逻辑学(第一讲)
- 格式:ppt
- 大小:1.04 MB
- 文档页数:48
逻辑学讲稿第一章绪论第一节逻辑学的对象一、逻辑学的定义逻辑学是研究思维的形式结构及其规律的科学。
“逻辑”一词是由英文logic的音译。
它来源于古希腊语“λoros(logos)”(逻各斯),愿义指思想、言辞、理性、规律性等。
古代西方学者用“逻辑”来指称研究推理论证的学问。
我国古代和近代学者曾用“形名之学”、“名学”、“辩学”、“名辩之学”、“名理”、“理则学”、“伦理学”等表示“逻辑”,到20世纪才逐渐通用“逻辑”这一译名。
在现代汉语里,“逻辑”是个多义词。
例如:(1)“研究中国革命的逻辑”。
这里的“逻辑”是指客观事物发展变化的规律。
(2)只有感觉的材料十分丰富和合于实际,人们才能根据这样的材料造出正确的概念,作出合乎逻辑的结论来。
这里的“逻辑”是指思维的规律、规则。
(3)为了搞好管理,实现科学决策,学点逻辑是十分必要的。
这里的“逻辑”是指逻辑学。
逻辑学通常叫做“形式逻辑”、“普通逻辑”等,简称“逻辑”。
逻辑学经历了从传统逻辑到现代逻辑的发展。
其中,传统逻辑的奠基人是古希腊的哲学家亚里士多德。
我们讲的逻辑学就是传统逻辑。
现代逻辑是指数理逻辑,也叫符号逻辑。
二、思维和思维的逻辑形式1.思维关于思维,人们有着不同的看法。
有人把思维分为三种类型,即:抽象思维(即逻辑思维)、形象思维(即直感思维)、灵感思维(即顿悟思维)。
逻辑学属于思维科学,是研究思维的科学。
逻辑学的基本反映形式为概念、判断和推理。
把思维作为研究对象的学科有很多。
包括哲学、心理学、神经生理学、语言学以及人工智能、信息论等,也都直接或间接地研究思维。
2.思维的逻辑形式也叫思维的形式结构,是思维内容的存在方式、联系方式,由逻辑常项和逻辑变项构成。
逻辑常项是思维形式结构中不变的部分,它决定思维的逻辑内容。
逻辑变项是思维形式结构中可变的部分,它容纳思维的具体内容。
例如:(1)所有杨树是落叶乔木。
(2)所有哺乳动物是脊椎动物。
(3)所有商品是劳动产品。
基本逻辑学讲义第一讲含义、产生、发展一、“逻辑”一词在现代汉语中的含义(客观事物的规律或规律性;思维的规律、规则或泛指思维规律;指某种特殊的理论或观点;指思维方法或行为方式;指研究思维形式、思维规律和思维方法的科学,即逻辑学。
)二、逻辑学及其发展(一)逻辑学(Logic)的产生古中国——名学或名辩之学;古印度——因明;古希腊——逻格斯(二)传统逻辑亚里士多德开创,麦加拉—斯多葛学派重要补充,经历了中世纪逻辑学家的丰富和发展,沿用至19世纪的那种形式逻辑。
(三)近代逻辑呈现出复杂的情况,除了传统形式逻辑,涌现出一些新的逻辑构想:1、莱布尼茨计划构造表达思想结构的人工语言,计划在逻辑中应用数学方法,但在当时并没有成功;2、培根和穆勒倡导归纳法,系统阐述科学方法论;3、康德和黑格尔试图创建既研究形式又研究内容的逻辑,康德“普通逻辑”和黑格尔“辩证逻辑”。
(四)现代逻辑也叫数学逻辑或数理逻辑,或说是符号逻辑。
代表人物有莱布尼茨、十九世纪英国逻辑学家哈密尔顿和德摩根。
而英国的数学家和逻辑学家布尔(1815年~1864年)在1847年发表的《逻辑的数学分析》、1854年发表的《思维规律的研究》成功地创造了逻辑代数,标志着现代逻辑的开端。
布尔之后,建立了完全公理化的完备的逻辑演算系统。
(五)现代逻辑德国数学家弗雷格的《概念语言》(1879年)、英国哲学家罗素与怀特海合著的三卷《数学原理》(1910年~1913年)标志着现代逻辑基础部分—逻辑演算的成熟。
之后,希尔伯特及其学生们以逻辑演算为对象,研究它的不矛盾性(即可靠性)和独立性(即绝对性)问题,取得了成功。
逻辑演算的完全性(即普遍有效性)则是1930年由哥德尔的论文所证明,使得现代逻辑进入了更高阶段。
