二次函数的图像和参数的变化
- 格式:docx
- 大小:37.42 KB
- 文档页数:4
二次函数的性质及其图像变化二次函数是高中数学中的重要概念之一,它具有独特的性质和图像变化。
本文将详细介绍二次函数的性质,并探讨其图像在参数变化时的变化规律。
一、二次函数的定义和一般式二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
其中,a决定了二次函数的开口方向和图像的开合程度,b决定了图像在x轴方向的平移,c则是二次函数的纵坐标偏移。
二、二次函数的性质1. 开口方向二次函数的开口方向由系数a的正负决定。
当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
2. 零点二次函数的零点是指函数图像与x轴相交的点,即y = 0的解。
对于一般的二次函数y = ax^2 + bx + c,可以使用求根公式x = (-b ± √(b^2 - 4ac)) / (2a)求得零点。
3. 顶点二次函数的顶点是指函数图像的最高点(开口向下时)或最低点(开口向上时)。
顶点的横坐标可以通过公式x = -b / (2a)求得,纵坐标则是将横坐标代入函数中得到的值。
4. 对称轴二次函数的对称轴是指通过顶点且垂直于x轴的直线。
对称轴的方程可以通过将顶点的横坐标代入x = -b / (2a)得到。
5. 单调性二次函数的单调性是指函数图像在某个区间内的变化趋势。
当a>0时,二次函数在对称轴两侧递增;当a<0时,二次函数在对称轴两侧递减。
三、二次函数图像的变化规律在探讨二次函数图像的变化规律时,我们将分别讨论a、b、c的变化对图像的影响。
1. a的变化当a的绝对值增大时,二次函数图像的开合程度增加,即图像变得更加尖锐;当a的绝对值减小时,二次函数图像的开合程度减小,即图像变得更加平缓。
当a 的符号改变时,图像的开口方向也会改变。
2. b的变化当b增大时,二次函数图像整体向左平移;当b减小时,二次函数图像整体向右平移。
b的符号改变时,平移方向也会相应改变。
二次函数的图像与常见变化二次函数是高中数学中的重要内容,它在数学和实际生活中都有广泛的应用。
本文将从二次函数的图像和常见的变化入手,探讨其特点和应用。
首先,我们来看二次函数的图像。
一般来说,二次函数的图像是一个开口向上或向下的抛物线。
其标准形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a不等于零。
当a大于零时,抛物线开口向上;当a小于零时,抛物线开口向下。
在图像的形状上,二次函数的a值决定了抛物线的开口大小。
当a的绝对值越大时,抛物线越“扁平”,开口越大;当a的绝对值越小时,抛物线越“瘦长”,开口越小。
这一特点在实际应用中十分有用,例如在物理学中,通过调整抛物线的形状可以模拟不同的物体运动轨迹。
其次,我们来探讨二次函数的常见变化。
二次函数的图像可以通过平移、缩放和翻转等变换来改变其位置和形状。
这些变化可以通过调整函数中的常数来实现。
首先是平移变化。
当二次函数的图像沿x轴平移时,可以通过改变b的值来实现。
当b大于零时,图像向左平移;当b小于零时,图像向右平移。
这种变化在实际应用中常用于描述物体在坐标轴上的位置变化。
其次是缩放变化。
当二次函数的图像在x轴或y轴方向上进行缩放时,可以通过改变a和c的值来实现。
当a的绝对值大于1时,图像在y轴方向上缩放;当a 的绝对值小于1时,图像在x轴方向上缩放。
而c的值则决定了图像在y轴上的位置。
最后是翻转变化。
当二次函数的图像在x轴或y轴方向上进行翻转时,可以通过改变a的符号来实现。
当a大于零时,图像不发生翻转;当a小于零时,图像在x轴方向上发生翻转。
这种变化在实际应用中常用于描述对称性。
除了以上常见的变化,二次函数的图像还可以通过其他方式进行调整,如通过改变a、b和c的值的组合来实现复杂的变化。
