2018高三数学(理)一轮复习课时作业(十六)导数的综合应用
- 格式:doc
- 大小:96.87 KB
- 文档页数:4
高考数学第一轮高效复习导学案导数及其应用1.了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2. 熟记八个基本导数公式(c,m x (m 为有理数),x x a e x x a x x log ,ln ,,,cos ,sin 的导数);掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.导数的应用价值极高,主要涉及函数单调性、极大(小)值,以及最大(小)值等,遇到有关问题要能自觉地运用导数.第一课时 导数概念与运算【学习目标】1.了解导数的定义、掌握函数在某一点处导数的几何意义——图象在该点处的切线的斜率;2.掌握幂函数、多项式函数、正弦函数、余弦函数、指数函数、对数函数的导数公式及两个函数的和、差、积、商的导数运算法则及简单复合函数的求导公式,并会运用它们进行求导运算;【考纲要求】导数为B 级要求【自主学习】1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy ∆∆的 ,即)(x f '= = . 2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 .4.求导数的方法(1) 八个基本求导公式)('C = ;)('n x = ;(n∈Q) )(sin 'x = , )(cos 'x =)('x e = , )('x a =)(ln 'x = , )(log 'x a =(2) 导数的四则运算)('±v u =])(['x Cf = )('uv = ,)('vu = )0(≠v 【基础自测】1.在曲线y=x 2+1的图象上取一点(1,2)及附近一点(1+Δx ,2+Δy ),则xy ∆∆为 . 2.已知f(x)=sinx(cosx+1),则)(x f '= .3.设P 为曲线C :y=x 2+2x+3上的点,且曲线C 在点P 处切线倾斜角的取值范围是⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 .4.曲线在y=53123+-x x 在x=1处的切线的方程为 . 5.设曲线y ax e =在点(0,1)处的切线与直线x+2y+1=0垂直,则a= .[典型例析]例1.求函数y=12+x 在x 0到x 0+Δx 之间的平均变化率.例2. 求下列各函数的导数:(1);sin 25x xx x y ++= (2));3)(2)(1(+++=x x x y (3);4cos 212sin 2⎪⎭⎫ ⎝⎛--=x x y (4).1111x x y ++-=例3. 已知曲线y=.34313+x (1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程.例4. 设函数bx ax x f ++=1)( (a,b∈Z ),曲线)(x f y =在点))2(,2(f 处的切线方程为y=3. (1)求)(x f 的解析式;(2)证明:曲线)(x f y =上任一点的切线与直线x=1和直线y=x 所围三角形的面积为定值,并求出此定值.[当堂检测]1. 函数y =ax 2+1的图象与直线y =x 相切,则a =2.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1+△x ,2+△y ),则xy ∆∆为 3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为4.设f (x )、g(x )分别是定义在R 上的奇函数和偶函数,当x <0时,()()()()f x g x f x g x ''+>0.且g(3)=0.则不等式f (x )g(x )<0的解集是________________5.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数有 个。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时分层提升练十六导数的综合应用(B卷)(25分钟55分)一、选择题(每小题5分,共20分)1.(2017·新余模拟)f ′(x)是f(x)的导函数,若f ′(x)的图象如图所示,则f(x)的图象可能是( )【解析】选C.由导函数的图象可知,当x<0时,f ′(x)>0,即函数f(x)为增函数;当0<x<x1时,f ′(x)<0,即函数f(x)为减函数;当x>x1时,f ′(x)>0,即函数f(x)为增函数.观察选项易知C正确.2.(2017·内江模拟)已知函数f(x)=错误!未找到引用源。
x3-错误!未找到引用源。
x2+cx+d有极值,则c的取值范围为( ) A.c<错误!未找到引用源。
B.c≤错误!未找到引用源。
C.c≥错误!未找到引用源。
D.c>错误!未找到引用源。
【解析】选A.由题意可知f′(x)=x2-x+c=0有两个不同的实根,所以Δ=1-4c>0⇒c<错误!未找到引用源。
.3.(2017·赤峰模拟)设F(x)=f(x)g(x)是R上的奇函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(2)=0,则不等式F(x)<0的解集是( )A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)【解析】选D.因为F(x)=f(x)·g(x),所以F′(x)=f′(x)·g(x)+f(x)·g′(x).当x<0时,F′(x)>0,即F(x)在(-∞,0)上单调递增,且F(2)=f(2)·g(2)=0,又因为F(-x)=-F(x),所以F(-2)=-F(2)=0.F(x)图象可以表示为如图,所以F(x)<0的解集为(-∞,-2)∪(0,2).4.(2017·湛江模拟)若函数f(x)=x+错误!未找到引用源。
函数与导数在高考数学中的综合应用在高考数学中,函数与导数是非常重要的知识点。
函数是数学中最基本的概念之一,而导数则是函数的重要性质之一。
函数与导数的综合应用可以帮助我们解决许多实际问题,下面我们一起来了解一下。
一、基本概念函数是一种映射关系,将一个自变量映射到一个因变量。
通常用一个公式来表示函数,例如 y = f(x)。
其中,x 是自变量,y 是因变量,f(x) 是函数关系式。
在高考数学中,我们经常遇到各种形式的函数,例如多项式函数、指数函数、对数函数等等。
导数表示函数在某个点上的变化率,是函数的重要性质之一。
具体来讲,导数可以表示函数在某个点上的斜率。
设函数 f(x) 在点 x 处可导,则函数 f(x) 在 x 处的导数为:f'(x) = lim (f(x + h) - f(x))/h (h -> 0)其中,h 是一个非常小的数,通常取非常接近于 0 的值,也就是说,函数 f(x) 在 x 处的导数是函数在 x 点的极限。
二、实际应用在实际生活中,函数与导数的应用非常广泛,从物理、经济到生物等领域均有所涉及。