三、普通逻辑的定义:就是主要用自然语言(区别于数理逻辑主要用人工语言)研究普通思维(区别于辩证逻辑的辩证思维)的形式、规律和一些简单的科学方法的思维科学。
第二讲思维、普通逻辑一、思维就是动脑筋想问题。
---------------------------------------------------------------最新资料推荐------------------------------------------------------基本逻辑学讲义第一讲含义、产生、发展一、“逻辑”一词在现代汉语中的含义(客观事物的规律或规律性;思维的规律、规则或泛指思维规律;指某种特殊的理论或观点;指思维方法或行为方式;指研究思维形式、思维规律和思维方法的科学,即逻辑学。
)二、逻辑学及其发展(一)逻辑学(Logic)的产生古中国——名学或名辩之学;古印度——因明;古希腊——逻格斯(二)传统逻辑亚里士多德开创,麦加拉—斯多葛学派重要补充,经历了中世纪逻辑学家的丰富和发展,沿用至 19 世纪的那种形式逻辑。
(三)近代逻辑呈现出复杂的情况,除了传统形式逻辑,涌现出一些新的逻辑构想: 1、莱布尼茨计划构造表达思想结构的人工语言,计划在逻辑中应用数学方法,但在当时并没有成功; 2、培根和穆勒倡导归纳法,系统阐述科学方法论; 3、康德和黑格尔试图创建既研究形式又研究内容的逻辑,康德“普通逻辑”和黑格尔“辩证逻辑” 。
(四)现代逻辑也叫数学逻辑或数理逻辑,或说是符号逻辑。
代表人物有莱布尼茨、十九世纪英国逻辑学家哈密尔顿和德摩根。
而英国的数学家和逻辑学家布尔(1815 年~1864 年)在 1847 年发表的《逻辑的数学分析》、1854 年发表的《思维规律的研究》成功地创造了逻辑代数,标志着现代逻辑的开端。
1/ 33布尔之后,建立了完全公理化的完备的逻辑演算系统。
(五)现代逻辑德国数学家弗雷格的《概念语言》(1879 年)、英国哲学家罗素与怀特海合著的三卷《数学原理》(1910 年~1913 年)标志着现代逻辑基础部分—逻辑演算的成熟。
之后,希尔伯特及其学生们以逻辑演算为对象,研究它的不矛盾性(即可靠性)和独立性(即绝对性)问题,取得了成功。
《逻辑学导论》教学讲义目录第一讲绪论第一节逻辑学的研究对象1�1关于“逻辑”一词1�2逻辑学是研究推理论证的学问1�3演绎与归纳第二节形式化——逻辑学研究方法的特点2�1命题、推理的形式与内容2�2推理的有效性只同形式相关2�3逻辑学研究的形式化特征第三节逻辑学理论的意义及其与相关学科的关系3�1逻辑学理论的重要意义3�2逻辑学与思维科学的关系3�3逻辑学与语言学的关系第二讲词项第一节词项概述1�1什么是词项1�2词项的逻辑特征1�3词项与语词、概念第二节词项的种类2�1单独词项与普遍词项2�2集合词项与非集合词项2�3实词项与虚词项2�4正词项与负词项第三节词项之间的关系3�1相容关系3�2不相容关系第四节明确词项的逻辑方法4�1概括与限制4�2划分4�3定义第三讲传统直言命题逻辑第一节命题概述1�1什么是命题1�2命题的逻辑特征1�3命题与语句、判断第二节传统直言命题2�1传统直言及其逻辑结构2�2直言命题的分类2�3直言命题的周延性2�4A、E、I、O之间对当关系2�5传统直言命题的文恩图解第三节直接推理3�1直言命题推理概述3�2对当关系推理3�3变形推理第四节三段论4�1什么是三段论4�2三段论的规则4�3三段论的格4�4三段论的式4�5非标准形式的三段论第四章复合命题与命题公式第一节复合命题概述1�1复合命题及其逻辑结构1�2复合命题的逻辑特征第二节复合命题的几种基本形式2�1负命题2�2联言命题2�3选言命题2�4条件命题2�5等值命题第三节命题公式与真值函数3�1命题公式3�2命题公式与真值函数第四节命题公式之间的逻辑等值关系4�1命题公式之间的逻辑等值4�2