不等式(组)的字母取值范围.
- 格式:doc
- 大小:212.22 KB
- 文档页数:5
求一元一次不等式(组)字母取值范围的常用方法作者:颜小兵来源:《初中生世界·七年级》2015年第06期求一元一次不等式(组)中字母的取值范围,是近年来中考的一个热点,也是考查同学们掌握及灵活运用所学知识的综合体现,在中考考场中频频登场. 这类试题技巧性强,灵活多变,难度较大,常常影响和阻碍学生正常思维的进行,为了更加快捷、准确地解答这类试题,下面介绍几种常用解法,以供参考.一、紧扣题意,直接求解例1 若不等式组x>5,xA. mB. m>5C. m≤5D. m≥5【解析】∵不等式组无解,∴x≤5即可,题目中x进一步发现,即使m=5,不等式组也无解,所以,当m≤5时,原不等式组无解,选C.【点评】由于求不等式组解集的公共部分时,不等式组无解,此题直接观察发现字母的取值范围,特别要注意的是容易选择A答案,忽视等于的情况.二、巧借数轴,分析求解例2 已知关于x的不等式组x-a≥0,3-2x>-1.的整数解共有5个,则a的取值范围是______.【解析】由原不等式组可得x≥a,x【点评】借助于数轴求不等式组解集的公共部分的整数解,是常用的方法,很直观地根据题目给出的整数解的个数,求出字母的取值范围.三、根据法则,比较求解例3 不等式组x+9x>m+1.的解集是x>2,则m的取值范围是().A. m≤2B. m≥2C. m≤1D. m>1【解析】已知的不等式组中含有字母m,可以先进行化简,求出不等式组的解集,然后再与已知解集比较,求出m的取值范围. 解不等式组,得x>2,x>m+1.因为不等式的解集为x>2,其解集由2与m+1的大小决定,通过比较,根据“同大取大”法则可知,m+1≤2,解得m≤1. 故本题选C.【点评】当一元一次不等式组化简后未知数中含有字母时,可以通过比较已知解集列不等式或列方程来确定字母的取值范围或值.四、前后对比,分析求解例4 已知关于x的不等式(1-a)x>2的解集为xA. a>0B. a>1C. aD. a【解析】因为不等式(1-a)x>2的解集为x2的解集为x1,所以选B.【点评】当一元一次不等式的解集给出时,可以通过对比不等式的性质和解集法则,求出有关字母的取值范围或值.五、逆向思维,巧妙求解例5 不等式组x-a>-1,x-a【解析】先化简不等式组得x>a-1,x7的范围内,从而有a+2≤3或a-1≥7,所以解得a≤1或a≥8.【点评】对于不等式解集在某一个范围内,很难入手解决,对于这些特殊问题,从结论往回推,倒过来思考,从求解回到已知条件,反过去想会使问题简单化.(作者单位:江苏省泰州市姜堰区实验初级中学)。
用不等式解集求字母参数取值范围专题易错点:字母的取值能不能取到临界点一、 逆用不等式组的解集求字母的值1、若不等式组的解集为则m=_______2、若不等式组的解集为则a=_______-3、若不等式组的解集为,则a+b=________4、已知关于x 的不等式2x+a <3的所有正整数解的和为6,则a 的取值范围是 _________ . 二、逆用不等式组的解集确定字母的取值范围5、若不等式组无解,则a 的取值范围是_______ 6、若不等式组无解,则a 的取值范围_______ 7、若不等式组无解,则a 的取值范围是_______ 8、如果不等式组无解,则a 的取值范围是 _________ .9、若不等式组无解,则a 的取值范围是 _________ .10、若不等式无解,化简|3﹣a|+|a ﹣2|= _________ . 11、若不等式组无解,则a _________ b (用“>”、“=”、“<”填空). 19、如果不等式组无解,则不等式2x+2<mx+m 的解集是 _________ . 14、如图,如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a , b 的有序数对(a ,b )共有 _____ 个.常考例题:15、已知不等式组⎪⎩⎪⎨⎧>>-ax x 1513的解集为x >2,则a 的取值范围_______变式训练:16、已知不等式组⎪⎩⎪⎨⎧≥>-ax x 1513的解集为x >2,则a 的取值范围_______17、若不等式组的解集为 则a 的取值范围是_______ 18、若不等式组的解集为 则a 的取值范围是_______ 19、若不等式组的解集为 则a 的取值范围是_______20、已知a ,b 是实数,若不等式(2a ﹣b )x+3a ﹣4b <0的解是,则不等式(a ﹣4b )x+2a ﹣3b >0的解是 _________ .21、若不等式组的解集为x <2m+1,则m 的取值范围是 _________ .22、不等式组的解集是x <m ﹣2,则m 的取值应为 _________ .23、(2010?黄石)若自然数n 使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n 为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为 _________ .24、北京奥运期间,体育场馆要对观众进行安全检查.设某体育馆在安检开始时已有若干名观众在馆外等候安检,安检开始后,到达体育馆的观众人数按固定速度增加.又设各安检人员的安检效率相同.若用3名工作人员进行安检,需要25分钟才能将等候在馆外的观众检测完,使后来者能随到随检;若用6名工作人员进行安检,时间则缩短为10分钟.现要求不超过5分钟完成上述过程,则至少要安排 _________ 名工作人员进行安检.25、(2001?广州)在车站开始检票时,有a (a >0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min 才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min 便可将排队等候检票的旅客全部检票完毕;现在要求在5min 内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,则至少要同时开放 _________ 个检票口.三、解方程组代入确定字母参数取值范围26、若方程组⎩⎨⎧=++=+3313y x k y x 的解,x y 满足1x y +<,求k 的取值范围27、(2010?江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是_________ .28、(2009?厦门)已知ab=2.①若﹣3≤b≤﹣1,则a的取值范围是_________ ;②若b>0,且a2+b2=5,则a+b= _________ .29、(2011?眉山)在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D 地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案A地B地C地运往D地(元/立方米)222020运往E地(元/立方米)20222130、(2011?呼和浩特)生活中,在分析研究比赛成绩时经常要考虑不等关系.例如:一射击运动员在一次比赛中将进行10次射击,已知前7次射击共中61环,如果他要打破88环(每次射击以1到10的整数环计数)的记录,问第8次射击不能少于多少环我们可以按以下思路分析:首先根据最后二次射击的总成绩可能出现的情况,来确定要打破88环的记录,第8最后二次射击总成绩第8次射击需得成绩20环19环18环解:设第8次射击的成绩为x环,则可列出一个关于x的不等式:_________解得_________所以第8次设计不能少于_________ 环.31、(2010?盐城)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案32、(2009?河北)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三裁法一裁法二裁法三A型板材块数120B型板材块数2m ny张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _________ ,n= _________ ;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张34、有一种规格为165cm×30cm的标准板材,可按如图所示的两种裁法得到规格为60cm×30cm的A型板材与规格为35cm×30cm的B型板材.(1)某公司装修需要A型板材140张,B型板材215张.现购得标准板材100张,恰好裁完.设按裁法一裁剪的标准板材为x张.裁法一裁法二x(张)______ (张)A型板材(张)_________ 2(100﹣x)B型板材(张)3x_________(2)若装修师傅购买标准板材若干张,按以上两种方法裁剪后,得到A型板材恰为140张,B型板材恰为a张(180<a<200),则购进的标准板材可以是_________ 张.(写出一个即可)。
专题10一元一次不等式(组)【专题目录】技巧1:一元一次不等式组的解法技巧技巧2:一元一次不等式的解法的应用技巧3:含字母系数的一元一次不等式(组)的应用【题型】一、不等式的性质【题型】二、不等式(组)的解集的数轴表示【题型】三、求一元一次不等式的特解的方法【题型】四、确定不等式(组)中字母的取值范围【题型】五、求一元一次方程组中的待定字母的取值范围【题型】六、一元一次不等式的应用【考纲要求】1、了解不等式(组)有关的概念,理解不等式的基本性质;2、会解简单的一元一次不等式(组);并能在数轴上表示出其解集.3、能列出一元一次不等式(组)解决实际问题.【考点总结】一、一元一次不等式(组)不等式或组不等式的基本性质(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变(2)不等式的两边都乘(或除以)同一个正数,不等号的方向不变(3)不等式的两边都乘(或除以)同一个负数,不等号的方向改变解法①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.在①至⑤步的变形中,一定要注意不等号的方向是否需要改变.一元一次不等式组定义一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.解法先求出各个不等式的解再确定其公共部分,即为原不等式组的解集。