下面我们以一些具体的例子来了解一下函数与导数在实际问题中的应用。
1. 停车问题假设你要在一个长为100 米,宽为50 米的矩形停车场内停车,如果不能停在墙边,那么最大的停车面积是多少?解法:将停车场分为两个一样大小的区域,这样停车面积最大。
设停车场中心为原点,车停在横坐标 x 上,车头距停车场边界的距离为 y,则停车面积为:A = 2xy但是 y 的取值范围为 (0, 25),因为如果 y 大于 25,车就停在了对面的区域里。
将 y 带入公式,得到:A = 2x(25 - x) = 50x - 2x^2求导得:A' = 50 - 4x令 A' = 0,解得 x = 12.5,所以最大停车面积为:A = 2×12.5×12.5 = 312.5 平方米。
[时间:45分钟 分值:100分]基础热身1.当x ≠0时,有不等式( )A .e x<1+xB .当x >0时,e x <1+x ,当x <0时,e x>1+xC .e x>1+xD .当x <0时,e x <1+x ,当x >0时,e x>1+x2.函数f (x )=1+x -sin x 在(0,2π)上是( ) A .增函数 B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增 3.图K16-1都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是( )图K16-1A .①②B .①③C .③④D .①④4.若函数y =e x+mx 有极值,则实数m 的取值范围是________. 能力提升5.设f ′(x )是函数f (x )的导函数,将y =f ′(x )和y =f (x )的图像画在同一个直角坐6.若函数f (x )=x 3-3x +a 有3个不同的零点,则实数a 的取值范围是( ) A .(-2,2) B .[-2,2]C .(-∞,-1)D .(1,+∞)7.下列不等式在(0,+∞)上恒成立的是( ) A .ln x >x B .sin x >xC .tan x >x ⎝ ⎛⎭⎪⎫x ≠π2+k π,k ∈ND .e x>x +28.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的关系是R =R (x )=⎩⎪⎨⎪⎧400x -12x 20≤x ≤400,80000x >400,则总利润最大时,每年生产的产品数是( )A .100B .150C .200D .3009.函数f (x )=13ax 3+12ax 2-2ax +2a +1的图像经过四个象限,则实数a 的取值范围是( )A .-65<a <316B .-85<a <-316C .-85<a <-116D .-65<a <-31610.已知函数f (x )=x 3-3a 2x +a (a >0)的极大值为正数,极小值为负数,则a 的取值范围是________.11.某公司租地建仓库,每月土地占用费y 1(万元)与仓库到车站的距离x (千米)成反比,而每月库存货物的运费y 2(万元)与到车站的距离x (千米)成正比,如果在距离车站10千米处建仓库,y 1和y 2分别为2万元和8万元.那么,要使这两项费用之和最小,仓库应建在离车站________千米处.12.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ′⎝ ⎛⎭⎪⎫π4的值为________. 13.函数y =f (x )在定义域⎝ ⎛⎭⎪⎫-32,3内可导,其图像如图K16-3,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x14.(10分)已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,x ≠1时,f (x )>ln xx -1.15.(13分)围建一个面积为360 m 2的矩形场地,要求场地一面利用旧墙,其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图K16-4所示,已知旧墙的维修费用为45元/m ,新墙造价为180元/m ,设利用的旧墙长度为x (单位:m),修建此场地围墙总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x 的值,使修建此场地围墙总费用最小.难点突破16.(12分)已知曲线C1:y=ax2+b和曲线C2:y=2b ln x(a,b∈R)均与直线l:y=2x 相切.(1)求实数a,b的值;(2)设直线x=t(t>0)与曲线C1,C2及直线l分别相交于点M,N,P,记f(t)=|MP|-|NP|,求f(t)在区间(0,e](e为自然对数的底数)上的最大值.课时作业(十六)【基础热身】1.C [解析] 设y =e x -1-x ,∴y ′=e x -1,∴x >0时,函数y =e x-1-x 是递增的,x <0时,函数y =e x -1-x 是递减的,∴x =0时,y 有最小值y =0.2.A [解析] 因为f ′(x )=1-cos x ≥0,所以f (x )=1+x -sin x 在R 上为增函数,从而在(0,2π)上为增函数.故选A.3.C [解析] 导函数的图像为抛物线,其变号零点为函数的极值点,因此③④不正确.4.m <0 [解析] y ′=e x +m ,由条件知e x +m =0有实数解,∴m =-e x<0. 【能力提升】5.D [解析] D 中两个函数图像有升有降,因此导函数图像应有正有负,而图中函数图像恒为正或恒为负,故D 不可能正确.6.A [解析] f ′(x )=3x 2-3,f (x )极大值=f (-1)=2+a ,f (x )极小值=f (1)=-2+a ,函数f (x )有3个不同零点,则2+a >0且-2+a <0,因此-2<a <2.7.C [解析] 当x =1时,A ,B 不成立;对于C ,设f (x )=tan x -x ⎝ ⎛⎭⎪⎫x ≠π2+k π,k ∈N ,则f ′(x )=1cos 2x -1=1-cos 2x cos 2x =sin 2xcos 2x≥0,因此f (x )在(0,+∞)上是增函数,f (x )min >f (0)=0;对于D ,令f (x )=e x -x -2,f ′(x )=e x-1>0,故f (x )min >f (0)=-1,不符合题意.8.D [解析] 由题意得,总成本函数为 C =C (x )=20000+100x ,所以总利润函数为P =P (x )=R (x )-C (x )=⎩⎪⎨⎪⎧300x -x 22-200000≤x ≤400,60000-100x x >400.而P ′(x )=⎩⎪⎨⎪⎧300-x0≤x ≤400,-100x >400.令P ′(x )=0,得x =300,易知x =300时,P 最大.9.D [解析] f ′(x )=ax 2+ax -2a =a (x +2)(x -1),要使函数f (x )的图像经过四个象限,则f (-2)f (1)<0,即⎝ ⎛⎭⎪⎫163a +1⎝ ⎛⎭⎪⎫56a +1<0,解得-65<a <-316. 