几个重要的重言等值式4�3命题公式的相互定义第五章命题逻辑第一节基本的有效推理式1�1有效推理与无效推理1�2基本的有效推理式第二节推理有效性的形式证明2�1推理有效性与命题演算2�2有效推理的形式证明2�3基本推导规则与等值替换规则2�4条件证明规则2�5间接证明规则2�6证明重言式第三节无效推理的判定3�1用真值表证明推理的无效性3�2用归谬赋值法判定推理的有效与无效3�3证明公式集合的协调性第六讲量化逻辑第一节简单命题的逻辑结构1�1个体词和谓词和单称命题1�2谓词模式、命题函数与量化命题1�3量化命题公式1�4量化命题公式的真假条件第二节量化命题的形式化2�1A、E、I、O命题的形式化2�2一般简单命题的形式化2�3多重量化命题第三节量化推理规则3�1全称例示规则�简记为U S�3�2存在概括规则�简记为E G�3�3全称概括规则�U G�3�4存在例示规则�E S�第四节无效量化推理的判定4�1量化公式的真值函项展开式4�2无效量化推理的判定第七讲规范逻辑初步第一节模态命题1�1模态词与模态命题1�2模态命题的逻辑性质第二节规范命题2�1规范命题概述2�2规范命题的逻辑形式2�3规范命题的逻辑特征第三节规范推理3�1规范对当关系推理3�2复合规范命题的推理第八讲逻辑思维的基本规则第一节同一律1�1同一律内容和要求1�2违反同一律要求产生的逻辑错误1�3同一律的作用第二节矛盾律2�1矛盾律内容和要求2�2违反矛盾律要求产生的逻辑错误2�3矛盾律的作用第三节排中律3�1排中律内容和要求3�2违反排中律要求产生的逻辑错误3�3排中律的作用3�4排中律与矛盾律的区别第一讲绪论在本讲中我们要讨论逻辑学的研究对象�逻辑学研究方法的特点�逻辑与一些相关科学的关系�以及逻辑学的学科性质及其重要应用价值。
逻辑学教程第一章导论第一节传统逻辑与现代逻辑一、“逻辑”的含义•Logic•在中国古代为“名学”、“辨学”、“理则学”、“论理学”1、含义:⑴指客观事物发展的规律⑵指某种特殊的理论、观点或者看问题的⑶人们的思维的规律性⑷指一门科学,即逻辑学、㈠、逻辑学的产生1、逻辑学发源地之一:古代中国“以名举定,以辞抒意,以说出故”2、逻辑学发源地之二:古代印度代表作:陈那《因明正确门论》商羯罗主《因明入正理论》3、逻辑学发源地之三:古希腊㈡、逻辑学的发展1、欧洲中世纪的逻辑学重演绎,轻归纳2、17世纪的逻辑学培根著作《新工具》3、18世纪到19世纪的逻辑学康德“形式逻辑”第二节逻辑学的研究对象一、认识与思维1、思维具有间接性2、思维具有概括性3、思维和语言密不可分二、逻辑形式与逻辑规律1、所有S都是P2、如果p,那么q3、所有的M都是P所有的S都是M所以,所有的S都是P4、如果p,那么qP所以,q三、演绎性与可靠性1、演绎推理的有效性:形式有效,前提真实2、归纳推理和类比推理的可靠性第三节逻辑与语言一、逻辑与语言(逻辑≠语言)逻辑是思维的内容,语言是思维的表达形式。
二、自然语言与人工语言自然语言:便于交流、沟通三、对象语言与元语言1、对象语言:作为讨论对象的语言2、元语言:用来讨论对象的语言四、学习逻辑学的意义1、逻辑学的性质:工具性、全人类性、基础性第二章概念第一节概念及其特征一、什么是概念1、概念是反映对象特有属性或本质属性的思维形式(概念总是不全面的)2、属性是指事物的性质特点以及事物与事物之间的关系3、事物与其属性是不可分离的,事物都具有一定的性质4、属性:⑴偶有属性⑵固有属性①一般属性②本质属性Ⅰ特有属性Ⅱ派生属性二、概念与语词、词项㈠、概念与词语之间的关系1、联系:概念是语词的思想内容,语词是概念的表达形式。