四种不等式组(a<b)解集图示口诀【注意】1.不等式的解与不等式的解集的区别与联系:1)不等式的解是指满足这个不等式的未知数的某个值。
2)不等式的解集是指满足这个不等式的未知数的所有的值。
3)不等式的所有解组成了这个不等式的解集,不等式的解集中包括这个不等式的每一个解。
2.用数轴表示不等式的解集:大于向右,小于向左,有等号画实心圆点,无等号画空心圆图。
2.列不等式或不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”“最多”“超过”“不低于”“不大于”“不高于”“大于”“多”等.这些都体现了不等关系,列不等式时,要根据关键词准确地选用不等号.另外,对一些实际问题的分析还要注意结合实际.3.列不等式(组)解应用题的一般步骤:(1)审题;(2)设未知数;(3)找出能够包含未知数的不等量关系;(4)列出不等式(组);(5)求出不等式(组)的解;(6)在不等式(组)的解中找出符合题意的值;(7)写出答案(包括单位名称).【技巧归纳】基本不等式组的解集⎩⎨⎧≥≥b x a x x ≥b 大大取大⎩⎨⎧≤≤b x a x x ≤a 小小取小⎩⎨⎧≤≥bx a x a ≤x ≤b 大小小大中间找⎩⎨⎧≥≤b x a x 无解大大小小解不了技巧1:一元一次不等式组的解法技巧【类型】一、解普通型的一元一次不等式组12x <6,-2≤0的解集,在数轴上表示正确的是()2.解不等式组,并把解集表示在数轴上.(x +2),①+15>0.②【类型】二、解连写型的不等式组3.满足不等式组-1<2x -13≤2的整数的个数是()A .5B .4C .3D .无数4.若式子4-k 的值大于-1且不大于3,则k 的取值范围是____________.5.用两种不同的方法解不等式组-1<2x -13【类型】三、“绝对值”型不等式转化为不等式组求解.6.解不等式|3x -12|≤4.【类型】四、“分式”型不等式转化为不等式组求解7.解不等式3x -62x +1<0.参考答案1.C2.解:由①得,x≥-1.由②得,x <45.∴不等式组的解集为-1≤x <45.表示在数轴上,如图所示.3.B 4.1≤k <55.解:方法1解不等式①,得x>-1.解不等式②,得x≤8.所以不等式组的解集为-1<x≤8.方法2:-1<2x -13≤5,-3<2x -1≤15,-2<2x≤16,-1<x≤8.6.分析:由绝对值的知识|x|<a(a >0),可知-a <x <a.解:由|3x -12|≤4,得-4≤3x -12≤4.-4,①②解不等式①,得x≥-73.解不等式②,得x≤3.所以原不等式的解集为-73≤x≤3.点拨:7.解:∵3x -62x +1<0,∴3x -6与2x +1异号.即:-6>0,+1<0或<0,+1>0.解(Ⅰ)>2,<-12.∴此不等式组无解.解(Ⅱ)<2,>-12.∴此不等式组的解集为-12<x <2.∴原不等式的解集为-12<x <2.技巧2:一元一次不等式的解法的应用【类型】一、直接解不等式1.解下列不等式,并把它们的解集在数轴上表示出来.(1)x >13x -2;(2)4x -13-x >1;(3)x +13≥2(x +1).2.下面解不等式的过程是否正确?如不正确,请找出开始错误之处,并改正.解不等式:4-3x 3-1<7+5x 5.解:去分母,得5(4-3x)-1<3(7+5x).①去括号,得20-15x -1<21+15x.②移项,合并同类项,得-30x <2.③系数化为1,得x >-115.④【类型】二、解含字母系数的一元一次不等式3.解关于x 的不等式ax -x -2>0.【类型】三、解与方程(组)的解综合的不等式4.当m 取何值时,关于x 的方程23x -1=6m +5(x -m)的解是非负数?5+3y =10,-3y =2的解满足不等式ax +y >4,求a 的取值范围.【类型】四、解与新定义综合的不等式6.定义新运算:对于任意实数a ,b ,都有a ★b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2★5=2×(2-5)+1=-5.(1)求(-2)★3的值;(2)若3★x 的值小于13,求x 的取值范围,并在数轴上表示出来.【类型】五、解与不等式的解综合的不等式7.已知关于x 的不等式3x -m ≤0的正整数解有四个,求m 的取值范围.8.关于x 的两个不等式①3x +a 2<1与②1-3x>0.(1)若两个不等式的解集相同,求a 的值;(2)若不等式①的解都是②的解,求a 的取值范围.参考答案1.解:(1)x>13x-2,23x>-2,x>-3.这个不等式的解集在数轴上的表示如图所示.(2)4x-13-x>1,4x-1-3x>3,x> 4.这个不等式的解集在数轴上的表示如图所示.(3)x+13≥2(x+1),x+1≥6x+6,-5x≥5,x≤-1.2.解:第①步开始错误,应该改成:去分母,得5(4-3x)-15<3(7+5x).去括号,得20-15x-15<21+15x.移项,合并同类项,得-30x<16.系数化为1,得x>-8 15 .3.解:移项,合并同类项得,(a-1)x>2,当a-1>0,即a>1时,x>2a-1;当a-1=0,即a=1时,x无解;当a-1<0,即a<1时,x<2a-1.4.解:解方程得x =-313(m +1),由题意得-313(m +1)≥0,解得m ≤-1.5.解:2x +3y =10,-3y =2,=2,=2.代入不等式得2a +2>4.所以a >1.6.解:(1)(-2)★3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3★x <13,∴3(3-x)+1<13,去括号,得9-3x +1<13,移项,合并同类项,得-3x <3,系数化为1,得x >-1.在数轴上表示如图所示.7.解:解不等式得x ≤m 3,由题意得4≤m 3<5,解得12≤m <15.方法规律:已知一个不等式的解集满足特定要求,求字母参数的取值范围时,我们可先解出这个含字母参数的不等式的解集,然后根据题意列出一个(或几个)关于字母参数的不等式,从而可求出字母参数的取值范围.8.解:(1)由①得x <2-a 3,由②得x <13,由两个不等的解集相同,得2-a 3=13,解得a =1.(2)由不等式①的解都是②的解,得2-a 3≤13,解得a ≥1.技巧3:含字母系数的一元一次不等式(组)的应用【类型】一、与方程组的综合问题1.已知实数x ,y 同时满足三个条件:①x -y =2-m ;②4x -3y =2+m ;③x >y.那么实数m 的取值范围是()A .m >-2B .m <2C .m <-2D .m >22+y =-7-a ,-y =1+3a的解中,x 为非正数,y 为负数.(1)求a 的取值范围;(2)化简|a -3|+|a +2|.3.在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13.(1)求a ,b 的值;(2)当-1<x <2时,求y 的取值范围.【类型】二、与不等式(组)的解集的综合问题题型1:已知解集求字母系数的值或范围4.已知不等式(a -2)x >4-2a 的解集为x <-2,则a 的取值范围是__________.5-a <1,-2b >3的解集为-1<x <1,求(b -1)a +1的值.题型2:已知整数解的情况求字母系数的值或取值范围6>2,<a 的解集中共有5个整数,则a 的取值范围为()A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤87-a ≥0,-b <0的整数解是1,2,3,求适合这个不等式组的整数a ,b 的值.题型3:已知不等式组有无解求字母系数的取值范围8-1>0,-a <0无解,则a 的取值范围是__________.91<a ①,+5>x -7②有解,求实数a 的取值范围.参考答案1.B2.解:(1)=-3+a ,=-4-2a.∵x 为非正数,y 3+a ≤0,4-2a <0,解得-2<a ≤3.(2)∵-2<a ≤3,即a -3≤0,a +2>0,∴原式=3-a +a +2=5.3.解:(1)将x =1时,y =-3;x =-3时,y =13代入y =ax +b +b =-3,3a +b =13,=-4,=1.(2)由y =-4x +1,得x =1-y 4.∵-1<x <2,∴-1<1-y 4<2,解得-7<y <5.4.a <25.-a <1.①,-2b >3.②,解①得x <a +12;解②得x >2b +3.根据题意得a +12=1,且2b +3=-1,解得a =1,b =-2,则(b -1)a +1=(-3)2=9.6.A7.解:解不等式组得a 2≤x <b 3.∵不等式组仅有整数解1,2,3,∴0<a 2≤1,3<b 3≤4.解得0<a ≤2,9<b ≤12.∵a,b为整数,∴a=1,2,b=10,11,12. 8.a≤19.+1<a①,+5>x-7②,解不等式①得x<a-1.解不等式②得x>-6.∵不等式组有解,∴-6<x<a-1,则a-1>-6,a>-5.【题型讲解】【题型】一、不等式的性质例1、若a>b,则下列等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|【答案】B【分析】利用不等式的基本性质判断即可.【详解】A、由a>b不一定能得出a>b+2,故本选项不合题意;B、若a>b,则a+1>b+1,故本选项符合题意;C、若a>b,则﹣a<﹣b,故本选项不合题意;D、由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.【题型】二、不等式(组)的解集的数轴表示例2、不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.