10.⎝⎛⎭⎪⎫22,+∞ [解析] ∵f ′(x )=3x 2-3a 2(a >0),∴由f ′(x )>0得:x >a 或x <-a ,由f ′(x )<0得-a <x <a .∴当x =a 时,f (x )有极小值,x =-a 时,f (x )有极大值.由题意得:⎩⎪⎨⎪⎧a 3-3a 3+a <0,-a 3+3a 3+a >0,a >0.解得a >22. 11.5 [解析] 依题意可设每月土地占用费y 1=k 1x,每月库存货物的运费y 2=k 2x ,k 1,k 2是比例系数,于是由2=k 110得k 1=20;由8=10k 2得k 2=45.因此,两项费用之和为y =20x +4x5(x >0), y ′=-20x 2+45,令y ′=0,得x =5或x =-5(舍去).当0<x <5时,y ′<0;当x >5时,y ′>0.因此,当x =5时,y 取得极小值,也是最小值.故当仓库建在离车站5千米处时,两项费用之和最小.12.2-1 [解析] 因为f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x ,所以f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4sin π4+cos π4,整理得f ′⎝ ⎛⎭⎪⎫π4=2-1. 13. ⎣⎢⎡⎦⎥⎤-13,1∪[2,3) [解析] 函数在⎝ ⎛⎭⎪⎫-13,1和(2,3)上为减函数,且在x =-13,1,2处均取得极值,因此f ′(x )≤0的解集为⎣⎢⎡⎦⎥⎤-13,1∪[2,3). 14.[解答] (1)∵f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x x +12-bx 2,由题意知:⎩⎪⎨⎪⎧f 1=1,f ′1=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.∴a =b =1.(2)证明:由(1)知f (x )=ln x x +1+1x, 所以f (x )-ln x x -1=11-x 2⎝ ⎛⎭⎪⎫2ln x -x 2-1x ,设h (x )=2ln x -x 2-1x(x >0),则h ′(x )=-x -12x 2,当x ≠1时,h ′(x )<0,而h (1)=0,故当x ∈(0,1)时,h (x )>0,当x ∈(1,+∞)时,h (x )<0.得11-x2h (x )>0.从而,当x >0,x ≠1时,f (x )-ln x x -1>0,即f (x )>ln xx -1.15.[解答] (1)设矩形另一边长为a m ,则 y =45x +180(x -2)+180×2a =225x +360a -360.由已知ax =360,∴a =360x.∴y =225x +3602x-360(x >0).(2)y ′=225-3602x2,令y ′=0得x 1=-24(舍),x 2=24.此时,x =24是x ∈(0,+∞)内唯一的极值点,即为最小值点,且当x =24时,y =225×24+360224-360=10440. ∴当x =24时,修建围墙总费用最小值为10440元.【难点突破】16.[解答] (1)设曲线C 1,C 2与直线l 相切的切点分别是(t 1,at 21+b ),(t 2,2b ln t 2),则⎩⎪⎨⎪⎧2at 1=2,2b t 2=2⇒⎩⎪⎨⎪⎧t 1=1a ,t 2=b .所以切线分别是:y -1a-b =2⎝⎛⎭⎪⎫x -1a ,y -2b ln b =2(x -b ),两切线都过原点,则-1a -b =-2a ,-2b ln b =-2b ,所以a =1e,b =e.(2)f (t )=⎝ ⎛⎭⎪⎫t 2e +e -2t -(2t -2eln t )=t 2e -4t +2eln t +e.f ′(t )=2e t -4+2et≥0,所以f (t )在(0,e]上单调递增, 所以f (t )max =f (e)=0.。
专题16导数及其应用小题综合考点十年考情(2015-2024)命题趋势考点1导数的基本计算及其应用(10年4考)2020·全国卷、2018·天津卷2016·天津卷、2015·天津卷1.掌握基本函数的导数求解,会导数的基本计算,会求切线方程,会公切线的拓展,切线内容是新高考的命题热点,要熟练掌握2.会利用导数判断函数的单调性及会求极值最值,会根据极值点拓展求参数及其他内容,极值点也是新高考的命题热点,要熟练掌握3.会用导数研究函数的零点和方程的根,会拓展函数零点的应用,会导数与函数性质的结合,该内容也是新高考的命题热点,要熟练掌握4.会构建函数利用导数判断函数单调性比较函数值大小关系,该内容也是新高考的命题热点,要熟练掌握考点2求切线方程及其应用(10年10考)2024·全国甲卷、2023·全国甲卷、2022·全国新Ⅱ卷2022·全国新Ⅰ卷、2021·全国甲卷、2021·全国新Ⅱ卷2021·全国新Ⅰ卷、2020·全国卷、2020·全国卷2020·全国卷、2019·江苏卷、2019·全国卷2019·天津卷、2019·全国卷、2019·全国卷2018·全国卷、2018·全国卷、2018·全国卷2018·全国卷、2017·全国卷、2016·全国卷2016·全国卷、2015·全国卷、2015·陕西卷2015·陕西卷考点3公切线问题(10年3考)2024·全国新Ⅰ卷、2016·全国卷、2015·全国卷考点4利用导数判断函数单调性及其应用(10年6考)2024·全国新Ⅰ卷、2023·全国新Ⅱ卷、2023·全国乙卷2019·北京卷、2017·山东卷、2016·全国卷2015·陕西卷、2015·福建卷、2015·全国卷考点5求极值与最值及其应用(10年5考)2024·上海卷、2023·全国新Ⅱ卷、2022·全国乙卷2022·全国甲卷、2021·全国新Ⅰ卷、2018·全国卷2018·江苏卷考点6利用导数研究函数的极值点及其应用(10年5考)2022·全国新Ⅰ卷、2022·全国乙卷、2021·全国乙卷、2017·全国卷、2016·四川卷5.要会导数及其性质的综合应用,加强复习考点7导数与函数的基本性质结合问题(10年6考)2024·全国新Ⅰ卷、2023·全国新Ⅰ卷、2022·全国新Ⅰ卷2021·全国新Ⅱ卷、2017·山东卷、2015·四川卷考点8利用导数研究函数的零点及其应用(10年6考)2024·全国新Ⅱ卷、2023·全国乙卷、2021·北京卷、2018·江苏卷、2017·全国卷、2015·陕西卷考点9利用导数研究方程的根及其应用(10年3考)2024·全国甲卷、2021·北京卷、2015·安徽卷2015·全国卷、2015·安徽卷考点10构建函数利用导数判断函数单调性比较函数值大小关系(10年3考)2022·全国甲卷、2022·全国新Ⅰ卷、2021·全国乙卷考点01导数的基本计算及其应用1.(2020·全国·高考真题)设函数e ()xf x x a=+.若(1)4e f '=,则a =.2.(2018·天津·高考真题)已知函数f (x )=exlnx ,()'f x 为f (x )的导函数,则()'1f 的值为.3.