六年级上册数学竞赛试题-奥数题习题(含答案)
- 格式:docx
- 大小:38.01 KB
- 文档页数:5
六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。
这时拿出1副同色的后4个抽屉中还剩3只手套。
再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。
把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。
这时拿出1副同色的后,4个抽屉中还剩下3只手套。
根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。
以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)答:最少要摸出9只手套,才能保证有3副同色的。
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?答案为21解:每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样:当有21人时,才能保证到少有3人取得完全一样.3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?解:需要分情况讨论,因为无法确定其中黑球与白球的个数。
当黑球或白球其中没有大于或等于7个的,那么就是:6*4+10+1=35(个)如果黑球或白球其中有等于7个的,那么就是:6*5+3+1=34(个)如果黑球或白球其中有等于8个的,那么就是:6*5+2+1=33如果黑球或白球其中有等于9个的,那么就是:6*5+1+1=324.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)不可能。
六年级数学竞赛卷小学奥数2023小学数学奥数题(含答案) 提高部分:5、右下图三个圆柱体的高都是4厘米,底面半径分别是2,3,5厘米,求表面积。
3.14×4×4+3.14×6×4+3.14×10×4+3.14×5×5×2=408.2(平方厘米)6、如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边cm,而中间那个小平行四边形(阴影部分)的面积形,假如本来这个平行四边形的面积为992cm,求四边形ABCD的面积.为192cm).(0.5道)除阴影部分外的8个小平行四边形面积的和为99-19=80(2cm).四边形ABCD的面积为80÷2+19=59(27、第1次把一张纸剪成6小张,放入一只空箱中;第2次从箱中取出一张纸,把它剪成6小张,放入同一箱中;第3次又从箱中取出一张纸,又把它剪成6小张,放入同一箱中;……这样一直做下去,做n次后箱中共有666张纸。
求n的值。
(666-6)÷(6-1)=132,(得0.25道)n=132+1=1338、桌面上平放着一张长4厘米、宽3厘米的长方形硬纸片,恰好对角线的长为5厘米。
假如让这张纸片以其中一个顶点为圆心,顺时针旋转90度,使长方形的长边和旋转后的短边在同一条直线上(如图1);再以相邻的那个顶点为圆心顺时针旋转90度,使旋转后的长边又在本来的那条直线上(如图2);最后又照第一次那样旋转90度,使它成为图3状。
求图中A点走过的路程总长是多少厘米?(3.14×4×2+3.14×5×2+3.14×3×2)×41=18.84(厘米) 9、如图,在一个长为60厘米,宽为30厘米的长方形黑板上涂满白色,现有一块长为10厘米的长方形黑板擦,用它在黑板内紧紧沿着黑板的边擦黑板一周(黑板擦只作平移,不旋转).假如黑板上没有擦到部分的面积恰好是黑板面积的一半,那么这个黑板擦的宽是几厘米? 10 30黑板上没有擦到部分的面积为60×30÷2=900(平方厘米),该部分的长为60-2×10=40(厘米),宽为900÷40=22.5(厘米).(0.25道)因此,黑板擦的宽为(30-22.5)÷2=3.75(厘米).10、甲、乙两列火车的速度比是5:4。
小学六年级数学奥数竞赛试卷及答案一、选择题(每题3分,共30分)1. 一个三位数,它的百位数字是4,十位数字是3,个位数字是2,这个数写作()。
A. 432B. 342C. 234D. 423答案:A2. 小华从家走到学校需要30分钟,他每分钟走50米,小华家到学校的距离是()米。
A. 1500B. 1200C. 1000D. 1800答案:A3. 如果3x=9,那么x等于()。
A. 2B. 3C. 6D. 9答案:B4. 下列哪个数既不是3的倍数,也不是4的倍数?()A. 12B. 15C. 18D. 21答案:D5. 一个长方体的长是8厘米,宽是4厘米,高是5厘米,它的体积是()立方厘米。
A. 120B. 160C. 200答案:D6. 下列哪个图形不是轴对称图形?()A. 正方形B. 矩形C. 梯形D. 圆形答案:C7. 小明把一个正方体切成了27个小正方体,那么每个小正方体的体积是原正方体体积的()倍。
A. 1/3B. 1/9C. 1/27D. 3答案:C8. 一个分数的分子和分母都乘以4,这个分数()。
A. 不变C. 变小D. 无法确定答案:A9. 下列哪个比例是正确的?()A. 3 : 4 = 6 : 8B. 5 : 6 = 10 : 12C. 8 : 9 = 16 : 18D. 4 : 5 = 8 : 10答案:A10. 一个两位数的十位数字是6,个位数字是3,这个数减去它的个位数字后等于()。
A. 60B. 63C. 56D. 59答案:C二、填空题(每题3分,共30分)11. 2.5 × 0.4 = ()答案:112. 8 ÷ 0.2 = ()答案:4013. 一个等边三角形的周长是15厘米,它的每条边长是()厘米。
答案:514. 1千克等于()克。
答案:100015. 一个正方形的边长是10厘米,它的面积是()平方厘米。
答案:10016. 2.4 ÷ 0.6 = ()答案:417. 5的立方是()。
小学六年级奥数竞赛试卷一、填空题(共23小题,每小题3分,满分69分)1.(3分)计算:(12345+23451+34512+45123+51234)÷5=2.(3分)比较大小:(填>、<或=)3.(3分)分数化成循环小数后,小数部分左起第2004个数字是.4.(3分)边长24厘米的等边三角形ABC,被分成面积相等的4个小三角形(如图).那么线段DF比BE长厘米.5.(3分)A、B两点分别是长方形的长和宽的中点,那么,阴影部分(如图)占长方形面积的(填几分之几).6.(3分)三角形ABC中(如图),DE将三角形分成甲、乙两部分.那么乙的面积是甲的面积的倍.7.(3分)计算:.8.(3分)……+++1+2+4+8+16+……+256+512=.9.(3分)一个长方形,如果长和宽都增加4米,则面积增加88平方米.原来长方形的周长是米.10.(3分)某个自然数与10的和与差均为完全平方数,这个自然数是.11.(3分)一筐苹果不足60个,若把它平均分给几个同学,则每人恰好分6个;若只分给其中几个女同学,则每个女同学可分到10个.共有位男同学.12.(3分)小王与甲、乙、丙、丁四人一起打乒乓球,每两人打一局,已知甲已打4局,乙已打3局,丙已打2局,丁已打1局.那么小王已打了局.13.(3分)100以内只有10个不同约数的自然数是.14.(3分)分母小于10且最接近1.14的最简分数是.15.(3分)两个自然数的和与差的积是41,那么这两个自然数的积是.16.