2、区别:⑴概念具有全民性,语词具有民族性⑵所以的概念都必须通过语词来表达,但不是所以语词都表达概念(如虚词不表达概念)⑶同一个概念可以用不同语词来表达(同义词)⑷同一个语词可以表达不同概念㈡、词项1、词项是现代逻辑的一个基本概念,它是概念和词形的统一,即表达概念的语词三、概念的内涵和外延1、概念的内涵是指反映在概念中的对象的本质属性(属性、是什么)2、概念的外延是指具有概念所反映的特有属性或本质属性的对象(对象、有哪些)3、任何概念都是内涵和外延的统一4、概念的外延是一个类,同一类的对象叫做“类”,把从属于“类”的每个对象叫做“分子”,把一个“类”中包含的小类叫做“子类”第二节概念的种类一、单独概念和普遍概念(外延个数)1、单独概念是外延仅有一个单独对象的概念2、普遍概念是外延有2个或2个以上的概念3、从语言角度看,用专有名词和摹状词表达单独概念;同时用普遍名词、形容词、动词表达普遍概念※摹状词:通过对某一个别事物某方面特征的描述而泛指该事物的语词二、集合概念和非集合概念1、集合概念就是以事物的群体为反映对象的概念2、非集合概念就是不以事物的群体为反映对象的概念(反映事物的类)3、⑴集合概念和非集合概念的判定要依据一定的语境⑵集合概念拥有的属性个体不一定具有;非集合概念所拥有的属性个体也必须具有⑶集合概念不具有传递性,在三段论中不能做中项三、正概念和负概念1、是否具有某种属性,具有则为正概念,不具有则为负概念例:正概念—黑色负概念—非黑色3、论域=相应的正概念+负概念四、实体概念和属性概念1、反映对象的是实体概念;反映属性的是属性概念第三节概念间的关系全同关系真包含关系属种关系相容关系真包含关系交叉关系概念间关系不相容关系反对关系全异关系矛盾关系第四节概念间的限制和概括一、内涵与外延之间的反变关系1、具有属种关系的两个概念其内涵和外延之间具有反变关系,即:一个概念的外延越大、内涵越小;反之,外延越小、内涵越大二、概念的限制和概括1、定义:概念的限制是通过增加概念内涵以缩小概念的外延,由一个较大的概念过渡到一个外延较小的概念2、规则:(1)必须由属概念推衍到种概念(2)单独概念不能再限制三、概念的概括1、定义:概念的概括是通过减少概念的内涵以扩大概念的外延,由一个外延较小的概念过渡到一个外延较大的概念2、规则:(1)由种关系推衍到属概念(2)哲学范畴不能再概括,如:物质、意识第五节定义一、定义及定义的结构1、定义是明确概念内涵的逻辑方法2、一个完整的定义是由三部分组成的,即被定义项、定义项和定义联项3、定义项通常由“是”、“就是”、“即”、“称为”、“是指”等语词来表达4、定义的公式是:Ds就是Dp二、定义的种类及下定义的方法1、真实定义(也叫属加种差方法)(1)公式:被定义项=种差+邻近属概念(2)具体步骤:第一,找到属概念第二,找到种差(即可以将被定义项所反映的对象与包含在同一属中其他种事物区别开来的特有属性或本质规定)第三,用种差限制邻近属概念以构成定义项第四,用适当的定义项联项将被定义项和定义项联结,形成一个完整的定义(3)不同的种差,从不同角度去揭示事物的特有属性(发生定义、性质定义、功用定义、关系定义)2、语词定义(1)说明的语词定义是对某个语词的已有的、并得到社会承认的意义作出解释、说明的定义【对字面意思作出解释】(2)规定的语词定义是人们通过约定对某个原有的或新出现的词赋予特定意义的定义三、定义的规则1、定义概念的外延和被定义概念的外延必须完全相等【定义过宽、定义过窄】2、定义不能循环【同语反复:定义项中直接包含被定义项(圆就是圆形的曲线);循环定义:定义项中间接地包含了被定义项(生命是有机体的新陈代谢)】3、定义应当用肯定的语句形式和正概念【定义离题】5、定义必须明确,不可以用比喻代替定义【定义含混:使用的语词含混不清;以比喻代定义:定义中运用了比喻】第六节划分一、划分及划分的结构1、划分就是以对象的一定属性为标准,将一个属概念分成若干个种概念,以明确其外延的逻辑方法2、划分由三部分构成:划分的母项、划分的子项和划分的根据3、母项:被划分的概念;子项:划分后得到的概念;根据:把