(2016·天津·高考真题)已知函数()(2+1)e ,()x f x x f x '=为()f x 的导函数,则(0)f '的值为.4.(2015·天津·高考真题)已知函数()()ln ,0,f x ax x x =∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为.考点02求切线方程及其应用1.(2024·全国甲卷·高考真题)设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在点()0,1处的切线与两坐标轴所围成的三角形的面积为()A .16B .13C .12D .232.(2023·全国甲卷·高考真题)曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A .e4y x =B .e 2y x =C .e e 44y x =+D .e 3e24y x =+3.(2022·全国新Ⅱ卷·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为,.4.(2022·全国新Ⅰ卷·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是.5.(2021·全国甲卷·高考真题)曲线2x 1y x 2-=+在点()1,3--处的切线方程为.6.(2021·全国新Ⅱ卷·高考真题)已知函数12()1,0,0x f x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是.7.(2021·全国新Ⅰ卷·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a <B .e a b <C .0e ba <<D .0e ab <<8.(2020·全国·高考真题)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +129.(2020·全国·高考真题)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为()A .21y x =--B .21y x =-+C .23y x =-D .21y x =+10.(2020·全国·高考真题)曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为.11.(2019·江苏·高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是.12.(2019·全国·高考真题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则A .,1a eb ==-B .,1a eb ==C .1,1a eb -==D .1,1a eb -==-13.(2019·天津·高考真题)曲线cos 2xy x =-在点()0,1处的切线方程为.14.(2019·全国·高考真题)曲线23()e x y x x =+在点(0,0)处的切线方程为.15.(2019·全国·高考真题)曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=16.(2018·全国·高考真题)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为()A .2y x=-B .y x=-C .2y x=D .y x=17.(2018·全国·高考真题)曲线()1e xy ax =+在点()01,处的切线的斜率为2-,则=a .18.(2018·全国·高考真题)曲线2ln y x =在点()1,0处的切线方程为.19.(2018·全国·高考真题)曲线2ln(1)y x =+在点(0,0)处的切线方程为.20.(2017·全国·高考真题)曲线21y x x=+在点(1,2)处的切线方程为.21.(2016·全国·高考真题)已知()f x 为偶函数,当0x ≤时,1()e x f x x --=-,则曲线()y f x =在点(1,2)处的切线方程是.22.(2016·全国·高考真题)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是.23.(2015·全国·高考真题)已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则=a .24.(2015·陕西·高考真题)设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为.25.(2015·陕西·高考真题)函数x y xe =在其极值点处的切线方程为.考点03公切线问题1.(2024·全国新Ⅰ卷·高考真题)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .2.(2016·全国·高考真题)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b =.3.(2015·全国·高考真题)已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=.考点04利用导数判断函数单调性及其应用1.(2024·全国新Ⅰ卷·高考真题)(多选)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->2.(2023·全国新Ⅱ卷·高考真题)已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为().A .2eB .eC .1e -D .2e -3.(2023·全国乙卷·高考真题)设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是.4.(2019·北京·高考真题)设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =;若f (x )是R 上的增函数,则a 的取值范围是.5.(2017·山东·高考真题)若函数()e xf x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A .()2xf x -=B .()2f x x=C .()-3xf x =D .()cos f x x=6.(2016·全国·高考真题)若函数()1sin 2sin 3f x x x a x =-+在R 上单调递增,则a 的取值范围是A .[]1,1-B .11,3⎡⎤-⎢⎥⎣⎦C .11,33⎡⎤-⎢⎥⎣⎦D .11,3⎡⎤--⎢⎣⎦7.(2015·陕西·高考真题)设()sin f x x x =-,则()f x =A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数8.