(3分)两个循环小数0.96925和0.925,在小数点后第数位上首次同时出现数字7?17.(3分)等腰直角三角形的面积是4.5平方厘米,由8个这样的三角形组成一个正方形,这个正方形的周长是厘米.18.(3分)一个六位数的左边第一位数字是1.如果把这个数字移到最右边,所得的新六位数是原数的3倍.原数是.19.(3分)对于小数0.0123456,要使它成为循环小数且小数部分左起第100位上数字是4,那么两个循环点应分别加在和这两个数字上.20.(3分)甲、乙两个自然数,它们的和被3除余1,它们的差能被3整除.那么甲数被3除的余数是.21.(3分)有四个分数:,其中最大的分数与最小的分数之和是.22.(3分)有两堆棋子,若从第一堆拿1枚放到第二堆中去,则第二堆的棋子数是第一堆的2倍;若从第二堆拿1枚放到第一堆中去,则两堆棋子数恰好相同.第一堆有枚,第二堆有枚.23.(3分)长方形的长和宽各是9厘米和4厘米,要把它剪成大小、形状都相同的两块,并使它们拼成一个正方形.2018年小学六年级奥数竞赛试卷参考答案与试题解析一、填空题(共23小题,每小题3分,满分69分)1.【分析】根据题意,被除数中的五个加数,每个数位上数字的和都是1+2+3+4+5=15,然后再根据数位知识拆分解答即可.【解答】解:(12345+23451+34512+45123+51234)÷5=(1+2+3+4+5)×(10000+1000+100+10+1)÷5=15×11111÷5=3×11111=33333故答案为:33333.【点评】解答此题,应仔细观察,认真分析式中数据,运用运算技巧或运算定律合理简算.2.【分析】根据题意,将这两个数分别转化成与另一个分数的和,然后比较这两个分数的大小,然后推论出原来两个数的大小即可.【解答】解:根据题意得因为所以故答案为>.【点评】本题考查了比较大小.3.【分析】=0.3571428571428…,首先分析循环小数0.3571428571428…的循环节有几位数字,然后用2004除以循环节的位数,余数是几,第2004位上的数字就是循环节的第几位数字.【解答】解: =0.3571428571428…,循环节为571428,有6位数字,因为(2004﹣1)÷6=333…5,循环节中第5个数是2,故答案为:2.【点评】解决这类问题往往是把重复出现的部分看成一组,先找出排列的周期性规律,再根据规律求解.4.【分析】根据等边三角形的特征,以及三角形的高一定时,面积比等于底边比解答即可.【解答】解:根据题意可得:S △ABD =S △BED =S △DEF =S △CEF ,所以,S △BED :(S △DEF +S △CEF )=1:2,所以,BE :EC=1:2所以,BE=24×=8厘米,同理,S △ABD :S △ABC =1:4,所以,AD :AC=1:4,所以,CD :AC=(4﹣1):4=3:4,又因为,DF=CF ,所以,DF=24××=9厘米,所以,DF ﹣BE=9﹣8=1厘米;故答案为:1.【点评】此题考查了三角形的高一定时,三角形的面积与底成正比的性质的灵活应用. 5.【分析】根据题意,设长方形的长和宽分别为a ,b ,则长方形的面积是ab ,小三角形的面积=,阴影部分的面积=长方形面积的一半﹣小三角形的面积=,阴影部分占长方形面积的,据此回答.【解答】解:根据题意设长方形的长和宽分别为a ,b ,则长方形的面积是ab ,小三角形的面积=阴影部分面积=,阴影部分(如图)占长方形面积的.故答案为.【点评】本题考查了长方形的面积和三角形的面积问题.6.【分析】根据三角形的高一定时,面积比等于底边比解答即可.【解答】解:连接BD ,如下图:△ADE 与△BDE 等高,且AE :EB=3:6=1:2,所以,S △ADE =S △BDE =1:2,所以,S △BDE =2×甲,同理,AD :DC=4:4=1:1,所以,S △BCD =S △ABD =(2+1)×S △ADE =3×甲,所以,乙=S △BDE +S △BCD =2×甲+3×甲=5×甲;故答案为:5.【点评】此题考查了三角形的高一定时,三角形的面积与底成正比的性质的灵活应用. 7.【分析】通过观察,可把原式分为两部分,即﹣,约分计算.【解答】解:=﹣=1﹣= 【点评】仔细分析数据,采取灵活的方法,进行简算.8.【分析】本题可以把分数部分和整数部分分开计算,然后再相加即可.【解答】解:+1+2+4+……+256+512=1﹣+210﹣1 =1024﹣=【点评】本题考查的是分数的简算及等比数列的求和.9.【分析】由于原来长方形的长×4+原来长方形的宽×4+4×4=88平方厘米,根据乘法分配律可求原来长方形的长+宽,从而求得原来长方形的周长.【解答】解:根据题意得(88﹣4×4)÷4×2=36(米)故答案为:36.【点评】考查了长方形的周长和面积,本题的关键是运用运算律将原来长方形的长+宽看作一个整体,有一定的难度.10.【分析】根据题意,设这个自然数为m,,两个方程相减可得:A2﹣B2=(A﹣B)×(A+B)=20,把20写成两个数的乘积的形式可得出关于A、B的二元一次方程,由此利用加减消元法即可解答,求出A、B的值即可求出m解决问题.【解答】解:设这个自然数为m,,所以A2﹣B2=(A﹣B)×(A+B)=20,因为20=1×20=2×10=4×5,而(A﹣B)与(A+B)同奇同偶,所以只能是,解得,所以m=62﹣10=26.故答案为:26.【点评】此题较为复杂,关键是利用平方差公式得出(A﹣B)×(A+B)=20进而得出关于A、B的二元一次方程组,解这个方程组即可解答问题.11.【分析】根据题意可知:这筐苹果的总个数,即是6的倍数又是10的倍数,且6和10的最小公倍数是30,据此分析解答即可.【解答】解:[6,10]=3030÷6﹣30÷10=2(个)故填:2【点评】本题考查的是用公倍数解决问题.12.【分析】共5位选手参赛,每两个人都要比赛一场,则每个选手都要与其他四位各赛一局,每个人共赛四局.根据题意通过连线可知:据此解答即可.【解答】解:根据题意画图如下:通过观察连线可知已经打了6局(实线),没打的有4局(虚线),其中小王已打了2局.故答案为:2.【点评】根据赛制及每人比赛的场数之间的逻辑关系进行分析是完成本题的关键.本题用连线画图的方法更加直观具体.13.【分析】此题巧用求一个数约数的方法,从最小的质因数着手,分析不同的情形,得出结论.【解答】解:因数有10个,根据10=2×5=1×10,其中1×10不合要求,舍去;可写成a×b4形式(a、b是质数)这时只能取a=3或5,b=2时符合条件,当a=3,b=2时,这个数为3×25=48当a=5,b=2时,这个数为5×25=80故答案为:48和80.【点评】此题主要考查一个合数的约数个数的计算公式的逆用:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.14.【分析】因为=和1.14的小数部分0.14比较接近,据此分析解答即可.【解答】解:因为=和1.14的小数部分0.14比较接近,所以分母小于10且最接近1.14的最简分数是.故填:【点评】本题考查的是简单的分数问题.15.【分析】从两个自然数的和与差的积是41入手,41是质数,也就是1×41=41,可见它们的差是1,和是41,这是两个连续的自然数分别为20、21.然后计算其乘积即可.【解答】解:首先注意到41是质数,两个自然数的和与差的积是41,可见它们的差是1,这是两个连续的自然数,大数是21,小数是20,所以这两个自然数的积是20×21=420.故答案为:420.