母项划分为子项所依据的标准二、划分的类型1、一次划分和连续划分•一次划分:只有母项和子项两层•连续划分:把一个母项划分划分为若干个子项,再对子项进行划分2、二分法划分标准:以对象有无某种属性→【划分出来的是正概念和负概念】三、划分的规则1、划分所得各子项的外延之和必须全同于母项的外延→【子项和母项外延是全同关系】【划分不全、多出子项】2、每次划分的标准必须同一【多标准划分】3、划分的各子项之间必须互不相容→【划分出来的子项外延具有全异关系】【子项相容】❤【多标准划分必与子项相容同时出现】四、划分、分解与列举1、分解是整体与部分的关系,分解后的部分不具有整体的属性;划分后母项和子项是属种关系,子项具有母项的属性2、单独概念不能再划分,但可以再分解3、列举是划分的省略形式,是一种特殊的划分4、列举的规则:⑴每次列举的标准只能是一个⑵列举的各子项外延之间互不相容第三章命题逻辑第一节命题和推理概述一、命题及其特征1、命题:用语句来反映事物情况的思维形式2、命题的特征:(1)任何命题都有所陈述→【断定性】(2)任何命题都有真假→【真假性】→【主要特征】二、命题与判断1、区别(1)命题只是对事物情况的陈述,而判断是对事物情况的断定,也就是对陈述事物情况的命题的断定(2)命题比判断的外延要广,包括已被断定的命题——判断和未被断定的命题——非判断❤【命题比判断的外延大,命题具有主观性】三、命题与语句1、虽然命题都通过语句来表达,但并非所有语句都表达命题•一般来说,陈述句直接表达命题,疑问句、祈使句、感叹句不直接表达命题(反问句也是表达命题)2、同一命题可以用不同的语句来表达3、同一语句可以表达不同的命题4、命题是描述事件的语句所表达的思想内容【命题属于思维范畴,语句是一种符号】四、命题形式及种类1、命题形式:⑴所有的金属都是导体→【所有的S都是P】⑵法律与道德是相联系的→【a与b有R关系】⑶他或者是医生,或者是教师→【P或者q】⑷如果明天不下雨,那么我们就组织学生去博物馆参观→【如果P,那么q】2、命题形式的种类❤(1)根据命题是否有模态词→(可能、应该、则、必须等)命题模态命题非模态命题(2)划分关键是逻辑变项逻辑变项是概念→简单命题逻辑变项是命题→复合命题简单命题性质命题关系命题命题复合命题联言命题假言命题选言命题负命题五、推理及其分类1、推理是一个命题序列,它从一个或几个已知命题推出一个新命题的思维形式2、推理的结构:P,所以,Q ❤【前提,逻辑标志“所以”,结论】3、推理的分类:(1)前提和结论之间是否有蕴涵关系:必然性推理(演绎推理、完全归纳推理);或然性推理(不完全归纳推理、类比推理)(2)思维进程方向的不同:演绎推理→【从一般到特殊】归纳推理→【从特殊到一般】类比推理→【从特殊到特殊】*(3)前提数量的不同:直接推理和间接推理第二节联言命题及推理一、联言命题1、联言命题是陈述若干事物情况同时存在的命题2、形式:p并且q(p、q都表示命题) ,也可表示为合取式:p∧q(p合取q)二、联言推理(一)分解式公式:(p∧q)→p(二)组合式公式:(p,q)→p∧q第三节选言命题及其推理★既然命题反映情况,那么选言命题是反映若干事物中至少一种情况存在的命题一、相容选言命题一个二肢的相容选言命题的形式是:p或者q,也可表示为析取式:p∨q二、相容选言推理1、否定肯定式:蕴涵式:(p∨q)∧┐p→q※无效的推理形式即肯定否定式2、析取附加式:蕴涵式:p→p∨q【两条规则】①否定一部分选言支,就要肯定另一部分选言支②肯定一部分选言支,不能否定另一部分选言支三、不相容选言命题★陈述若干事物情况中有且仅有一个为真的命题【排斥同真】一个二肢的不相容选言命题的形式是:p要么q,也可表示为析取式:p q(p 不相容析取q)四、不相容选言推理★不相容选言推理是前提有一个是不相容选言命题,并且根据不相容选言命题的逻辑性质进行的推理。