【题型】三、求一元一次不等式的特解的方法例3、不等式12x-≤的非负整数解有()A.1个B.2个C.3个D.4个【答案】D【详解】解:12x-≤,解得:3x≤,则不等式12x-≤的非负整数解有:0,1,2,3共4个.故选:D.【题型】四、确定不等式(组)中字母的取值范围例4、若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.【答案】-2-3【详解】解:由题意得:130 x abx->⎧⎨+≥⎩①②解不等式①得:x>1+a,解不等式②得:x≤3 b-不等式组的解集为:1+a<x≤3b- 不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为:-2,-3.【题型】五、求一元一次方程组中的待定字母的取值范围例5、若不等式组841x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是().A .m >3B .m≥3C .m≤3D .m <3【答案】C【解析】详解:841x x x m +<-⎧⎨>⎩①②,解①得,x>3;解②得,x>m ,∵不等式组841x x x m +<-⎧⎨>⎩的解集是x>3,则m ⩽3.故选:C.【题型】六、一元一次不等式的应用例6、某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A .13B .14C .15D .16【答案】C【分析】根据竞赛得分10=⨯答对的题数(5)+-⨯未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【详解】解:设要答对x 道.10(5)(20)120x x +-⨯->,10 1005 120x x -+>,15 220x >,解得:443x >,根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选C .一元一次不等式(组)(达标训练)一、单选题1.若m n >,则下列不等式一定成立的是().A .2121m n -+>-+B .1144m n ++>C .m a n b+>+D .am an-<-【答案】B【分析】根据不等式的性质解答.不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、∵m >n ,∴-2m <-2n ,则-2m +1<-2n +1,故该选项不成立,不符合题意;B 、∵m >n ,∴m +1>n +1,则1144m n ++>,故该选项成立,符合题意;C 、∵m >n ,∴m +a >n +a ,不能判断m +a >n +b ,故该选项不成立,不符合题意;D 、∵m >n ,当a >0时,-am <-an ;当a <0时,-am >-an ;故该选项不成立,不符合题意;故选:B .【点睛】本题考查了不等式的性质,掌握不等式的基本性质是解答本题的关键.2.北京2022冬奥会吉祥物“冰墩墩”和“雪容融”受到大家的喜爱,某网店出售这两种吉祥物礼品,售价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是()A .100x +80(10﹣x )>900B .100+80(10﹣x )<900C .100x +80(10﹣x )≥900D .100x +80(10﹣x )≤900【答案】D【分析】设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据“冰墩墩单价×冰墩墩个数+雪容融单价×雪容融个数≤900”可得不等式.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据题意,得:100x +80(10﹣x )≤900,故选:D .【点睛】本题主要考查由实际问题抽象出一元一次不等式,解题的关键是理解题意,找到其中蕴含的不等关系.3.不等式组3050x x +>⎧⎨-≤⎩的解是()A .3x >-B .5x ≤C .35x -<≤D .无解【答案】C 【分析】先求出每个不等式的解集,再结合起来即可得到不等式组的解集.【详解】由30x +>得:3x >-由50x -≤得:5x ≤∴35x -<≤故选C【点睛】本题考查一元一次方程组的求解,掌握方法是关键.4.不等式3﹣x <2x +6)A .x <1B .x >1C .x <﹣1D .x >﹣1【答案】D【分析】根据一元一次不等式的解法,移项、合并同类项、系数化1求解即可.【详解】解:326x x -<+,移项得362x x -<+,合并同类项得33x -<,系数化1得1x >-,∴不等式326x x -<+的解集是1x >-,故选:D .【点睛】本题考查一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解决问题的关键.5.在数轴上表示不等式1x >-的解集正确的是()A.B.C.D.【答案】A【分析】根据不等式解集的表示方法依次判断.【详解】解:在数轴上表示不等式x>−1的解集的是A.故选:A.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法,区分实心点与空心点,是解题的关键.二、填空题6.超市用1200元钱批发了A,B两种西瓜进行销售,两种西瓜的批发价和零售价如下表所示,若计划将这批西瓜全部售完后,所获利润率不低于40%,则该超市至少批发A种西瓜__________kg.名称A B批发价(元/kg)43零售价(元/kg)64【答案】120【分析】设批发A种西瓜x kg,根据“利润率不低于40%”列出不等式,求解即可.【详解】解:设批发A种西瓜x kg,则(6-4)x+120043x-×(4-3)≥1200×40%,解得x≥120.答:该超市至少批发A种西瓜120kg.故答案为:120.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.7.不等式2103x--<的解集为____.【答案】5x <【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1;本题可以采用去括号、移项、合并同类项即可求解.【详解】解:去分母,得:230x --<,移项,得:23x <+,合并同类项,得:5x <.∴不等式的解集为:5x <.故答案为:5x <.【点睛】本题考查了解一元一次不等式.严格遵循解不等式的基本步骤是关键,尤其需要注意∶不等式两边都乘以或除以同一个负数时,不等号方向改变;在数轴上表示不等式的解集要注意实心点和空心点的区别.三、解答题8.解不等式组:()36,3121,x x x x ≤-⎧⎨+>-⎩并将解集在数轴上表示.【答案】3x ≥,数轴表示见解析【详解】解:解不等式36x x -≤,得:3x ≥,解不等式312(1)x x +>-,得:3x >-,∵3x ≥与3x >-的公共部分为3x ≥,∴不等式组的解集是:3x ≥.在数轴上表示解集如下:【点睛】本题考查了一元一次不等式组,熟练掌握一元一次不等式组解集的求解方法是解题关键.一元一次不等式(组)(提升测评)1.2022年北京冬季奥运会开幕式于2022年2月4日20:00在国家体育馆举行,嘉淇利用相关数字做游戏:①画一条数轴,在数轴上用点A ,B ,C 分别表示﹣20,2022,﹣24,如图1所示;②将这条数轴在点A 处剪断,点A 右侧的部分称为数轴I ,点A 左侧的部分称为数轴Ⅱ;③平移数轴Ⅱ使点A 位于点B 的正下方,如图2所示;④扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧.则整数k 的最小值为()A .511B .510C .509D .500【答案】A 【分析】根据题意可得k ⋅AC AB >,列出不等式,求得最小整数解即可求解.【详解】解:依题意,4AC =,2042AB =∵扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧,∴k ⋅AC AB >,即42042k >,解得15102k >, k 为正整数,∴k 的最小值为511,故选A .【点睛】本题考查了数轴上两点距离,一元一次不等式的应用,根据题意得出k ⋅AC AB >是解题的关键.2.不等式12<32x x -⎛⎫ ⎪⎝⎭的解在数轴上表示正确的是()A .B .C .D .【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:21<3x x -,移项,得:3+2<1x x -,合并同类项,得:<1x -,系数化为1,得>1x -,在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.已知实数a ,b ,c 满足2a c b +=,112a c b +=.则下列结论正确的是()A .若0a b >>,则0c b >>B .若1ac =,则1b =±C .a ,b ,c 不可能同时相等D .若2a =,则28b c=【答案】B【分析】A.根据0a b >>,则11a b <,根据112a c b +=,得出c b <;B.根据112a c b+=,得出()2ac b a c =+,把2a c b +=代入得:21b ac ==,即可得出答案;C.当a b c ==时,可以使2a c b +=,112a c b +=,即可判断出答案;D.根据解析B 可知,22b ac c ==,即可判断.【详解】A.∵0a b >>,∴11a b<,∵112a c b+=,∴11c b,∴c b <,故A 错误;B.∵112a c b +=,即2a c ac b+=,∴()2ac b a c =+,把2a c b +=代入得:222ac b =,21b ac ∴==,解得:1b =±,故B 正确;C.当a b c ==时,可以使2a c b +=,112a c b+=,∴a ,b ,c 可能同时相等,故C 错误;D.根据解析B 可知,2b ac =,把2a =代入得:22b c =,故D 错误.故选:B .