【点评】此题考查质数与合数.16.【分析】第一个循环小数出现数字7的周期是7个数字,第二个循环小数出现数字7的周期是5个数字,首次同时出现数字7即是7的倍数又是5的倍数,据此解答即可.【解答】解:[7,5]=35故填:35【点评】本题考查的是周期问题.17.【分析】这个大正方形的面积就是8个小三角形的面积和,求出这个大正方形的面积,再根据正方形的面积求出它的边长,根据正方形的周长公式求出它的周长.【解答】解:拼成的正方形如图:面积是:4.5×8=36(平方厘米);大正方形的面积是36平方厘米,36=6×6,那么它的边长就是6厘米;周长:6×4=24(厘米);故答案为:24.【点评】本题关键是知道拼成正方形的面积就是原来三角形的面积和,由此求解.18.【分析】把这个六位数的后面的五位数设为x,则根据位置原理可知:原来的六位数可以表示为:1000000+x;新的六位数可以表示为:10x+1,据此分析解答即可.【解答】解:设原来六位数的后面的五位数为x,则有:3(10000000+x)=10x+13000000+3x=10x+17x=299999x=42857则原来的六位数是:142857故填:142857.【点评】本题考查的是位置原理.19.【分析】根据题意可知:第100位上的数字是4,则第102位上的数字一定是6,第一个6是在第7位,则中间的95位一定是循环节的倍数,据此分析解答即可.【解答】解:根据题意可知:第100位上的数字是4,则第102位上的数字一定是6,第一个6是在第7位,则中间的95位一定是循环节的倍数.95÷7=13 (4)95÷6=15 (5)95÷5=19即循环节的位数是5位,所以两个循环点分别加在2和6上面.【点评】本题考查的是循环小数的循环节及周期问题.20.【分析】根据同余定理和差能被3整除,得出甲乙除以3的余数是相同的,设甲为3x+a,乙为3y+a,由此求解.【解答】解:设甲为3x+a,乙为3y+a,差能被3整除,所以甲乙除以3的余数是相同的则a的取值为0或者1或者2.甲乙的和为:3(x+y)+2a,其除以3余1,所以2a除以3余1,a只能为2故答案为:2.【点评】此题主要考查同余定理的灵活应用.21.【分析】分数的大小比较有两种方法:①分母相同,分子越大这个分数就越大;②分子相同,分子越大这个分数就越小,据此分析解答即可.【解答】解:首先,且,所以最大的分数是,最小的分数是=故填:【点评】本题考查的是分数的大小比较及异分母的分数相加减.22.【分析】“若从第二堆拿1枚放到第一堆中去,则两堆棋子数恰好相同”这个条件,说明第二堆比第一堆多2个;再结合“若从第一堆拿1枚放到第二堆中去,则第二堆的棋子数是第一堆的2倍”条件得知:当第二堆比第一堆的棋子多2+1×2=4个,此时第二堆的棋子数是第一堆的2倍,这说明第一堆此时有4个,进而即可求得原来有4+1=5个,之后也就可求得第二堆的数量了.【解答】解:1×2+2×2=4(个)4+1=5(个)5+2=7(个)故:两空分别为5、7.【点评】此题并不难,关键是理解好“若从第一堆拿1枚放到第二堆中去,则第二堆的棋子数是第一堆的2倍;若从第二堆拿1枚放到第一堆中去,则两堆棋子数恰好相同”的意思.23.【分析】已知长方形面积9×4=36(平方厘米),所以正方形的边长应为6厘米,因此可以把长方形上半部剪下6厘米,下半部剪下3厘米,分成相等的两块,合起来正好拼成一个边长为6厘米的正方形.【解答】解:如下图所示:【点评】图形拆拼解决的关键点:把一个几何图形剪成几块形状相同的图形,或是把一个几何图形剪开后拼成另一种满足某种条件的图形,完成这样的图形剪拼,需要考虑图形剪开后各部分的形状、大小以及它们之间的位置关系.。
小学六年级奥数竞赛试卷一、填空题(共23小题,每小题3分,满分69分)1.(3分)计算:(12345+23451+34512+45123+51234)÷5=2.(3分)比较大小:(填>、<或=)3.(3分)分数化成循环小数后,小数部分左起第2004个数字是个数字是 .4.(3分)边长24厘米的等边三角形ABC,被分成面积相等的4个小三角形(如图).那么线段DF比BE长厘米.5.(3分)A、B两点分别是长方形的长和宽的中点,那么,阴影部分(如图)占长方形面积的 (填几分之几).面积的6.(3分)三角形ABC中(如图),DE将三角形分成甲、乙两部分.那么乙的面积是甲的面积的 倍.的面积的7.(3分)计算:.8.(3分)……+++1+2+4+8+16+……+256+512=.9.(3分)一个长方形,如果长和宽都增加4米,则面积增加88平方米.原来长方形的周长是 米.周长是10.(3分)某个自然数与10的和与差均为完全平方数,这个自然数是.11.(3分)一筐苹果不足60个,若把它平均分给几个同学,则每人恰好分6个;若只个.共有 位男同学.分给其中几个女同学,则每个女同学可分到10个.共有12.(3分)小王与甲、乙、丙、丁四人一起打乒乓球,每两人打一局,已知甲已打4局.那么小王已打了 局.局,乙已打3局,丙已打2局,丁已打1局.那么小王已打了13.(3分)100以内只有10个不同约数的自然数是个不同约数的自然数是 .14.(3分)分母小于10且最接近1.14的最简分数是的最简分数是 .15.(3分)两个自然数的和与差的积是41,那么这两个自然数的积是,那么这两个自然数的积是 .16.(3分)两个循环小数0.96925和0.925,在小数点后第在小数点后第 数位上首次同时出现数字7?17.(3分)等腰直角三角形的面积是4.5平方厘米,由8个这样的三角形组成一个正方形,这个正方形的周长是 厘米.形,这个正方形的周长是18.(3分)一个六位数的左边第一位数字是1.如果把这个数字移到最右边,所得的新倍.原数是 .六位数是原数的3倍.原数是19.(3分)对于小数0.0123456,要使它成为循环小数且小数部分左起第100位上数字,那么两个循环点应分别加在 和这两个数字上.是4,那么两个循环点应分别加在20.(3分)甲、乙两个自然数,它们的和被3除余1,它们的差能被3整除.那么甲数除的余数是 .被3除的余数是21.(3分)有四个分数:,其中最大的分数与最小的分数之和是.22.(3分)有两堆棋子,若从第一堆拿1枚放到第二堆中去,则第二堆的棋子数是第一枚放到第二堆中去,则第二堆的棋子数是第一堆的2倍;若从第二堆拿1枚放到第一堆中去,则两堆棋子数恰好相同.第一堆有枚,第二堆有 枚.枚,第二堆有23.(3分)长方形的长和宽各是9厘米和4厘米,要把它剪成大小、形状都相同的两块,并使它们拼成一个正方形.2018年小学六年级奥数竞赛试卷参考答案与试题解析一、填空题(共23小题,每小题3分,满分69分)1.【分析】根据题意,被除数中的五个加数,每个数位上数字的和都是1+2+3+4+5=15,然后再根据数位知识拆分解答即可.【解答】解:(12345+23451+34512+45123+51234)÷5=(1+2+3+4+5)×(10000+1000+100+10+1)÷5=15×11111÷5=3×11111=33333故答案为:33333.【点评】解答此题,应仔细观察,认真分析式中数据,运用运算技巧或运算定律合理简算.2.【分析】根据题意,将这两个数分别转化成与另一个分数的和,然后比较这两个分数的大小,然后推论出原来两个数的大小即可.【解答】解:根据题意得因为所以故答案为>.【点评】本题考查了比较大小.3.【分析】=0.3571428571428…,首先分析循环小数0.3571428571428…的循环节有几位数字,然后用2004除以循环节的位数,余数是几,第2004位上的数字就是循环节的第几位数字.