(2015·福建·高考真题)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是()A .11f k k ⎛⎫<⎪⎝⎭B .111f k k ⎛⎫>⎪-⎝⎭C .1111f k k ⎛⎫<⎪--⎝⎭D .111k f k k ⎛⎫>⎪--⎝⎭9.(2015·全国·高考真题)设函数'()f x 是奇函数()f x (x R ∈)的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是A .(,1)(0,1)-∞-B .(1,0)(1,)-È+¥C .(,1)(1,0)-∞-- D .(0,1)(1,)⋃+∞考点05求极值与最值及其应用1.(2024·上海·高考真题)已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ∞=∈∈-<R ,在使得[]1,1M =-的所有()f x 中,下列成立的是()A .存在()f x 是偶函数B .存在()f x 在2x =处取最大值C .存在()f x 是严格增函数D .存在()f x 在=1x -处取到极小值2.(2023·全国新Ⅱ卷·高考真题)若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则().A .0bc >B .0ab >C .280b ac +>D .0ac <3.(2022·全国乙卷·高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为()A .ππ22-,B .3ππ22-,C .ππ222-+,D .3ππ222-+,4.(2022·全国甲卷·高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=()A .1-B .12-C .12D .15.(2021·全国新Ⅰ卷·高考真题)函数()212ln f x x x =--的最小值为.6.(2018·全国·高考真题)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是.7.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为.考点06利用导数研究函数的极值点及其应用1.(2022·全国新Ⅰ卷·高考真题)(多选)已知函数3()1f x x x =-+,则()A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线2.(2022·全国乙卷·高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是.3.(2021·全国乙卷·高考真题)设0a ≠,若a 为函数()()()2f x a x a x b =--的极大值点,则()A .a b<B .a b>C .2ab a <D .2ab a >4.(2017·全国·高考真题)若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为.A .1-B .32e --C .35e -D .15.(2016·四川·高考真题)已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .2考点07导数与函数的基本性质结合问题1.(2024·全国新Ⅰ卷·高考真题)(多选)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->2.(2023·全国新Ⅰ卷·高考真题)(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点3.(2022·全国新Ⅰ卷·高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=4.(2021·全国新Ⅱ卷·高考真题)写出一个同时具有下列性质①②③的函数():f x .①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.5.(2017·山东·高考真题)若函数()x y e f x = 2.71828...e =(是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中所有具有M 性质的函数的序号为①=2xf x -()②=3xf x -()③3=f x x ()④2=2f x x +()6.(2015·四川·高考真题)已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0;③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ;④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n.其中真命题有(写出所有真命题的序号).考点08利用导数研究函数的零点及其应用1.(2024·全国新Ⅱ卷·高考真题)(多选)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2023·全国乙卷·高考真题)函数()32f x x ax =++存在3个零点,则a 的取值范围是()A .(),2-∞-B .(),3-∞-C .()4,1--D .()3,0-3.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,()f x 恰有2个零点;②存在负数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有3个零点;④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是.4.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为.5.(2017·全国·高考真题)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a A .12-B .13C .12D .16.(2015·陕西·高考真题)对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D .点(2,8)在曲线()y f x =上考点09利用导数研究方程的根及其应用1.(2024·全国甲卷·高考真题)曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为.2.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,()f x 恰有2个零点;②存在负数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有3个零点;④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是.3.