【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.4.若数a 使关于x 的分式方程1133x a x x ++=--有非负整数解,且使关于y 的不等式组3212623y y y y a++⎧⎪⎨⎪≥-⎩>至少有3个整数解,则符合条件的所有整数a 的和是()A .﹣5B .﹣3C .0D .2【答案】D 【分析】解不等式组,根据题意确定a 的范围;解出分式方程,根据题意确定a 的范围,根据题意计算即可.【详解】解:3212623y y y y a ++⎧⎪⎨⎪≥-⎩>①②,解不等式①得:y >﹣8,解不等式②得:y ≤a ,∴原不等式组的解集为:﹣8<y ≤a ,∵不等式组至少有3个整数解,∴a ≥﹣5,1133x a x x++=--,去分母得∶1﹣x ﹣a =x ﹣3,解得:x 42a -=,∵分式方程有非负整数解,∴x ≥0(x 为整数)且x ≠3,∴42a -为非负整数,且42a -≠3,∴a ≤4且a ≠﹣2,∴符合条件的所有整数a 的值为:﹣4,0,2,4,∴符合条件的所有整数a 的和是:2,故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.5.已知三个实数a 、b 、c ,满足325a b c ++=,231a b c +-=,且0a ≥、0b ≥、0c ≥,则37+-a b c 的最小值是()A .111-B .57-C .37D .711【答案】B【分析】由两个已知等式3a +2b +c =5和2a +b ﹣3c =1.可用其中一个未知数表示另两个未知数,然后由条件:a ,b ,c 均是非负数,列出c 的不等式组,可求出未知数c 的取值范围,再把m =3a +b ﹣7c 中a ,b 转化为c ,即可得解.【详解】解:联立方程组325231a b c a b c ++=⎧⎨+-=⎩,解得,73711a c b c=-⎧⎨=-⎩,由题意知:a ,b ,c 均是非负数,则07307110c c c ≥⎧⎪-≥⎨⎪-≥⎩,解得37711c ≤≤,∴3a +b ﹣7c=3(﹣3+7c )+(7﹣11c )﹣7c=﹣2+3c ,当c =37时,3a+b ﹣7c 有最小值,即3a+b ﹣7c =﹣2+3×37=﹣57.故选:B .【点睛】此题主要考查代数式求值,考查的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.二、填空题6.一元二次方程x 2+5x ﹣m =0有两个不相等的实数根,则m 的取值范围是_____.【答案】254m >-## 6.25m >-##164m >-【分析】由方程有两个不相等的实数根结合根的判别式,可得254()0m =-->Δ,进行计算即可得.【详解】解:根据题意得254()0m =-->Δ,解得,254m >-,故答案为:254m >-.【点睛】本题考查了根的判别式,解题的关键是掌握根的判别式并认真计算.7.若关于x 的分式方程232x m x -=-的解是非负数,则m 的取值范围是________.【答案】m ≤6且m ≠4【分析】先求得分式方程的解,利用已知条件列出不等式,解不等式即可求解.【详解】解:关于x 的分式方程232x m x -=-的解为:x =6−m ,∵分式方程有可能产生增根2,∴6−m ≠2,∴m ≠4,∵关于x 的分式方程232x m x -=-的解是非负数,∴6−m ≥0,解得:m ≤6,综上,m 的取值范围是:m ≤6且m ≠4.故答案为:m ≤6且m ≠4.【点睛】本题主要考查了分式方程的解,解一元一次不等式,解分式方程一定要注意有可能产生增根的情况,这是解题的关键.三、解答题8.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,三名航天员平安归来,神舟十三号任务取得圆满成功.飞箭航模店看准商机,推出了“神舟”和“天宫”模型.已知每个“神舟”模型的成本比“天宫”模型多10元,同样花费100元,购进“天宫”模型的数量比“神舟”模型多5个.(1)“神舟”和“天宫”模型的成本各多少元?(2)飞箭航模店计划购买两种模型共200个,且每个“神舟”模型的售价为30元,“天宫”模型的售价为15元.设购买“神舟”模型a 个,销售这批模型的利润为w 元.①求w 与a 的函数关系式(不要求写出a 的取值范围);②若购进“神舟”模型的数量不超过“天宫”模型数量的13,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?【答案】(1)“天宫”模型成本为每个10元,“神舟”模型每个20元(2)①51000w a =+②购进“神舟”模型50个时,销售这批模型可以获得最大利润,最大利润为1250元【分析】(1.(2)①设“神舟”模型a 个,则“天宫”模型为200a -()个,根据利润关系即可表示w 与a 的关系式.②根据购进“神舟”模型的数量不超过“天宫”模型数量的13,即可找到a 的取值范围,利用一次函数性质即可求解.(1)解:设“天宫”模型成本为每个x 元,则“神舟”模型成本为每个10x +()元.依题意得100100510x x =++.解得10x =.经检验,10x =是原方程的解.答:“天宫”模型成本为每个10元,“神舟”模型每个20元;(2)解:① “神舟”模型a 个,则“天宫”模型为200a -()个.()()()3020151020051000w a a a ∴=-+--=+.② 购进“神舟”模型的数量不超过“天宫”模型数量的13.()12003a a ∴≤-.解得:50a ≤.51000w a =+ .50k =>.()max 5055010001250a w ∴==⨯+=当时,元.即:购进“神舟”模型50个时,销售这批模型可以获得利润.最大利润为1250元.【点睛】本题考查了分式方程、一次函数的性质,关键在于找到等量关系,建立方程,不等式,函数模型.9.解不等式组:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩【答案】1x ≥-【分析】先分别求出两个一元一次不等式的解集,然后根据“同大取大、同小取小,小大大小取中间、大大小小找不到”即可求解.【详解】解:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩①②,解不等式①,得1x ≥-,解不等式②,得>7x -,∴该不等式组的解集为1x ≥-.【点睛】本题主要考查了解一元一次不等式组,理解并掌握求不等式组的原则“同大取大、同小取小,小大大小取中间、大大小小找不到”是解题的关键.。
巧用“口诀”法求不等式组中待定字母的值的范围一元一次不等式组是初中数学的一个重要内容,不过一元一次不等式组的解集的确定教材里只讲了用数轴来确定,这种方法对于不等式组中未出现待定字母时容易求解。
一旦不等式组中出现了待定字母,学生是感到束无手策的,本文举例说明如何用口诀法来求一元一次不等式组中待定字母的值。
一元一次不等式组解集是指不等式组中几个一元一次不等式解集的公共部分。
利用数轴来确定虽然直观,但也有不足之处,不过利用它我们能够得出下面“口诀”。
不等式组(a >b) 解集在数轴上的情况 不等式组的解集口诀 ① bx a x >> x >a 同大取大 ② bx a x << x <b 同小取小 ③ b x a x >< b <x <a 大小交叉中间找 ④ b x a x <> 无解(空集) 大小分离无处找例1:如果一元一次不等式组 ax x >>2的解集为2>x ,那么a 的取值范是( )。
A. 2>a B.2≥a C.2≤a D.2<a分析:此题中因为a 待定,所以利用数轴较为困难,但利用口诀法中的“同大取大”结合不等式的解集2>x ,易知b a b a b ab a2≤a ,故选C 。
例2:若不等式组 632≤++m x m x >有解,则m 的取值范围是 。
解:解不等式m x >2+得2-+m x >解不等式63≤+m x 得32m x -≤ 如果此时利用数轴则难以下手,但因为不等式组有解,结合口诀法中的“大小交叉中间找”,表明322m m --<,434<m ,3<m ,所以m 的取值范围是3<m 。
例3:如果不等式组 212++m x m x >>的解集为1->x ,那么m 的值是多少?分析:若212+≥+m m ,则1≥m ,又1->x ,所以结合口诀法中的“同大取大”,可得112-=+m ,解得m=-1,而m ≥1故舍去。
若2m+1<m+2,则m <1,又1->x ,所以利用口诀法中的“同大取大”得m+2=-1,解得m=-3,因m <1,所以符合条件。
初中数学----不等式(组)的字母取值范围的确定方法(含参考答案)七下数学与中考试题中,经常出现已知不等式(组)的解集,确定其中字母的取值范围的问题,下面举例说明字母取值范围的确定方法,供同学们学习时参考.一、 根据不等式(组)的解集确定字母取值范围例l 、如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B .例2、已知不等式组153x a x a <<⎧⎨<<+⎩的解集为a<x<5。
则a 的范围是 .解:借助于数轴,如图1,可知: 1≤a<5并且 a+3≥5. 所以,2≤a<5 .二、根据不等式组的整数解情况确定字母的取值范围例3、关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是 .分析:由题意,可得原不等式组的解为8<x<2—4a ,又因为不等式组有四个整数解,所以8<x<2—4a 中包含了四个整数解9,10,11,12于是,有12<2—4a ≤13. 解之,得 114-≤a<52- .例4、已知不等式组⎩⎨⎧<+>-b x ax 122的整数解只有5、6。
求a 和b 的范围.解:解不等式组得⎪⎩⎪⎨⎧-<+>212b x a x ,借助于数轴,如图2知:2+a 只能在4与5之间。