【解答】解: =0.3571428571428…,循环节为571428,有6位数字,因为(2004﹣1)÷6=333…5,循环节中第5个数是2,故答案为:2.【点评】解决这类问题往往是把重复出现的部分看成一组,先找出排列的周期性规律,再根据规律求解.4.【分析】根据等边三角形的特征,以及三角形的高一定时,面积比等于底边比解答即可.【解答】解:根据题意可得:S △ABD =S △BED =S △DEF =S △CEF ,所以,S △BED :(S △DEF +S △CEF )=1:2,所以,BE :EC=1:2所以,BE=24×=8厘米,同理,S △ABD :S △ABC =1:4,所以,AD :AC=1:4,所以,CD :AC=(4﹣1):4=3:4,又因为,DF=CF ,所以,DF=24××=9厘米,所以,DF ﹣BE=9﹣8=1厘米;故答案为:1.【点评】此题考查了三角形的高一定时,三角形的面积与底成正比的性质的灵活应用. 5.【分析】根据题意,设长方形的长和宽分别为a ,b ,则长方形的面积是ab ,小三角形的面积=,阴影部分的面积=长方形面积的一半﹣小三角形的面积=,阴影部分占长方形面积的,据此回答.【解答】解:根据题意设长方形的长和宽分别为a ,b ,则长方形的面积是ab ,小三角形的面积=阴影部分面积=,阴影部分(如图)占长方形面积的.故答案为.【点评】本题考查了长方形的面积和三角形的面积问题.6.【分析】根据三角形的高一定时,面积比等于底边比解答即可.【解答】解:连接BD ,如下图:△ADE 与△BDE 等高,且AE :EB=3:6=1:2,所以,S △ADE =S △BDE =1:2,所以,S △BDE =2×甲,同理,AD :DC=4:4=1:1,所以,S △BCD =S △ABD =(2+1)×S △ADE =3×甲,所以,乙=S △BDE +S △BCD =2×甲×甲++3×甲=5×甲;故答案为:5.【点评】此题考查了三角形的高一定时,三角形的面积与底成正比的性质的灵活应用. 7.【分析】通过观察,可把原式分为两部分,即﹣,约分计算.【解答】解:=﹣=1﹣= 【点评】仔细分析数据,采取灵活的方法,进行简算.8.【分析】本题可以把分数部分和整数部分分开计算,然后再相加即可.【解答】解:+1+2+4+……+256+512 =1﹣+210﹣1=1024﹣=【点评】本题考查的是分数的简算及等比数列的求和.9.【分析】由于原来长方形的长×4+原来长方形的宽×4+4×4=88平方厘米,根据乘法分配律可求原来长方形的长++宽,从而求得原来长方形的周长.分配律可求原来长方形的长【解答】解:根据题意得(88﹣4×4)÷4×2=36(米)故答案为:36.【点评】考查了长方形的周长和面积,本题的关键是运用运算律将原来长方形的长+宽看作一个整体,有一定的难度.10.【分析】根据题意,设这个自然数为m,,两个方程相减可得:A2﹣B2=(A﹣B)×(A+B)=20,把20写成两个数的乘积的形式可得出关于A、B的二元一次方程,由此利用加减消元法即可解答,求出A、B的值即可求出m解决问题.【解答】解:设这个自然数为m,,所以A2﹣B2=(A﹣B)×(A+B)=20,因为20=1×20=2×10=4×5,而(A﹣B)与(A+B)同奇同偶,所以只能是,解得,所以m=62﹣10=26.故答案为:26.【点评】此题较为复杂,关键是利用平方差公式得出(A﹣B)×(A+B)=20进而得出关于A、B的二元一次方程组,解这个方程组即可解答问题.11.【分析】根据题意可知:这筐苹果的总个数,即是6的倍数又是10的倍数,且6和10的最小公倍数是30,据此分析解答即可.【解答】解:解:[[6,10]=3030÷6﹣30÷10=2(个)故填:2【点评】本题考查的是用公倍数解决问题.12.【分析】共5位选手参赛,每两个人都要比赛一场,则每个选手都要与其他四位各赛一局,每个人共赛四局.根据题意通过连线可知:据此解答即可.【解答】解:根据题意画图如下:通过观察连线可知已经打了6局(实线),没打的有4局(虚线),其中小王已打了2局.故答案为:2.【点评】根据赛制及每人比赛的场数之间的逻辑关系进行分析是完成本题的关键.本题用连线画图的方法更加直观具体.13.【分析】此题巧用求一个数约数的方法,从最小的质因数着手,分析不同的情形,得出结论.【解答】解:因数有10个,根据10=2×5=1×10,其中1×10不合要求,舍去;可写成a×b4形式(a、b是质数)这时只能取a=3或5,b=2时符合条件,当a=3,b=2时,这个数为3×25=48当a=5,b=2时,这个数为5×25=80故答案为:48和80.【点评】此题主要考查一个合数的约数个数的计算公式的逆用:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.14.【分析】因为=和1.14的小数部分0.14比较接近,据此分析解答即可.【解答】解:因为=和1.14的小数部分0.14比较接近,所以分母小于10且最接近1.14的最简分数是.故填:【点评】本题考查的是简单的分数问题.15.【分析】从两个自然数的和与差的积是41入手,41是质数,也就是1×41=41,可见它们的差是1,和是41,这是两个连续的自然数分别为20、21.然后计算其乘积即可.【解答】解:首先注意到41是质数,两个自然数的和与差的积是41,可见它们的差是1,这是两个连续的自然数,大数是21,小数是20,所以这两个自然数的积是20×21=420.故答案为:420.【点评】此题考查质数与合数.16.【分析】第一个循环小数出现数字7的周期是7个数字,第二个循环小数出现数字7的周期是5个数字,首次同时出现数字7即是7的倍数又是5的倍数,据此解答即可.【解答】解:解:[[7,5]=35故填:35【点评】本题考查的是周期问题.17.【分析】这个大正方形的面积就是8个小三角形的面积和,求出这个大正方形的面积,再根据正方形的面积求出它的边长,根据正方形的周长公式求出它的周长.【解答】解:拼成的正方形如图:面积是:4.5×8=36(平方厘米);大正方形的面积是36平方厘米,36=6×6,那么它的边长就是6厘米;周长:6×4=24(厘米);故答案为:24.【点评】本题关键是知道拼成正方形的面积就是原来三角形的面积和,由此求解.18.【分析】把这个六位数的后面的五位数设为x,则根据位置原理可知:原来的六位数可以表示为:1000000+x;新的六位数可以表示为:10x+1,据此分析解答即可.【解答】解:设原来六位数的后面的五位数为x,则有:3(10000000+x)=10x+13000000+3x=10x+17x=299999x=42857则原来的六位数是:142857故填:142857.【点评】本题考查的是位置原理.19.【分析】根据题意可知:第100位上的数字是4,则第102位上的数字一定是6,第一个6是在第7位,则中间的95位一定是循环节的倍数,据此分析解答即可.【解答】解:根据题意可知:第100位上的数字是4,则第102位上的数字一定是6,第一个6是在第7位,则中间的95位一定是循环节的倍数.95÷7=13 (4)95÷6=15 (5)95÷5=19即循环节的位数是5位,所以两个循环点分别加在2和6上面.【点评】本题考查的是循环小数的循环节及周期问题.20.【分析】根据同余定理和差能被3整除,得出甲乙除以3的余数是相同的,设甲为3x+a,乙为3y+a,由此求解.【解答】解:设甲为3x+a,乙为3y+a,差能被3整除,所以甲乙除以3的余数是相同的则a的取值为0或者1或者2.甲乙的和为:3(x+y)+2a,其除以3余1,所以2a除以3余1,a只能为2 故答案为:2.,【点评】图形拆拼解决的关键点:把一个几何图形剪成几块形状相同的图形,把一个几何图形剪成几块形状相同的图形,或是把一个几何图形剪开后拼成另一种满足或是把一个几何图形剪开后拼成另一种满足某种条件的图形,某种条件的图形,完成这样的图形剪拼,完成这样的图形剪拼,需要考虑图形剪开后各部分的形状、需要考虑图形剪开后各部分的形状、大小以大小以及它们之间的位置关系.。
