀强磁场,磁感应强度的大小为
B.在t=0时刻,一位于坐标原点的粒子源在xy 平面发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向的夹角分布在0~180°围。
已知沿y 轴正方向发射的粒子在0t t =时刻刚好从磁场边界上(3,)P a a 点离开磁场。
求: (1) 粒子在磁场中做圆周运动的半径R 及粒子的比荷q /m;
(2) 此时刻仍在磁场中的粒子的初速度方向与y 轴正方向夹角的取值围; (3)
从粒子发射到全部粒子离开磁场所用的时间。