21-b 只能在6与7之间. ∴4≤2+a<5 6<21-b ≤7∴2≤a<3, 13<b ≤15.三、根据含未知数的代数式的符号确定字母的取值范围例5、已知方程组213(1)21(2)x y m x y m +=+-----⎧⎨+=------⎩满足x+y<0,则( )图1图2A .m>一lB .m>lC .m<一1D .m<1分析:本题可先解方程组求出x 、y ,再代入x+y<0,转化为关于m 的不等式求解;也可以整体思考,将两方程相加,求出x+y 与m 的关系,再由x+y<0转化为m 的不等式求解. 解:(1)十(2)得,3(x+y)=2+2m ,∴x+y =223m+<0.∴m<一l ,故选C . 例6、(江苏省南通市2007年)已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.解:由2a -3x +1=0,可得a=312x -;由3b -2x -16=0,可得b=2163x +. 又a ≤4<b , 所以,312x -≤4<2163x +, 解得:-2<x ≤3. 四、逆用不等式组解集求解例7、如果不等式组260x x m-≥⎧⎨≤⎩ 无解,则m 的取值范围是 .分析:由2x 一6≥0得x ≥3,而原不等式组无解,所以3>m ,∴m<3. 解:不等式2x-6≥0的解集为x ≥3,借助于数轴分析,如图3,可知m<3.例8、不等式组⎩⎨⎧>≤<m x x 21有解,则( ).A m<2B m ≥2C m<1D 1≤m<2解:借助图4,可以发现:要使原不等式组有解,表示m 的点不能在2的右边,也不能在2上,所以,m<2.故选(A ).例9、(2007年泰安市)若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是 .解:由x-3(x-2)<2可得x>2,由24a x x +>可得x<12a. 因为不等式组有解,所以12a>2. 所以,4a >.31 2图4图3例3、 某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?不等式(组)中待定字母的取值范围不等式(组)中字母取值范围确定问题,在中考考场中频频登场。
如何确定不等式(组)中字母的取值范围江苏海安紫石中学 黄本华 226600利用不等式(组)的解或解集情况,确定字母的取值范围是不等式中的难点。
我们只有根据不等式(组)和方程之间的联系,并借助于数轴,多角度、全方位的考虑字母系数所蕴含的相等或不等关系,并且不能遗漏极端情况,才能够准确地求到字母的取值或取值范围,并实现解题过程的全优化.一、已知不等式(组)的解集例1 (2007 天门) 关于x 的不等式12-<-a x 的解集如图所示,则a 的值是( )A 0B 3-C 2- D 1- 分析:由数轴可知,不等式的解集是1-<x ,不等式的一个极端状态即是方程,解集的极端状态即为方程的解.所以当1-=x 时,不等式左右两边一定相等. 解:由题意得:1)1(2-=--⨯a解得:1-=a ,故选D二、只知道不等式(组)有解或无解例2 若不等式组4050a x x a ->⎧⎨+->⎩无解,则a 的取值范围是 分析:先求出不等式组的解集,即把解集用字母表示出来,再根据不等式组是有解或无解,在数轴上把①、②的解集表示出来,从而得到一个关于字母a 的不等式. 解:由①得:a x 4< 由②得:a x ->5所以 a a -≤54 得1≤a要特别注意:当1=a 时,不等式组也无解,所以此题在列不等式时,一定要考虑在极端位置时,即两点重合时,不等式组是有解还是无解,像这题,当a a -=54时,不等式组也无解,所以千万不要把等号丢了.同时,我们还要考虑到是空心圈还是实心点.总之在极端位置,一定要非常慎重.说明:此题若改为不等式组有解,则4a 就要画到a -5的右边,从而得到不等式a a 45<-,解得:1>a三、已知不等式(组)的几个特殊解例3 已知不等式组30080x a x a -≥⎧⎨-<⎩ 的整数解仅为1、2、3,求字母a 的取值范围。
分析:先求出不等式组的解集,即把解集用字母表示出来,再根据不等式组的整数解,在数轴上表示出这个不等式组的解集的可能区间,再列出关于字母a 的不等式组.在列不等式组的时候一定要认真考虑端点情况,慎重确定有无等号.解:由①得: 30a x ≥ 由②得:8a x < 在数轴上表示出这个不等式组的解集的可能区间①② ①②830所以⎪⎪⎩⎪⎪⎨⎧≤<≤<4831300a a 解得:3024≤<a 注意:要非常重视实心点和空心圈的情况,所以30a 可以等于1,但不能等于0;8a 可以等于4,但不能等于3,这一点在列不等式组的时候一定要小心.巩固练习:1、已知关于x 的不等式组 ⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)1)(1(++b a 的值等于2、若关于x 的不等式组⎩⎨⎧<<≤-ax x 211有解,则a 必须满足3、已知关于x 的不等式组⎩⎨⎧->-≥-1230x a x 的整数解共有5个,则a 的取值范围是。
中学数学-不等式组中字母系数取值(范围)的确定一般来说,不等式组的解集可用下面口诀来确定:我们把上面4个不等式组称为不等式组的最简形式。
一般地,我们把所给不等式组化成最简形式之后,根据所给解集逆向确定字母系数的取值(范围)。
下面就根据所给条件的不同分以下几种情况举例说明。
1.直接给出不等式组的解集例1、若不等式组的解集为x3,则m的取值范围是___________。
分析解答:把原不等式组化为最简形式,得它属于第一种情形:大大取较大。
由于不等式组的解集为x3 所以例2、若不等式组的解集为,则的值为_______。
分析解答:把原不等式组化为最简形式,得由于,它属于第三种情形:大小小大中间找。
所以于是解得a=1,b=-2 故2、给出不等式组有解或无解例3、如果不等式组有解,那么m的取值范围是____________。
分析解答:由于不等式组有解,因此它属于第三种情形:大小小大中间找。
于是,解集必为,从而例4、若不等式组无解,则a的取值范围是___________。
分析解答:由于不等式组无解,因此它属于第四种情形:大大小小解不了。
于是,必有,从而3、给出整数或整数解的个数例5、若不等式组有五个整数解,则a=_________分析解答:把原不等式化为最简形式,得由于不等式组有解因此它属于第三种情形:大小小大中间找。
于是,解集必有又它有五个整数解,这五个整数解只能是-3,-2,-1,0,1故a的取值范围是例6、如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a、b的有序数对(a,b)共有多少个?请说明理由。
分析解答:把原不等式组化为最简形式,得由于不等式组有解因此它属于第三种情形:大小小大中间找。
于是,解集必为又由于它的整数解仅为1,2,3所以从而于是,整数a取1~9共9个整数,整数b取25~32共8个整数。
故有序数对(a,b)共有9×8即72对。
不等式(组)的字母取值范围的确定方法一、根据不等式(组)的解集确定字母取值范围例l 、如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( )A .a<0B .a<一lC .a>lD .a>一l例2、已知不等式组153x a x a <<⎧⎨<<+⎩的解集为a<x<5。
则a 的范围是 .二、根据不等式组的整数解情况确定字母的取值范围例3、关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是 .例4、已知不等式组⎩⎨⎧<+>-b x a x 122的整数解只有5、6。
求a 和b 的范围.三、根据含未知数的代数式的符号确定字母的取值范围例5、已知方程组213(1)21(2)x y m x y m +=+-----⎧⎨+=------⎩满足x+y<0,则( ) A .m>一l B .m>l C .m<一1 D .m<1例6、已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.四、逆用不等式组解集求解例7、如果不等式组260x x m -≥⎧⎨≤⎩无解,则m 的取值范围是.例8、不等式组⎩⎨⎧>≤<mx x 21有解,则( ).A m<2B m ≥2C m<1D 1≤m<2例9、若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是 . 例10、 某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?图1 31 2图4图3练习:1. 已知关于x 的不等式2x )m 1(>-的解集是m12x -<,则m 的取值范围是( ) A. 0m >B. 1m >C. 0m <D. 1m < 2.)若不等式组⎩⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是( ) A. 2m ≤B. 2m ≥C. 1m ≤D. 1m >3.若不等式组⎩⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( ) A. 1a -≤B. 1a -≥C. 1a -<D. 1a ->4. 不等式组⎩⎨⎧<-->-2a x 1a x 的解集中每一x 值均不在7x 3≤≤范围内,求a 的取值范围。
龙源期刊网
利用不等式(组)确定字母的取值范围
作者:郭华敏
来源:《初中生世界·七年级》2014年第08期
在初中数学学习过程中,经常会遇到一些利用不等式(组)的解,确定其中一些待定字母的取值范围的问题.下面举例说明字母取值范围的确定方法,供同学们参考.
一、根据不等式(组)的解集确定字母取值范围
问题原型:【点评】本题主要考查对解一元一次不等式(组)、不等式的性质等知识点的理解和掌握,能根据不等式的解集和已知得出2≥m+1是解此题的关键.
二、根据不等式组的整数解情况确定字母的取值范围
【例1变式及分析】本题还可以增设一问,如果这个不等式组恰好有2013个整数解,求a 的取值范围.
因为不等式组有解,由“大小小大中间找”可知1
【点评】解答此题的关键是根据不等式组无解的条件列出关于m的不等式,在解不等式时要根据不等式的基本性质,本题要特别注意m不能等于1,否则不等式组有解.