小学六年级数学上册奥数题100道及答案1. 甲、乙两数的和是120,甲数是乙数的3 倍,求甲、乙两数各是多少?答案:乙数= 120÷(3 + 1) = 30,甲数= 3×30 = 902. 某工厂有三个车间,第一车间人数是第二、三车间人数和的1/2,第二车间人数是第一、三车间人数和的1/3,第三车间有105 人,求该厂总人数。
答案:第一车间人数占总人数的1/(1 + 2) = 1/3,第二车间人数占总人数的1/(1 + 3) = 1/4,所以第三车间人数占总人数的1 - 1/3 - 1/4 = 5/12,总人数= 105÷5/12 = 252 人3. 一筐苹果,连筐重56 千克,先卖出苹果的一半,再卖出剩下苹果的一半,这时连筐重17 千克,原来这筐苹果重多少千克?答案:一共卖出的苹果占总苹果的1/2 + 1/2×1/2 = 3/4,卖出的苹果重56 - 17 = 39 千克,原来苹果重39÷3/4 = 52 千克4. 修一条路,第一天修了全长的1/3,第二天修了余下的1/3,还剩180 米没修,这条路全长多少米?答案:第二天修了全长的(1 - 1/3)×1/3 = 2/9,剩下的占全长的1 - 1/3 - 2/9 = 4/9,全长= 180÷4/9 = 405 米5. 有一堆煤,第一天运走全部的1/4,第二天运走剩下的1/3,第三天运走50 吨,正好运完,这堆煤有多少吨?答案:第二天运走全部的(1 - 1/4)×1/3 = 1/4,所以第三天运走全部的1 - 1/4 - 1/4 = 1/2,这堆煤有50÷1/2 = 100 吨6. 三个连续奇数的和是15,它们的积是多少?答案:中间的奇数= 15÷3 = 5,这三个奇数是3、5、7,它们的积是3×5×7 = 1057. 一个数除以8 余5,除以7 也余5,这个数最小是多少?答案:这个数减去5 能同时被8 和7 整除,8 和7 的最小公倍数是56,所以这个数最小是56 + 5 = 618. 一个长方形的周长是48 厘米,长是宽的3 倍,求这个长方形的面积。
2023人教版六年级上册奥数题00道及答案2023人教版六年级上册奥数题100道及答案T>1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为a人,则80分以下的人数是(a-2)/4,及格的就是a+22,不及格的就是a+(a-2)/4-(a+22)=(a-90)/4,而6*(a-90)/4=a+22,则a=314,80分以下的人数是(a-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(1+1/5)x这一步是什么意思,为什么这么做左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
六年级上册奥数题大全及答案六年级上册奥数题大全及答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
六年级上册奥数题大全及答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。
另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。
只要分析清楚这些,就可以解出本题了。
详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。
六年级数学奥数竞赛试卷及答案第一部分:选择题1. 下列各数哪个是整数?A. 1/4B. 0.5C. √9D. -2答案:D2. 计算:4 × 7 - 3 × 2 + 5A. 38B. 23C. 37D. 28答案:C3. 有一个三位数,各位数字都是偶数,且个位数比十位数小2,十位数比百位数小4,这个数是多少?A. 246B. 472C. 624D. 642答案:B4. 两个有理数的和大于0,这两个有理数的差等于0,那么这两个有理数的乘积是多少?A. 0B. 1C. 2D. 4答案:A5. 周长为24cm的正方形,边长为多少?A. 12cmB. 6cmC. 4cmD. 8cm答案:B第二部分:填空题6. 已知一边长为5cm的正方形的面积是_______平方厘米。
答案:257. 一个数比40大5,这个数是_______。
答案:458. 填写下一个数字:2, 4, 6, 8, _______。
答案:109. 空数线上,距离原点最远的点的坐标是_______。
答案:-510. 化简下列分式:$\frac{8}{12}$ = _______。
答案:$\frac{2}{3}$第三部分:解答题11. 一辆公共汽车用时1小时45分钟从A地到B地,再用时25分钟从B地到C地。
求从A地到C地的总用时。
答案:2小时10分钟12. 一辆汽车开了150km,然后又原路返回开了60km,在返回的路程中,汽车的平均速度是原来的两倍。
求汽车的原始速度。
答案:30km/h第四部分:证明题定理:任意一个整数都可以表示成2个连续奇数之和。
任意一个整数都可以表示成2个连续奇数之和。
证明:令整数为n,n可以表示成n = (n-1) + (n+1)。
其中n-1和n+1都是奇数,所以n可以表示成2个连续奇数之和。
第五部分:附加题编程题:请编写一个程序计算斐波那契数列的第n项。
答案:请参考以下Python程序代码:def fibonacci(n):if n <= 0:return Noneelif n == 1 or n == 2:return 1else:fn_minus_2 = 1fn_minus_1 = 1fn = 0for i in range(3, n+1):fn = fn_minus_2 + fn_minus_1fn_minus_2 = fn_minus_1fn_minus_1 = fnreturn fnn = int(input("请输入要计算的斐波那契数列的项数:"))result = fibonacci(n)print("斐波那契数列的第{}项为:{}".format(n, result))请注意,在运行程序时需要提供一个整数n作为输入,程序将输出斐波那契数列的第n项。
小学六年级奥数入门测试本试卷包括5大题,35个小题,满分100分,建议用时30分钟。
一.选择题。
(每题2分,共20分)1.计算111×33.6-1.2×333的结果是()A3333 B3330 C3300 D3360具购进()套A.20B.45C.30D.103.鸡和兔共有头30个,共有足88只,那么鸡和兔各有多少?()A鸡16只,兔14只 B鸡14只,兔16只C鸡18只,兔12只 D鸡12只,兔18只4.72有()个不同的因数。
A8 B9 C12 155.用一个数去除30,60,75,都能整除,那么这个数最大是()A5 B10 C15 D306.单独干某项工程,甲队需要100天完成,乙队需要150天完成。
甲、乙两队合干50天后,剩下的工程乙队干还需要()天。
A20 B25 C100 D507.在一个面积为12平方厘米的正方形内,作一个最大的圆,则这个圆的面积是()平方厘米。