(2015·安徽·高考真题)函数()32f x ax bx cx d =+++的图象如图所示,则下列结论成立的是()A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a <,0b <,0c >,0d >D .0a >,0b >,0c >,0d <4.(2015·全国·高考真题)设函数()(21)x f xe x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是()A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭5.(2015·安徽·高考真题)设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==.考点10构建函数利用导数判断函数单调性比较函数值大小关系1.(2022·全国甲卷·高考真题)已知3111,cos ,4sin 3244a b c ===,则()A .c b a>>B .b a c>>C .a b c >>D .a c b>>2.(2022·全国新Ⅰ卷·高考真题)设0.110.1e ,ln 0.99a b c ===-,则()A .a b c <<B .c b a <<C .c<a<bD .a c b<<3.(2021·全国乙卷·高考真题)设2ln1.01a =,ln1.02b =,1c =-.则()A .a b c<<B .b<c<aC .b a c<<D .c<a<b。
理科数学《导数的综合应用》题型归纳与训练【题型归纳】题型一 含参数的分类讨论例1 已知函数3()12f x ax x =-,导函数为()f x ', (1)求函数()f x 的单调区间;(2)若(1)6,()f f x '=-求函数在[—1,3]上的最大值和最小值。
【答案】略【解析】(I )22()3123(4)f x ax ax '=-=-,(下面要解不等式23(4)0ax ->,到了分类讨论的时机,分类标准是零)当0,()0,()(,)a f x f x '≤<-∞+∞时在单调递减; 当0,,(),()a x f x f x '>时当变化时的变化如下表:此时,()(,)f x -∞+∞在单调递增, 在(单调递减; (II )由(1)3126, 2.f a a '=-=-=得由(I )知,()(f x -在单调递减,在单调递增。
【易错点】搞不清分类讨论的时机,分类讨论不彻底【思维点拨】分类讨论的难度是两个,(1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理,由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不重复一遗漏。
还要注意一点的是,最后注意将结果进行合理的整合。
题型二 已知单调性求参数取值范围问题 例1 已知函数321()53f x x x ax =++-, 若函数在),1[+∞上是单调增函数,求a 的取值范围【答案】【解析】2'()2f x x x a =++,依题意在),1[+∞上恒有0y '≥成立, 方法1:函数2'()2f x x x a =++,对称轴为1x =-,故在),1[+∞上'()f x 单调递增,故只需0)1('≥f 即可,得3-≥a ,所以a 的取值范围是[3,)+∞;方法2: 由022≥++='a x x y ,得x x a 2--2≥,只需2max --2a x x ≥(),易得2max --23x x =-(),因此3-≥a ,,所以a 的取值范围是[3,)+∞; 【易错点】本题容易忽视0)1('≥f 中的等号 【思维点拨】已知函数()f x 在区间(,)a b 可导:1. ()f x 在区间(,)a b 内单调递增的充要条件是如果在区间(,)a b 内,导函数()0f x '≥,并且()f x '在(,)a b 的任何子区间内都不恒等于零;2. ()f x 在区间(,)a b 内单调递减的充要条件是如果在区间(,)a b 内,导函数()0f x '≤,并且()f x '在(,)a b 的任何子区间内都不恒等于零;说明:1.已知函数()f x 在区间(,)a b 可导,则()0f x '≥在区间内(,)a b 成立是()f x 在(,)a b 内单调递增的必要不充分条件2.若()f x 为增函数,则一定可以推出()0f x '≥;更加具体的说,若()f x 为增函数,则或者()0f x '>,或者除了x 在一些离散的值处导数为零外,其余的值处都()0f x '>;3. ()0f x '≥时,不能简单的认为()f x 为增函数,因为()0f x '≥的含义是()0f x '>或()0f x '=,当函数在某个区间恒有()0f x '=时,也满足()0f x '≥,但()f x 在这个区间为常函数. 题型三 方程与零点1.已知函数()3231f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A. (),2-∞-B. ()2,2-C. ()2,+∞D. ()()2,00,2-⋃ 【答案】D【解析】很明显0a ≠ ,由题意可得: ()()2'3632f x ax x x ax =-=- ,则由()'0f x = 可得1220,x x a==,由题意得不等式: ()()122281210f x f x a a =-+< ,即: 2241,4,22a a a><-<< , 综上可得a 的取值范围是 ()()2,00,2-⋃.本题选择D 选项.【易错点】找不到切入点,“有三个零点”与函数的单调性、极值有什么关系?挖掘不出这个关系就无从下手。
数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。
2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。
3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。
(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。
(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。
二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。
2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。
3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。
(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。
(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。
三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。
2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。