(作者单位:江苏省南京市第五十中学)。
求一元一次不等式(组)中字母参数取值范围专题(作业)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII求字母参数取值范围专题(作业)易错点:字母的取值能不能取到临界点,可以用检验法一、 逆用不等式组的解集求字母的值1、若不等式组3>⎧⎨>⎩x x m 的解集为5>x 则m=_______2、若不等式组1253-<⎧⎨-<⎩x a x 的解集为2<x 则a=_______3、若不等式组11+>⎧⎨-<⎩x a x b 的解集为01<<x ,则a+b=________ 4、已知关于x 的不等式2x+a <3的所有正整数解的和为6,则a 的取值范围是 _________ .二、逆用不等式组的解集确定字母的取值范围5、若不等式组3>⎧⎨<⎩x x a 无解,则a 的取值范围是_______ 6、若不等式组3>⎧⎨≤⎩x x a 无解,则a 的取值范围_______ 7、若不等式组3≥⎧⎨≤⎩x x a 无解,则a 的取值范围是_______ 8、若不等式组无解,则a 的取值范围是 _________ .9、若不等式无解,化简|3﹣a|+|a ﹣2|= _________ . 10、若不等式组无解,则a _________ b (用“>”、“=”、“<”填空). 11、如果不等式组无解,则不等式2x+2<mx+m 的解集是 _________ . 12、如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a , b 的有序数对(a ,b )共有 _____ 个.常考例题:13、已知不等式组⎪⎩⎪⎨⎧>>-ax x 1513的解集为x >2,则a 的取值范围_______变式训练:14、已知不等式组⎪⎩⎪⎨⎧≥>-ax x 1513的解集为x >2,则a 的取值范围_______15、若不等式组3>⎧⎨>⎩x x a 的解集为3>x 则a 的取值范围是_______16、若不等式组3>⎧⎨>⎩x x a 的解集为>x a 则a 的取值范围是_______ 17、若不等式组3>⎧⎨≥⎩x x a 的解集为3>x ,则a 的取值范围是_______18、已知a ,b 是实数,若不等式(2a ﹣b )x+3a ﹣4b <0的解是,则不等式(a ﹣4b )x+2a ﹣3b >0的解是 _________ . 19、若不等式组的解集为x <2m+1,则m 的取值范围是 _________ .三、解方程组代入确定字母参数取值范围20、若方程组⎩⎨⎧=++=+3313y x k y x 的解,x y 满足1x y +<,求k 的取值范围21、如果方程组32335+=+⎧⎨+=⎩x y k x y 的解,x y ,当9≤k 时,求-x y 的取值范围22、在223=-⎧⎨+=-⎩x y tx y t 中,已知9>y ,试求t 的取值范围23、我们定义=ad ﹣bc ,例如=2×5﹣3×4=10﹣12=﹣2,若x ,y 均为整数,且满足1<<3,则x+y 的值是 _________ .。
字母的取值范围问题一、概念类:1、当m =时,函数2(2)4y m x m =++-是正比例函数。
2、已知2(2)a a x y -是关于x 、y 的四次单项式,则236a a ++=。
3、关于x 的方程(m -1)x 2+(m -2)x +4m 2=0是一元一次方程,则m 为二、有意义类:1、在函数关系式 中,自变量x 的取值范围是三、代数恒、性质等类:1、已知:23(1)(2)12x A B x x x x -=+-+-+,求A 、B 的值 2、若︱x ︱=x,则x 的取值范围是;若1a a =,则a 的取值范围是。
3、如果,2323,11--=++=+x x x x 那么x 的取值范围是4、若y x =y x ,则x 、y 的取值范围是;若b a =bm am ,则m 的取值范围是 四、方程(组)、不等式中的字母取值问题:(一)整式方程(组)1、已知关于x 的方程30x a +=的根比关于x 的方程50x a -=的根大2 ,则a 的值为2、关于x 的方程:(32)(23)87a x b x x ---=-有无穷个解,求a b 、的值.3、已知关于x 的方程1(6)326x x a x +=--无解,求a 的值. 4、已知方程⎩⎨⎧-=++=+②①m 1y 2x m 31y x 2满足0y x <+,则m 的取值范围是5.已知关于x 、y 的方程组的解是一对正数。
试确定m 的取值范围;6、若直线31y x =-与y x k =-的交点在第四象限,则k 的取值范围是(二)分式方程1、若关于x 的方程31--x x =932-x m 有增根,则m 的值是____________. 221243x y m x y m +=+⎧⎨-=-⎩2、若方程111+=-+-x x x k x x 无解,则k的值是多少? 3、已知关于x 的方程233x m x x -=--有一个正数解,求m 的取值范围 (三 )不等式 ◎根据不等式(组)的解集确定字母取值范围1. 已知关于x 的不等式2x )m 1(>-的解集是m12x -<,则m 的取值范围是 2.如果不等式组的解集是,那么的值为. 3.关于x 的不等式组的解集是,则m =. 4.若不等式组⎩⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是 5.若不等式组⎩⎨⎧>+>-01x 0x a 无解,则a 的取值范围是 6.若不等式组有解,则a 的取值范围是 7、.不等式组⎩⎨⎧>≤<m x x 21有解,则m 的取值范围是 8.已知不等式组153x a x a <<⎧⎨<<+⎩的解集为a<x<5。
不等式组题型一.一元一次不等式组中的确定字母的取值范围的问题角度1.根据不等式组是否有解求字母的取值范围例:.若关于的不等式组{5−3χ≥0x −m ≥0有实数解,则实数的取值范围( ) A. m ≤53 B.m <53 C.m >53 D.m ≥53练:1.已知关于x 的不等式组{3+2x ≥1x −a <0无解,试求a 的取值范围.2.若关于x 的一元一次不等式组有解,则a 的取值范围是 __________3.若不等式组{x −a <01−2x <2−x有解,则a 的取值范围是( ) A. a>-1 B. a≥-1 C. a<1 D. a≤1 4. 若关于x 的不等式组无解,则m 的取值范围为( )A. m≤-1B. m 〈-1C. -1<m ≤0D.-1≤m<0 5. 若关于x 的不等式组{12x −a >04−2x ≥0无解,则a 的取值范围为__________ 6.已知不等式组有解,则a 的取值范围为( )A. a >-2B. a≥-2C. a <2D. a≥27. 若不等式组{x+13<x 2−1x <4m无解,则m 的取值范围为( ) A.m ≤2 B.m <2 C.m ≥2 D.m >28. 若关于x 的一元一次不等式组{x −a >01−x >a −1无解,则a 的取值范围是______. 9.关于x 的不等式组{x −m <03x −1>2(x −1)无解,那么m 的取值范围为( ) A .m ≤﹣1 B .m <﹣1 C .﹣1<m ≤0 D .﹣1≤m <010.若关于x 的不等式组{2x −a <812x −12≥16无解,那么m 的取值范围为( )A.2≤a ≤4B.2<a ≤4C.2≤a <4D.2<a <4 11. 已知关于 x 的方程 4(x+2)-2=5+3a 的解不小于方程(3a+1)x 3=a (2x+3)2的解,则a 的取值范围为___________角度2.根据不等式组解集求字母的取值范围1.若关于x 的一元一次不等式组{2x −1<3x −a <0的解集为,则a 的取值范围是___________________2.不等式组{3χ−6>0x >m 的解集为,则m 的取值范围为 __________3.关于x 的一元一次不等式组{x −m >02x +1>3, 的解集为x>1,则m 的取值范围是________ 4.若关于x 的不等式组{x >2x >m的解集是x>2,则m 的取值范围是 _______________. 5.如果不等式组{x +5<4x −1x >m的解集是x >2,则m 的取值范围是( ) A 、m≥2 B 、m≤2 C 、m=2 D 、m <2角度3.根据不等式组的特殊解确定待定字母的取值范围例. 关于x 的不等式组{x −m >02x −3≥3(x −2)恰有四个整数解,那么m 的取值范围为( )A .m ≥-1B .m <0C .-1≤m <0D .-1<m <0 1.若关于x 的一元一次不等式组{x −a >02x −3<1有2个负整数解,则a 的取值范围是 _______ 2. 已知关于x 的不等式组{−5χ+2>3(x −1)12x ≤8−32χ+2a 有四个整数解,求实数a 的取值范围.3.若关于x 的不等式组{2x <3(x −3)+13x+24>x +a 有四个整数解,求a 的取值范围为( ) A.−114<a ≤−52 B.−114≤a <−52 C.−3<a ≤−4 D.−3≤a <−44. 若关于x 的不等式组{6x −5≥m x 2−x−13<1恰好有三个整数解,且关于y 的方程y−23=m−23+1的解是非负数,则符合条件的所有整数m 之和是___________5.若数a使关于x的方程ax+12=−7x3−1有非负数解,且关于y的不等式组{y−12−2<7−2y22y+1>a−2y恰好有两个偶数解,则符合条件的所有整数a的和为()A. -22B. -18 C .11 D .126.已知关于x,y的方程组{2x+y=4mx+2y=2m+1(m是常数).(1)若x+y=1,求m的值(2)若−1<x−y<5,求m的取值范围(3)在(2)的条件下,化简|m+2|−|2m−6|题型二.一元一次不等式组与方程组的综合运用在关于x、y的方程组{2x+y=m+7x+2y=8−m{2x+y=m+7x+2y=8−m中,未知数满足≥0,y>0,那么的取值范围在数轴上应表示为()B .C.D.1.已知关于x,y的二元一次方程组{x+2y=4k2x+y=2k+1中的xy满足0<yーx<1,求k取值范围. 