(其中π取3.14。
)A12 B3.14 C6.28 D9.428.下图是某种儿童奶粉的营养成分统计图。
如果这种儿童奶粉中含有蛋白质315克,那么含有维生素和矿物质()克。
A15.75 B35 C124 D31.59.已知1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8……,从左往右数,第2023个数字是()。
A1 B4 C7 D510.把一个正方形的一边减少20%,另一边增加2米,得到一个长方形,它与原来的正方形面积相等,问正方形的面积是()平方米。
A16 B8 C36 D64二.填空题。
(每题2分,共20分。
)1.一栋楼每层有18个台阶,从一楼到六楼,要爬( )个台阶。
2.将表面积分别为54平方厘米,96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),这个大正方体的体积是()3.某村要修一条4500米的公路,已经修了1020米,还要修()米正好修这条路的2/3。
4.光明小学将六年级的140名学生分成了三个小组进行植树活动,已知第一组和第二组人数的比为2:3,第二组和第三组人数的比是4:5,那么第三小组有()人。
奥数比赛六年级试题及答案1. 计算题问题:计算 \((2^3 + 3^2) \times 5\) 的值。
答案:首先计算括号内的值,\(2^3 = 8\),\(3^2 = 9\),然后将它们相加得到 \(8 + 9 = 17\)。
最后,将结果乘以5,即 \(17\times 5 = 85\)。
2. 应用题问题:一个班级有48名学生,其中男生人数是女生人数的两倍。
问这个班级有多少男生和女生?答案:设女生人数为 \(x\),则男生人数为 \(2x\)。
根据题意,\(x + 2x = 48\),解得 \(3x = 48\),所以 \(x = 16\)。
因此,女生有16人,男生有 \(2 \times 16 = 32\) 人。
3. 几何题问题:一个直角三角形,两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,斜边的长度 \(c\) 可以通过公式 \(c =\sqrt{a^2 + b^2}\) 计算,其中 \(a\) 和 \(b\) 分别是两条直角边的长度。
将3厘米和4厘米代入公式,得到 \(c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5\) 厘米。
4. 逻辑推理题问题:如果一个数的个位数是6,那么这个数的两倍的个位数是什么?答案:设这个数为 \(10a + 6\),其中 \(a\) 是十位数。
那么这个数的两倍就是 \(2(10a + 6) = 20a + 12\)。
个位数是2,因为\(20a\) 是10的倍数,不影响个位数。
5. 组合计数题问题:有5个不同的球和3个不同的盒子,将球放入盒子中,每个盒子至少有一个球,有多少种不同的放法?答案:首先,从5个球中选择2个球放入一个盒子,有 \(C_5^2 = 10\) 种选择方式。
剩下的3个球分别放入另外两个盒子,有 \(3! = 6\) 种排列方式。
但是,由于盒子是不同的,所以需要考虑盒子的排列,因此总的放法是 \(10 \times 6 = 60\) 种。
六年级奥数练试题及答案1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。
小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。
那么,小明这辆山地车的原价是________元。
【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。
已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。
【分析】方法一:方程。
设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:故A的浓度为。
方法二:比例。
1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.【分析】比例思想。
两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。
倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。
3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。
4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?【分析】每亿人每年消耗资源量为1份。
六年级奥数竞赛试题一.计算:⑴.=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 ⑵. 13471711613122374⨯+⨯+⨯=⑶.222345567566345567+⨯⨯+= ⑷. 4513612812111511016131+++++++=二.填空: ⑴.甲、乙两数是自然数,如果甲数的65恰好是乙数的41.那么甲、乙两数之和的最小值是 . ⑵.某班学生参加一次考试,成绩分优、良、及格、不及格四等.已知该班有21的学生得优,有31的学生得良,有71的学生得及格.如果该班学生人数不超过60人,则该班不及格的学生有 人.⑶.一条公路,甲队独修24天完成,乙队独修30天完成.甲乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了 天.⑷. 用0,1,2,3,4,5,6,7,8,9十个数字,能够组成 个没有重复数字的三位数.⑸.“IMO ”是国际数学奥林匹克的缩写,把这三个字母写成三种不同颜色,现有五种不同颜色的笔,按上述要求能写出 _______种不同颜色搭配的“IMO ”.⑹不定方程172112=+y x 的整数解是 .⑺一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是 .⑻. 把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体, 这个立方体的表面积是 平方厘米.⑼.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距 千米.⑽.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有 _人.⑾.从学校到少年宫有4条东西的马路和3条南北的马路相通(如图),李楠从学校出发,步行到少年宫(只许向东或向南行进),最多有 种走法.⑿.算出圆内正方形的面积为 .⒀.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π⒁.一付扑克牌共有54张(包括大王、小王),至少从中取 张牌,才能保证其中必有3种花色.⒂.规定:6※2=6+66=72,2※3=2+22+222=246, 1※4=1+11+111+1111=1234.7※5= .⒃.甲、乙、丙、丁四位学生在广场上踢足球,打碎了玻璃窗,有人问他们时,他们这样说:甲:“玻璃是丙也可能是丁打碎的”; 乙:“是丁打碎的”;丙:“我没有打坏玻璃”; 丁:“我才不干这种事”;深深了解学生的老师说:“他们中有三位决不会说谎话”。