这些变化在数学和实际问题中都有广泛的应用,例如在经济学中,通过分析二次函数的图像可以预测市场的变化趋势;在工程学中,通过调整二次函数的图像可以优化设计方案。
二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2以4-=x 为中间值,取x 的一些值,列表如下:【例2】求作函数342+--=x x y 的图象。
二次函数的图像和参数的变化二次函数是代数学中的一个重要概念,也是数学中常见的函数
类型之一。
在二次函数的研究中,了解它的图像和参数的变化十
分关键。
本文将从图像和参数两个方面,详细探讨二次函数的变
化规律。
一、二次函数的图像变化
由于二次函数具有一条抛物线的特点,所以它的图像形状较为
固定,但其位置和方向却可以通过参数的改变而产生相应的变化。
我们首先来研究二次函数在参数a不同时的图像变化。
1. 当a>0时,二次函数的抛物线开口向上。
随着a的增大,抛
物线的开口越来越宽,同时顶点也向上移动。
当a=1时,抛物线
的开口最为标准,即为x^2函数的图像。
当a>1时,抛物线的开
口更加宽广;当0<a<1时,抛物线的开口变窄。
总之,参数a的
增大会让抛物线的开口变得更大。
2. 当a<0时,二次函数的抛物线开口向下。
随着a的减小,抛
物线的开口也越来越宽。
当a=-1时,抛物线的开口最为标准,即
为-x^2函数的图像。
当a<-1时,抛物线的开口更加宽广;当-
1<a<0时,抛物线的开口变窄。
与正数的情况类似,参数a的减小会让抛物线的开口变得更大。
在参数a不变的情况下,我们再来关注参数p对二次函数图像
的变化影响。
1. 当p>0时,二次函数的抛物线的顶点向左移动。
随着p的增大,顶点距离原点的水平偏移越大,抛物线在原点的右侧越陡峭。
当p=1时,抛物线的顶点达到最小值,即抛物线在y轴右侧经过(1,0)的点;当p>1时,抛物线的顶点进一步向左移动。
总之,参
数p的增大会让抛物线的顶点向左移动。
2. 当p<0时,二次函数的抛物线的顶点向右移动。
随着p的减小,顶点距离原点的水平偏移越大,抛物线在原点的左侧越陡峭。
当p=-1时,抛物线的顶点达到最小值,即抛物线在y轴左侧经过(-1,0)的点;当p<-1时,抛物线的顶点进一步向右移动。
与正数的
情况类似,参数p的减小会让抛物线的顶点向右移动。
总结起来,二次函数的图像变化与参数a和p的变化密切相关。
参数a决定了抛物线的开口大小和方向,参数p决定了抛物线的
顶点位置。
二、二次函数的参数变化
除了图像的变化外,二次函数的参数还会影响其它一些重要性质,如顶点坐标、对称轴和零点等。
1. 顶点坐标:对于一般形式的二次函数y = ax^2 + bx + c,其顶点坐标为(-b/2a, f(-b/2a)),其中f(x)表示函数在点x处的取值。
可
以看出,顶点的横坐标与二次函数的参数b和a有关。
当a>0时,顶点横坐标随着b的增大而减小,反之亦然;当a<0时,则相反。
顶点的纵坐标则与参数c有关,c的增大会使顶点上移,反之下移。
2. 对称轴:对于一般形式的二次函数y = ax^2 + bx + c,其对称轴的方程为x = -b/2a。
因此,对称轴的位置与参数b和a有关,当
b增大时,对称轴向左平移,当b减小时,对称轴向右平移。
而参
数a的正负决定了对称轴的倾斜方向。
3. 零点:二次函数的零点是指函数在x轴上的交点,即使函数等于0的点。
对于一般形式的二次函数y = ax^2 + bx + c,其零点的个数和位置取决于判别式D = b^2 - 4ac的值。
当D>0时,函数有两个不同的零点;当D=0时,函数有一个重根;当D<0时,函数无实数零点。
综上所述,二次函数的图像和参数的变化是相互联系的。
通过改变参数a,我们可以控制抛物线的开口大小和方向;通过改变参数p,我们可以移动抛物线的顶点位置;而参数b和c则与顶点坐标、对称轴和零点等相关。
对二次函数的深入研究,有助于我们更好地理解它的性质和应用。