2.3.已知关于x,y的方程组{x+y=m2x−y=6中,已知x>0,y<0,求m的取值范围.3. 已知关于x 、y 的方程组{2x +3y =3m +72x −3y =9m +1的解x 、y 的值是一对正数. (1)求m 的取值范围;(2)化简:|m-1|+|m +23|.2. 已知点P (a ,b ).(1)若关于a ,b 的方程组满足{2a +b =m a −2b =3m +5,若P 在第三象限,则求m 的范围: (2)若P 到x 轴的距离是4-a ,到y 轴的距离是-5-2b ,则求点P 的坐标.7.若一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程. (1)在方程①2x-1=1,②4x-3=0,③x-(3x 十1)=一5中,写出是不等式组{−x +2>x −53x −1>−x +2的相伴方程的序号:_______________ (2)写出不等式组{x +1<02x −3<4x +3的一个相伴方程,并且该方程的解是整数:______________(3)若方程2x-1=3,x 3+1=2都是关于x 的不等式组{x <2x −m x −2≤m的相伴方程,求m 的取值范围.培优创新1.求不等式(2x ﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或 ②.解①得x >;解②得x <﹣3.∴不等式的解集为x >或x <﹣3. 请你仿照上述方法解决下列问题:(1)求不等式(2x ﹣3)(x+1)<0的解集.(2)求不等式13x−1x+2≥0的解集.2.设a 为有理数,现在我们用{a}表示不小于a 的最小整数,如{4.2}=5,{-5.3}=-5,{0}=0,{-3}=-3.在此规定下:任一有理数都能写成如下形式a={a}-b ,其中0≤b<1.(1)直接写出{m}与m ,m+1的大小关系;(2)根据(1)中的关系式解决下列问题:①若{3x+2}=8,求x 的取值范围; ②解方程:{3x-2}=2x +12.3.定义:对于任何有理数,符号[m]表示不大于m的最大整数.例如:[4.5]=4,[8]=8,[-3.1]=-4.(1)填空:[π]=________,[-2.1]+[5.1]=________;(2)如果[5−2x3]=−4,求满足条件的x的取值范围;(3)求方程4x−3[x]+5=0的整数解.4.对于实数x、y我们定义一种新运算L(x,y)=ax+by(其中a、b均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L(x,y),其中x,y 做线性数的一个数对.若实数x,y都取正整数,我们称这样的线性数为正格线性数,这时的x,y叫做正格线性数的正格数对.(1)若L(x,y)=x+3y,则L(2,1)=______ ,L(32,12)_______.(2)已知L(x,y)=3x+2y,若正格线性数L(m,m−2),求满足不等式组{6≤L(m,m−2)L(m,m−2)<30的所有m的值.5.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“判断结果是否大于25”为一次操作.一元一次不等式组的应用提升点一:在实际问题中列一元一次不等式组1.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x 人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是( )A. 7x+9≤8+9(x-1)B. 7x+9≥9(x-1)C. {7x +9−9(x −1)≥07x +9−9(x −1)<8D. {7x +9−9(x −1)≥07x +9−9(x −1)≤82.已知等腰三角形的周长为12,腰长为x ,要确定x 的取值范围,列出的不等式组是() A.{x >012−2x >0 B. {x >0x +x >12−2x C.{x >012−2x >01+x >12−2xD.以上都不对 3. 某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共8台,具体情况如下表:A 型B 型价格(万元/台) 12 10月污水处理能力(吨/月) 200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.该企业有几种购买方案?为解决这个问题,设购买A 型污水处理设备x 台,则所列不等式组为________________________提升点二:列一元一次不等式组求解实际问题应用1:积分问题4.某次知识竞赛共有20道题,每答对一题得5分,答错或不答的题都扣3分.小亮获得二等奖(70~90分),则小亮答对了________道题. 应用2:购物问题5.阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧共购买10盒蛋糕,花费的金额不超过500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花____________元购买蛋糕?应用3:分配问题6.一些女生住若干间宿舍,若每间住6人,则剩下12人无处住;若每间住8人,则有一间宿舍住人但不足4人.求这些女生的人数.7.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元(1)求A,B两种商品的单价。
关于求不等式组整数解个数的字母取值范围题巧解
(朝阳市13中学------陈玉明)
X + 2﹥3 ①
例题:已知不等式组有5个整数解,求a的取值范围。
X﹣a﹤1 ②
解:解不等式1得:x﹥1
解不等式2得:x﹤1+a
所以不等式组的解集为:1﹤x﹤1+a
又因为此不等式组有5个整数解即为2.3.4.5.6
所以6﹤1+a﹤7 解得5﹤a≤6
若x-a﹤1改为x﹣a≤1.其它条件不变所以6≤1+a﹤7 则解集变为5≤1+a﹤6
变式:X + 2<3 ①
例题:已知不等式组有5个整数解,求a的取值范围。
X﹣a>1 ②
解:解不等式1得:x<1
解不等式2得:x﹥1+a
所以不等式组的解集为:1+a≤x﹤1
又因为此不等式组有5个整数解即为0.﹣1.-2.-3.-4。
所以-5≤1+a﹤-4 解得-6≤a﹤-5
若x-a﹥1改为x﹣a≥1.其它条件不变
则解集变为-5﹤1+a≤-4 解得-6﹤a≤-5
规律总结:含有字母不等式解集,主要看最值或者说是边值距离原点远近来判断。
若原不等式解集含字母那端是用‘﹥’或‘﹤’是链接,则最后解集远实近空。
若原不等式解集含字母那端是用‘≤’或‘≥’是链接,则最后解集远空近实。
(空心-实心)。
2022年8月下半月㊀学习交流㊀㊀㊀㊀一元一次不等式组中参数取值范围的确定方法◉白银区武川新村学校㊀刘振琴㊀㊀摘要:一元一次不等式组是学生在学完一元一次不等式㊁一元一次方程和二元一次方程组基础上接触到的新知识,该知识点本身难度不大.但是,如果一元一次不等式组中出现了另一个参数,那么这对学生求出解集和确定参数取值范围带来了很大困扰.如果借助数形结合与分类讨论的方法,采用 解㊁画㊁移㊁比 四个步骤,可顺利解决一元一次不等式组中关于参数取值范围的确定问题.关键词:一元一次不等式组;数形结合;分类讨论;参数;取值范围1引言含参数的一元一次不等式组中参数取值范围的确定是 一元一次不等组 这一节的重难点内容.从课堂教学情况来看,学生在该知识点上存在很大问题,出现了诸多错误.所以,笔者对一元一次不等式组中参数取值范围的确定方法进行了研究,希望对学生有更多帮助.2例题分析例1㊀若不等式组x<m,x>3{无解,则m的取值范围是.分析:本题中的不等式组无需进一步求解,只需在数轴上将x<m和x>3表示出来.然而,由于m是除未知数x之外的又一个字母,且m的值题中未给出,这就给在数轴上的表示解集增加了难度.所以,根据题意应该采用数形结合和分类讨论的方法,分析如下.第一步,画出数轴,在数轴上表示出x>3的解集,将x<m的解集表示图如图1所示画出;第二步,将x<m的解集表示图在数轴上移动,直至找出符合题意的情况;第三步,观察符合题意的x<m解集表示图所在的位置,比较m与3的大小.解:首先,将x<m和x>3在数轴上表示出来,如下图1所示.㊀图1然后,分析x<m的解集表示图有三个不同的位置可以放置,分别是数轴上3的左边㊁3的上面和3的右边,如图2所示.㊀图2再者,根据 无解 这一题意,可以确定(1)(2)两种情况符合.很明显,(1)中m<3,(2)中m=3.最后,综上分析可得出m的取值范围为mɤ3.例2㊀若不等式组x+1>a,xɤ2{有3个整数解,则a的取值范围是.分析:本题与例1的不同点在于本题中不等式组需要求解及不等式组有解集两个方面,同样用数形结合和分类讨论的方法分析如下.第一步,解出不等式的解集,分别是x>a-1和xɤ2;第二步,画出数轴,在数轴上表示出xɤ2的解集,将x>a-1的解集表示图如图3所示画出;第三步,将x>a-1的解集表示图在数轴上移动,直至找出符合题意的情况;第四步,观察符合题意情况下的x>a-1解集表示图所在的位置,比较a-1与2的大小.34Copyright博看网. All Rights Reserved.学习交流2022年8月下半月㊀㊀㊀解:解不等式组x +1>a ,x ɤ2,{得x >a -1,x ɤ2.{将不等式组的解集在数轴上表示,如图3所示:㊀图3因为原不等式组有3个整数解,所以a -1一定小于2.因为x ɤ2确定了原不等式组中的一个解,又由于x >a -1,a -1处是空心,所以在满足原不等式组有三个解的前提下,a -1一定要在0的左边㊁-1的右边,即-1ɤa -1<0,如图4所示.㊀图4所以,a 的取值范围是0ɤa <1.3解法总结通过以上两道例题的分析可以发现,一元一次不等式组中参数取值范围的确定,不仅要利用数形结合的方法将之直观地在数轴上表示出来,还需要借助分类讨论思想,对符合题意的几种情况逐个分析[1].对于这类问题,大致可采用以下思路解决:第一步,解.解出不等式的解集.第二步,画.画出数轴,在数轴上分别表示出不等式组的解集.