小学六年级上册奥数题及答案【篇一:六年级上册奥数题】b地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在a地植树,丙在b地植树,乙先在a地植树,然后转到b地植树。
两块地同时开始同时结束,乙应在开始后第几天从a地转到b 地?2. 有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2。
4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。
在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块。
现打开水龙头往容器中灌水。
3分钟时水面恰好没过长方体的顶面。
再过18分钟水已灌满容器。
已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。
两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、乙两根水管,分别同时给a,b两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。
经过2+1/3小时,a,b两池中注入的水之和恰好是一池。
这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满a池时,乙管再经过多少小时注满b池?7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
小明从家到学校全部步行需要多少时间?8. 甲、乙两车都从a地出发经过b地驶往c地,a,b两地的距离等于b,c两地的距离。
小学奥数竞赛试卷一、填空题。
1.(3分)某次数学竞赛原定一等奖8人,二等奖16人,现在将一等奖中最后4人调整为二等奖,这样得二等奖的学生的平均分提高了1.2分,得一等奖的学生的平均分提高了4分,那么原来一等奖平均分比二等奖平均分多分.2.(3分)一个三位数等于它的各位数字之和的19倍,这样的三位数共有11个,其中最小的和最大的分别是、.3.(3分)55道数学题,分给甲、乙、丙三人计算.已知乙分到的题比甲多1倍,丙分到的题最少,却是个两位数,且个位不是0.甲分到道题,乙分到道题,丙分到道题.4.(3分)李小华要把自己平日存的零花钱捐给残疾人协会,他把储蓄盒中的2分和5分的硬币都倒出来,估计有5到6元钱,李小华把这些硬币分成钱数相等的两堆,第一堆里2分和5分的硬币个数相等,第二堆2分和5分硬币的钱数相等,问李小华的这些钱一共有.5.(3分)生物研究所的科研人员要做一次试验并决定上午10时开始做第一次观察,以后每隔3小时观察一次,当第18次观察,表盘上时针与分针的夹角小于180度,问这时时针与分针的夹角是度.6.(3分)一本书的页码是由3181个数字组成,这本书共有页.7.(3分)有100元、10元、1元面值的人民币18张,已知其中100元和1元的人民币张数的和恰好等于10元人民币的张数,现将100元,10元人民币也换成1元的人民币,然后把所有的人民币平均分给12人,正好分完,则每种面值分别有张.8.(3分)甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.小张每小时走千米,小王每小时走千米.9.(3分)个位数是5,且能被3整除的四位数有个.10.(3分)有一蓄水池,池中有一条进水管和一条排水管,灌满一池水需打开进水管5小时,排完一池水需打开排水管2小时,现池内有满满一池水,如果按排水、进水、排水、进水……的顺序轮流各开1小时,那么小时后水池的水刚好排完.小学奥数竞赛试卷参考答案与试题解析一、填空题。
小学六年级上册数学奥数题及答案1.小学六年级上册数学奥数题及答案1、甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?解:设甲校有x人参加,则乙校有(22-x)人参加。
0.2x=(22-x)×0.25-10.2x=5.5-0.25x-10.45x=4.5x=1022-10=12(人)答:甲校有10人参加,乙校有12人参加。
2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款。
答案:取40%后,存款有9600×(1-40%)=5760(元)这时,甲有:(5760+120×2)÷2=3000(元)甲原来有:3000÷(1-40%)=5000(元),乙存款:9600-5000=4600(元)2.小学六年级上册数学奥数题及答案1、某种商品打九折出售,说明现在售价比原来降低了(D)。
A、90%B、9%C、1/9D、10%2、今年油菜产量比去年增产1/5,就是(C)。
A、今年油菜产量是去年的102%B、去年油菜产量比今年少20%C、今年油菜产量是去年的120%D、今年油菜产量是去年的100.2%3、男工人数的'25%等于女工人数的30%,那么男工人数和男工人数相比(A)A、男工人数多B、女工人数多C、一样多D、无法比较4、一种录音机,每台售价从220元降低到120元,降低了百分之几?正确的列式是(D)。
A、120÷220B、(220-120)÷120C、220÷120D、(220-120)÷2205、王力宏4月5日在银行存了活期储蓄2000元,月利率是0.12%,到6月5日,他可以得到税后利息是多少元?(税后利息为5%)正确的列式是(B)。
A、2000×0.12%×(1-5%)B、2000×0.12%×2C、2000×0.12%×2×(1-5%)D、2000+2000×0.12%×2×(1-5%)3.小学六年级上册数学奥数题及答案1、一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?9除以(5分之2-7分之1)=9除以35分之9=35(页)答:这见稿件有35页.2、一块地,长和宽的比是8:5,长比宽多24米.这块地有多少平方米?设长是8份,则宽是5份,多了:3份,即是24米那么一份是:24/3=8米即长是:8*8=64米,宽是:8*5=40米面积是:64*40=2560平方米3、如果男同学的人数比女同学多25%那么女同学的人数比男同学少多少?女同学为单位1男同学为1+25%=125%女同学的人数比男同学少(125%-1)÷125%=20%4、饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?去年养猪:(1987+245)/3=744今年比去年多养猪:1987-744=12435、小伟和小英给希望工程捐款钱数的比是2:5.小英捐了35元,小伟捐了多少钱?设小伟捐了X元所以2:5=X:35得:X=14元小伟捐了14元4.小学六年级上册数学奥数题及答案1、某工厂生产一批玩具,完成任务的五分之三后,又增加了280件,这样还需要做的玩具比原来的多10%。
小学六年级上学期奥数考试题及答案小学六年级上期奥数考试题(最材)姓名成绩一、认真思考,对号入座:(共30分)1.一个圆的周长是6.28米,半径是1米。
2.一块周长是24分米的正方形铁板,剪下一个最大的圆,圆的面积是28.26平方分米。
3.一项工程,甲单独做要6小时完成,乙单独做要9小时完成。
甲、乙合做2小时,完成了这项工程的5/9,余下的由甲单独做,还要8/3小时完成。
4.以“万”为单位,准确数5万与近似数5万比较最多相差0.5万。