3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。
(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。
(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。
四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。
2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。
3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。
(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。
2018版高考数学一轮复习 第三章 导数及其应用 3.3 导数的综合应用真题演练集训 理 新人教A 版1.[2015·新课标全国卷Ⅰ]设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1 B .⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34D .⎣⎢⎡⎭⎪⎫32e ,1 答案:D解析:∵ f (0)=-1+a <0,∴ x 0=0.又x 0=0是唯一的整数,∴ ⎩⎪⎨⎪⎧f-1≥0,f 1≥0,即⎩⎪⎨⎪⎧e-1--1]+a +a ≥0,--a +a ≥0,解得a ≥32e.又a <1,∴ 32e≤a <1,故选D.2.[2014·陕西卷]如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15x答案:A解析:设所求函数解析式为y =f (x ),由题意知f (5)=-2,f (-5)=2,且f ′(±5)=0,代入验证易得y =1125x 3-35x 符合题意,故选A.3.[2014·辽宁卷]当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]答案:C解析:当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3,φ′(x )=x -x 3-x 2-4x -x 2x 6=-x 2-8x -9x=-x -x +x>0,∴φ(x )在(0,1]上单调递增, φ(x )max =φ(1)=-6. ∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-x -x +x4,当x ∈[-2,-1)时,φ′(x )<0; 当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上可知,a 的取值范围为[-6,-2].4.[2016·新课标全国卷Ⅰ]已知函数f (x )=(x -2)e x+a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.(1)解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ). (ⅰ)设a =0,则f (x )=(x -2)e x,f (x )只有一个零点. (ⅱ)设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.(ⅲ)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))上单调递减, 在(ln(-2a ),+∞)上单调递增.又当x ≤1时f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明:不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),又f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.由于f (2-x 2)=-x 2e 2-x 2+a (x 2-1)2, 而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e 2-x 2-(x 2-2)e x2. 设g (x )=-x e2-x-(x -2)e x,则g ′(x )=(x -1)(e 2-x-e x).所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0. 从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.5.[2015·新课标全国卷Ⅱ]设函数f (x )=e mx+x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e-1,求m 的取值范围.(1)证明:f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)解:由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e-1的充要条件是⎩⎪⎨⎪⎧f 1-f 0≤e -1,f -1-f0≤e -1,即⎩⎪⎨⎪⎧e m-m ≤e-1,e -m+m ≤e-1.①设函数g (t )=e t-t -e +1,则g ′(t )=e t-1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e<0, 故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1; 当m <-1时,g (-m )>0,即e -m+m >e -1. 综上,m 的取值范围是[-1,1].6.[2015·新课标全国卷Ⅰ]已知函数f (x )=x 3+ax +14,g (x )=-ln x .(1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.解:(1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0,即 ⎩⎪⎨⎪⎧x 3+ax 0+14=0,3x 20+a =0,解得⎩⎪⎨⎪⎧x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线.(2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)上无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0,所以只需考虑f (x )在(0,1)上的零点个数. ①若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)上无零点,故f (x )在(0,1)上单调. 