对于含参数的解集,可像例1,2中一样先画出其形状待用.第三步,移.将含参数的解集表示图在数轴上移动,直至找出符合题意的情况.第四步,比.观察符合题意情况下含参数的解集表示图所在的位置,比较对应数字的大小[2].另外,在操作第三步和第四步时,需注意以下几个方面的问题:首先,为了让学生有更直观的移动体验,教师可以利用多媒体画图工具,先用一种颜色将不含参数的解集在数轴上画好,然后用另一种颜色将含参数的解集在数轴以外的地方画好,然后利用 平移 或 移动 工具移动该解集的表示图,让学生经历解集表示图移动的过程,更直观地感受符合题意的几种情况.这样操作,比教师包办效果更好.其次,在移动到相应位置取值时,一定要注意 空心 和 实心 的区别[3].空心 意味着取不到该点对应的数值,需继续移动. 实心 意味着可以取到该点对应的数值,移动时需结合题意谨慎进行.例如,在例2中a -1处是空心 ,那么在 不等式组x +1>a ,x ɤ2{有3个整数解 的条件下,a -1不能放在0上,因为这样不等式解集无法取到0,那么原不等式组只有1和2两个整数解,与题意矛盾,所以应将a -1处是 空心 移向-1的左边.但是,a -1处是 空心 可以放在-1处,因为即使a -1处是 空心 可以放在-1处时原不等式组也取不到-1这个整数解,原不等式组仍只有3个整数解,符合题意.最后,解㊁画㊁移㊁比是解这类问题的通用步骤,学生不仅要对这些步骤进行常规化练习,而且要进行变式训练,以不断激发思维和拓展解题思路[4].4结语综上所述,虽然含有参数的一元一次不等式组会给人以疑惑感,但如果能在 解 的基础上一步步尝试探究和深入,学生可能会获得不一样的学习心得.这种心得不仅体现在学习本身,更体现在与学生全面发展有关的诸多素养方面.所以,作为一线教师不仅要重视解㊁画㊁移㊁比这四个步骤的不断训练,更要借助变式练习激发学生的思维,培养学生更好的学习品质,为学生更全面的发展奠定基础.参考文献:[1]李进,王磊.解决含参数一元一次不等式问题 数形结合与分类讨论在解题中的运用[J ].初中生世界,2017(Z 3):28G29.[2]钮丹媛.数学思想方法在课堂教学中的应用 以 一元一次不等式 教学为例[J ].成长,2021(10):101G102.[3]曹元军.例谈一元一次不等式组中参数取值问题[J ].初中数学教与学,2017(5):13G14.[4]马永刚.用 三定法 解决一类一元一次不等式组中参数取值范围的问题[J ].中小学数学,2022(Z 1):69G70.Z44Copyright 博看网 . All Rights Reserved.。
不等式字母范围的确定练习一
1.写出不等式组的解集
(1)⎩⎨⎧≥>22x x (2)⎩⎨⎧<<22x x (3)⎩⎨⎧≥≤22x x (4)⎩⎨⎧≤>2
2x x
变式1:若a<2, 请确定下列不等式组的解集
(1)⎩⎨⎧≥>a x x 2 (2)⎩⎨⎧<<a x x 2 (3)⎩⎨⎧≥≤a x x 2 (4)⎩
⎨⎧-<->a x x 2 变式2:(1)若不等式组⎩⎨⎧≥>a x x 2的解集是2>x ,则a 的取值范围为 (2)若不等式组⎩⎨⎧≥≤a
x x 2的解集
时2≤≤x a ,则a 的取值范围为 (3)若不等式组⎩⎨
⎧≥≤a x x 2无解,则a 的取值范围为 2.若不等式组⎩⎨⎧≤>a
x x 0只含有三个整数1、2和3,则a 的取值范围为 ;
变式1:若不等式组⎩
⎨⎧<>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式2:关于x 的不等式组010x a x ->⎧⎨
->⎩,只有3个整数解,则a 的取值范围是 ;
3.若不等式组12x x m
<≤⎧⎨>⎩有解,则m 的取值范围是( ).A .m<2 B .m≥2 C .m<1 D .1≤m<2
4. 不等式a ≤x ≤3只有5个整数解,则a 的范围是
5、已知a b <<0,那么下列不等式组中有解的是 ( )A .⎩⎨⎧<>b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧>-<b
x a x
6、已知不等式组⎩
⎨⎧<>a x x 1无解,则a 的取值范围是( )A .a ≤1 B .a ≥1 C . a <1 D .a >1 7、已知关于x 的不等式组⎩
⎨⎧--0x 230a x >>的整数解共有5个,求a 的取值范围。
8. 已知关于x 的不等式x -2a <3的最大整数解是-5,求a 的取值范围.
9. 已知不等式13
a x ->的每一个解都是x <3的解,求a 的取值范围。
不等式字母范围的确定练习二
1. 如果一元一次不等式组3x x a
>⎧⎨>⎩的解集为3x >.则a 的取值范围是( )
A .3a >
B .a ≥3
C .a ≤3
D .3a <
2.若不等式组⎩
⎨⎧+>+<+1m x 1x 59x 的解集为2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m >
3.已知不等式组2113x x a
-⎧>⎪⎨⎪>⎩的解集为x>2,则( )
A .2a <
B .2a =
C .2a >
D .2a ≤
4.若不等式组⎩
⎨⎧>+>-01x 0x a 无解,则a 的取值范围是( ) A. 1a -≤ B. 1a -≥ C. 1a -< D. 1a ->
5. 不等式组⎩⎨⎧>-<3
12x a x 无解,则( ) A 、2<a B 、2≤a C 、1>a D 、1≥a
6. 关于x 的不等式组⎩⎨⎧x +
152>x -32x +23<x +a
只有4个整数解,则a 的取值范围是 ( ) A. -5≤a ≤-143 B. -5≤a <-143 C. -5<a ≤-143 D. -5<a <-143
7. 若不等式组0,122x a x x +⎧⎨->-⎩
≥有解,则a 的取值范围是( ) A .1a >- B .1a -≥ C .1a ≤ D .1a <
8. 如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( )
A .a<0
B .a<一l
C .a>l
D .a>一l
9.已知a 、b 为常数,若ax+b>0的解集为x<13
,则bx -a<0的解集为( ) A 、x>-3 B 、x<-3C 、x>3D 、x<3
10. 已知关于x 的不等式x-2a >4的解是正数,则a 的范围是 ; 已知关于x 的不等式x-a <3的解是负数, 则a 的范围是 .
11.如果关于x 的不等式(1)5a x a -<+和24x <的解集相同,则a 的值为______.若不等式
132x a
x a
--->的解集与x <6的解集相同,则a 的取值范围_____.
12.若不等式(2k+1)x<2k+1的解集是x >1,则k 的范围是 。
13.如果不等式组2223
x
a x
b ⎧
+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .
14.关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = . 15.若不等式组12x x m
-⎧⎨>⎩,≤有解,则m 的取值范围是______. 16. 已知不等式4x -a ≤0,只有四个正整数解,那么正数a 的取值范围是
17.若不等式2x <4的解都能使关于x 的一次不等式(a ﹣1)x <a+5成立,则a 的取值范围是(
)
A .1<a ≤7
B .a ≤7
C .a <1或a ≥7
D .a=7
18. 已知关于x 的不等式组⎩
⎨⎧--0x 230
a x >>的整数解共有6个,求a 的取值范围。
19.已知关于x 的不等式2x -a >3的解是正数,求a 的取值范围
20. 已知不等式 的每一个解都是 的解,求a 的取值范围;
21.不等式组⎩⎨⎧<->-10a x a x 的解集中的任一个x 值均不在2≤x ≤5范围内,求
a 的范围。
13a x ->21122x -<
不等式字母范围的确定练习三
1.若不等式x <a 只有4个正整数解,则a 的取值范围是 。
2.若关于x 的不等式组⎩
⎨⎧>-+>-0503a x x a 有解,则a 的取值范围是____________。
3.如果不等式组2223
x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 . 4.若不等式组0,122x a x x +⎧⎨->-⎩
≥有解,则a 的取值范围是( )A .1a >- B .1a -≥ C .1a ≤ D .1a < 5.已知方程⎩⎨⎧-=++=+②
①m 1y 2x m 31y x 2满足0y x <+,则( )A. 1m -> B. 1m > C. 1m -< D. 1m < 6.已知关于x 的不等式组21x x x a <⎧⎪>-⎨⎪<⎩,,
无解,则a 的取值范围是( )A.
1a ≤-B.12a -<<C.a ≥0D.2a ≤ 7.关于x 的不等式组2(1)3(2)6,1, 2
x x x a --+>-⎧⎪⎨+>⎪⎩①②恰好有两个整数解,求a 的取值范围. 8.关于x 的不等式组121,232,
x x x a -+⎧-≤⎪⎨⎪->⎩只有3个整数解,求a 的取值范围.
9.关于x 的不等式组2135,20,x x x a -<-⎧⎨-<⎩
恰好有4个整数解,求a 的取值范围.
10.若关于x ,y 的二元一次方程组⎩
⎨⎧=++=+3313y x a y x 的解满足x+y <2,求a 的取值范围。
11.如果关于x 的不等式组22,4,x a x a >-⎧⎨<-⎩
有解,并且所有解都是不等式组-6<x ≤5的解,求a 的取值范围.
12. 若不等式组⎩⎨
⎧<->-3
212m x m x 的解集中的任何一个x 值均不在1≤x<3范围内,求m 的取值范围. 13.不等式组⎩⎨⎧<-->-2
a x 1a x 的解集中每一x 值均不在7x 3≤≤范围内,求a 的取值范围。
14. 如果方程组325
x y a x y -=+⎧⎨+=⎩的解x 、y 满足x>0.y<0求a 的取值范围.。