5.在推导圆的面积公式时,将圆等分成若干份,拼成一个近似的长方形,已知长方形的长比宽多6.42厘米,圆的面积是28.26平方厘米。
6.已知:a×b=c×d,且a、b、c都不等于0,则a、b、c中最小的数是b。
7.甲是乙的5倍,乙是丙的5倍,则甲是丙的1/25.8.六年级共有180人,选出男生的人数相等。
六年级有男生91人。
9.今年XXX的年龄是妈妈的1/3,二年前母子年龄相差24岁,四年后XXX的年龄是16岁。
XXX和5名女生参加数学比赛,剩下的男生的一半和女生的共14人,这个班共16人,女生的一半和男生的共11人,这个班有男生5人。
10.六(1)班男生的一半和女生的一半相等,共40人。
11.把一个最简分数的分母缩小到原来的1/3,分子扩大到原来的3倍,这个分数的值为15/2,这个最简分数是5/6.12.一个真分数,分子和分母的和是33,如分子减2,分母增加4,约简后是2/3,原分数是16/17.13.一件工作,甲做3天,乙做5天可完成1/2;甲做5天,乙做3天可完成1/3.那么,甲乙合做9.6天可完成。
14.把20克药粉放入180克水中,药粉占药水的1/10.15.一桶水连桶共重17千克,把水倒出后,重12千克,空桶重1.25千克。
二、看清题目,巧思妙算:(共27分)1.计算下列各题:28÷[7.8]×5] = 207×[9.3]-2.3] = 6013.8÷[3]×12] = 552.3000以内有多少个数能被11整除?3000/11] = 2723)假设13个自然数的和为x,则根据平均值的定义,有:x/13=18.6,解得x=241.8.再根据小于等于平均数的最大整数与大于平均数的最小整数的乘积等于这些数的和,得到:18.55×13<x<18.64×13,即241.15<x<242.32.将13个自然数的和精确到小数点后三位数,即为242.316.4)第一题:先算出136.63×45+4.37÷-45=6167.32,然后计算÷=7/8.第二题:先算出4×3.62+4.6×6=27.32,然后计算27.32÷23=1.19,再计算(+1)÷2÷(2-0.25)=0.5.第三题:先算出54×(-)+23×(+)-31×(-)=23,然后计算xxxxxxxx÷(11-4+2.25-7)=125÷(14-4.5)=13.25.1)根据梯形中位线的性质,可知梯形的上底和下底之和为16厘米。
六年级上册数学竞赛试题-奥数题习题(含
答案)
1.一辆汽车以60km/h的速度行驶4小时,再以40km/h的速度行驶2小时,求它行驶的总路程。
解:根据路程等于速度乘以时间的公式,第一段路程为60km/h×4h=240km,第二段路程为40km/h×2h=80km,总路程为240km+80km=320km。
答:该汽车行驶的总路程为320km。
2.甲、乙两人相向而行,甲的速度是每小时5km,乙的速度是每小时7km,如果他们相距60km,问他们多长时间能相遇?
解:根据相遇公式,时间等于距离除以速度之和,即
60km÷(5km/h+7km/h)=6h。
答:甲、乙两人相遇需要6小时。
3.甲、乙两人相向而行,甲的速度是每小时5km,乙的速度是每小时7km,他们相遇后,甲又行驶了2小时,问甲、乙两人分别行驶了多少路程?
解:根据相遇公式,他们相遇时的路程之和等于他们分别行驶的路程之和,即(5km/h+7km/h)×t=60km,解XXX。
甲行
驶的路程为5km/h×8h=40km,乙行驶的路程为
7km/h×8h=56km。
答:甲行驶了40km,乙行驶了56km。
4.一辆汽车以每小时60km的速度行驶,行驶了2小时后,因故障而减速为每小时40km,又行驶了3小时,问它行驶的
总路程。
解:前两小时行驶的路程为60km/h×2h=120km,后三小
时行驶的路程为40km/h×3h=120km,总路程为
120km+120km=240km。
答:该汽车行驶的总路程为240km。
1.根据题目给出的条件,可以得出马每步长为7/4倍狗的
步长。
因为狗已经跑出了30米,所以马需要追赶的距离是30米。
根据速度比可以得出马与狗相差的路程份额为1,所以马
需要跑21倍狗才能追上它,即21/20倍狗已经跑的距离,计
算得出马需要跑630米才能追上狗。
2.根据题目给出的信息,可以得出甲、乙两车相遇时,甲
车行驶了10份路程,乙车行驶了8份路程,两车的路程差是
80千米。
根据路程差和时间差可以得出两地相距的距离为
(80+80)÷ 2 ×(10+8)÷(10-8)=720千米。
3.根据题目给出的信息,可以得出哥哥、弟弟的速度差为50米/分钟,速度和为150米/分钟。
根据速度和差可以得出哥
哥的速度为100米/分钟,弟弟的速度为50米/分钟。
因为两人相遇的时间间隔分别为12分钟和4分钟,所以哥哥和弟弟跑
完一圈所需的时间分别为6分钟和12分钟。
4.根据题目给出的信息,可以得出快车比慢车每秒行驶的
距离多5米。
因为快车需要从追上慢车的车尾到完全超过慢车,所以需要超过两个车的长度之和,即265米。
根据速度差和超过的距离可以得出快车需要53秒才能完全超过慢车。
5.甲乙两人在300米长的环形跑道上同时同向并排起跑。
已知甲平均速度为每秒5米,乙平均速度为每秒4.4米。
问两
人起跑后的第一次相遇在起跑线前几米?
解:甲追上乙的时间为300÷(5-4.4)=500秒。
甲追到
乙时所行的路程为5×500=2500米。
因为每圈跑道长为300米,所以甲追及总路程为8圈还多100米,即在原来起跑线的前方100米处相遇。
6.一个人在铁道边,听见远处传来的火车汽笛声后,在经
过57秒火车经过她前面。
已知火车鸣笛时离他1360米,声音每秒传340米。
问火车的速度(得出保留整数)。
解:人在听到声音后57秒才车到,说明人听到声音时车
已经从发声音的地方行出1360÷340=4秒的路程。
也就是
1360米一共用了4+57=61秒。
因此,火车的速度为
1360÷61≈22米/秒。
7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,
马上紧追上去。
已知猎犬每跑5步,兔子跑9步;猎犬跑2步
的时间,兔子却能跑3步。
问猎犬至少跑多少米才能追上兔子。
解:设猎犬每步跑a米,则兔子每步跑9a÷5米。
由“猎犬
跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,
兔子可跑3×9a÷5÷3米。
从而可知猎犬与兔子的速度比是2a:9a÷5=10:9,也就是说当猎犬跑60米时,兔子跑50米,本来相差的10米刚好追完。
9.甲乙两车同时从AB两地相对开出。
第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。
第二次相遇时离B地的距离是AB全程的。
已知甲车在第一次相遇时行了120千米。
问AB两地相距多少千米?
解:设AB两地相距x千米,甲车速度为v1千米/小时,乙车速度为v2千米/小时。
第一次相遇时,甲车行驶的时间为t1,乙车行驶的时间为t2,则有vt1=vt2+x,其中v=v1+v2.第二次相遇时,甲车行驶的时间为t3,乙车行驶的时间为t4,则有vt3=vt4+2x。
又因为甲车在第一次相遇时行了120千米,所以有v1t1=120,即t1=120/v1.将t1代入第一个方程中,得到t2=(x+120)/v2-t1.同理,将t3代入第二个方程中,得到t4=(2x-120)/v2-t3.将t2和t4代入第一个方程中,整理得到
x=3v1v2/2(v1+v2)。
因此,AB两地相距300千米。