而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)上有一个零点;当a ≥0时,f (x )在(0,1)上没有零点.②若-3<a <0,则f (x )在⎝⎛⎭⎪⎫0, -a 3上单调递减,在⎝⎛⎭⎪⎫-a3,1上单调递增,故在(0,1)上,当x = -a3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎪⎫ -a 3=2a3-a3+14. a .若f ⎝ ⎛⎭⎪⎫-a 3>0,即-34<a <0,则f (x )在(0,1)上无零点.b .若f ⎝⎛⎭⎪⎫-a 3=0,即a =-34,则f (x )在(0,1)上有唯一零点.c .若f ⎝⎛⎭⎪⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)上有两个零点;当-3<a ≤-54时,f (x )在(0,1)上有一个零点. 综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点.课外拓展阅读巧用导数妙解有关恒成立、存在性问题“恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立问题,以免细节出错.方法一 分离参数法[典例1] [改编题]设函数f (x )=ln x -ax ,g (x )=e x-ax ,其中a 为实数.若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,则a 的取值范围是( )A .(e ,+∞)B .[e ,+∞)C .(1,+∞)D .[1,+∞)[答案] A[解析] 解法一:f ′(x )=1x-a ,g ′(x )=e x -a ,由题意得,当x ∈(1,+∞)时,f ′(x )≤0恒成立,即当x ∈(1,+∞)时,a ≥1x恒成立,则a ≥1.因为g ′(x )=e x-a 在(1,+∞)上单调递增, 所以g ′(x )>g ′(1)=e -a .又g (x )在(1,+∞)上有最小值,则必有e -a <0,即a >e. 综上,可知a 的取值范围是(e ,+∞).解法二:f ′(x )=1x-a ,g ′(x )=e x-a .由题意得,当x ∈(1,+∞)时,f ′(x )≤0恒成立,即当x ∈(1,+∞)时,a ≥1x恒成立,则a ≥1.当a ≤0时,g ′(x )>0恒成立,从而g (x )在(1,+∞)上单调递增,故g (x )在(1,+∞)上无最值,不符合题意;当0<a ≤e 时,由g ′(x )>0得x >ln a ,又ln a ≤1,故g (x )在(1,+∞)上单调递增,故g (x )在(1,+∞)上无最值,不符合题意; 当a >e 时,由g ′(x )>0得x >ln a ,又ln a >1,故g (x )在(1,ln a )上单调递减,在(ln a ,+∞)上单调递增,此时有最小值,为g (ln a )=eln a-a ln a =a -a ln a .由题意知ln a >1,所以a >e. 综上,可知a 的取值范围是(e ,+∞). 技巧点拨在恒成立问题中有时需要取交集,有时需要取并集,本题结果取交集.一般而言,在同一“问题”中,若是对自变量作分类讨论,其结果要取交集;若是对参数作分类讨论,其结果要取并集.方法二 构造函数法[典例2] 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2xx ,x +x >,若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0][答案] D[解析] |f (x )|≥ax ⇔⎩⎪⎨⎪⎧--x 2+2x ≥ax x,①x +ax x >②(1)由①得x (x -2)≥ax 在区间(-∞,0]上恒成立. 当x =0时,a ∈R ;当x <0时,有x -2≤a 在区间(-∞,0]上恒成立,所以a ≥-2.(2)由②得ln(x +1)-ax ≥0在区间(0,+∞)上恒成立,设h (x )=ln(x +1)-ax (x >0),则h ′(x )=1x +1-a (x >0),可知h ′(x )为减函数.当a ≤0时,h ′(x )>0,故h (x )为增函数,所以h (x )>h (0)=0恒成立;当a ≥1时,因为1x +1∈(0,1),所以h ′(x )=1x +1-a <0,故h (x )为减函数,所以h (x )<h (0)=0恒成立,显然不符合题意;当0<a <1时,对于给定的一个确定值a ,总可以至少找到一个x 0>0,满足h (x 0)=ln(x 0+1)-ax 0<0成立.如当a =12时,取x 0=4,则h (x 0)=ln 5-2<0成立,可知当0<a <1时,不符合题意.故a ≤0.由(1)(2)可知,a 的取值范围是[-2,0]. 方法探究本题的切入点不同,构造的函数也是不相同的,也可以构造函数结合选项利用函数图象及排除法去完成.典例2也可以通过构造函数求解,但是在问题的求解中如果可以分离出参数,尽量用分离参数法去求解.相对而言,多数题目都可以采用分离参数法去求解,而且采用分离参数法对于问题的求解会相对容易.方法三 等价转化法[典例3] 设f (x )=a x+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. [解] (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x ⎝ ⎛⎭⎪⎫x -23.由g ′(x )>0得x <0或x >23,又x ∈[0,2],所以g (x )在⎣⎢⎡⎦⎥⎤0,23上是单调递减函数, 在⎣⎢⎡⎦⎥⎤23,2上是单调递增函数, 所以g (x )min =g ⎝ ⎛⎭⎪⎫23=-8527, g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M ,则满足条件的最大整数M =4.(2)对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,等价于在⎣⎢⎡⎦⎥⎤12,2上,函数f (x )min ≥g (x )max .由(1)可知在⎣⎢⎡⎦⎥⎤12,2上,g (x )的最大值为g (2)=1.在⎣⎢⎡⎦⎥⎤12,2上,f (x )=a x +x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,可知h ′(x )在⎣⎢⎡⎦⎥⎤12,2上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0. 即函数h (x )=x -x 2ln x 在⎣⎢⎡⎦⎥⎤12,1上单调递增,在[1,2]上单调递减,所以h (x )max =h (1)=1,即实数a 的取值范围是[1,+∞).温馨提示如果一个问题的求解中既有“存在性”又有“恒成立”问题,那么需要对问题作等价转化,使之变成与典例2、典例3相关的问题去求解,这里一定要注意转化的等价性、巧妙性,防止在转化中出错而使问题的求解出错.。