抽象函数单调性、奇偶性、周期性和对称性典例分析
- 格式:doc
- 大小:754.50 KB
- 文档页数:13
专题10 抽象函数大题单调性奇偶性归类目录【题型一】保和函数:f (a+b )=f (a )+f (b )单调性与奇偶性 ...................................................................... 2 【题型二】类对数积函数:形如f (axb )=f (a )+f (b )单调性与奇偶性 ..................................................... 3 【题型三】类指数函数:形如f (a+b )=f (a )f (b )单调性 ........................................................................... 4 【题型四】类对数商函数:形如f (a/b )=f (a )-f (b )单调性 ..................................................................... 5 【题型五】类线性函数:f (a-b )=f (a )-f (b )单调性与奇偶性 .................................................................. 6 【题型六】保积函数:f (a*b )=f (a )*f (b )单调性与奇偶性 ...................................................................... 6 【题型七】恒“截距”线性函数:f (a+b )=f (a )+f (b )-1单调性 ............................................................. 7 【题型八】形如f (a*b )=f (a )+f (b )+t 单调性与奇偶性 ............................................................................ 8 【题型九】形如f (a+b )+f (a-b )=2f (a )f (b )奇偶性 ............................................................................... 8 【题型十】形如f (a )+f (a )=f (a b1ab++)单调性与奇偶性 ........................................................................... 9 【题型十一】形如f (a )+f (a )=f (a b)[1f (a)f (b)]+±单调性与奇偶性 ...................................................... 9 【题型十二】形如f (a-b )=1f (a)f (bf (a)f (b)+-单调性与奇偶性 (10)【题型十三】其他形式的抽象函数汇总 (11)综述一、赋值思维:抽象函数求解或者证明奇偶性和单调性基础。
抽象函数的对称性、奇偶性与周期性常用结论一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若为偶函数则称)()()(x f y x f x f ==-。
分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题07函数的性质——单调性、奇偶性、周期性函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上;②任意两个自变量1x ,2x 且12x x <;③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.(2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质.(3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数关于y 轴对称奇函数如果对于函数()f x 的定义域内任意一个x ,都有) ()(f x f x --=,那么函数()f x 就叫做奇函数关于原点对称判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).3.函数的对称性(1)若函数()y f x a =+为偶函数,则函数()y f x =关于x a =对称.(2)若函数()y f x a =+为奇函数,则函数()y f x =关于点(0)a ,对称.(3)若()()2f x f a x =-,则函数()f x 关于x a =对称.(4)若2(2)()f x f a x b -=+,则函数()f x 关于点()a b ,对称.4.函数的周期性(1)周期函数:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有(()f x T f x +=),那么就称函数()y f x =为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么称这个最小整数叫做()f x 的最小正周期.【方法技巧与总结】1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 为增函数,1()f x 为减函数;④若()0f x >且()f x 为减函数,1()f x 为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称;函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称.(3)若奇函数()y f x =在0x =处有意义,则有(0)0f =;偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()(01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =+或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.【题型归纳目录】题型一:函数的单调性及其应用题型二:复合函数单调性的判断题型三:利用函数单调性求函数最值题型四:利用函数单调性求参数的范围题型五:基本初等函数的单调性题型六:函数的奇偶性的判断与证明题型七:已知函数的奇偶性求参数题型八:已知函数的奇偶性求表达式、求值题型九:已知()f x =奇函数+M 题型十:函数的对称性与周期性题型十一:类周期函数题型十二:抽象函数的单调性、奇偶性、周期性题型十三:函数性质的综合【典例例题】题型一:函数的单调性及其应用例1.(2022·全国·高三专题练习)若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有()-()-f a f b a b>0成立,则必有()A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增例2.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且对任意两个不相等的实数a ,b 都有()()()0a b f a f b -->⎡⎤⎣⎦,则不等式()()315f x f x ->+的解集为().A .(),3-∞B .()3,+∞C .(),2-∞D .()2,+∞例3.(2022·全国·高三专题练习)()252f x x x =-的单调增区间为()A .1,5⎛⎫+∞ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,5⎛⎫-+∞ ⎪⎝⎭D .1,5⎛⎫-∞- ⎪⎝⎭例4.(2022·全国·高三专题练习)已知函数1()22xxf x =-.(1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x 的不等式2(log )(1)f x f <.例5.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.【方法技巧与总结】函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.题型二:复合函数单调性的判断例6.(2022·全国·高三专题练习(文))函数y =)A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-,例7.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是()A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-例8.(2022·全国·高三专题练习)函数2231()(2x x f x --=的单调递减区间是()A .(,)-∞+∞B .(,1)-∞C .(3,)+∞D .(1,)+∞【方法技巧与总结】讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数;2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:()u g x =()y f u =[()]y f g x =增增增增减减减增减减减增复合函数单调性可简记为“同增异减”,即内外函数的单性相同时递增;单性相异时递减.题型三:利用函数单调性求函数最值例9.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =()21x f x x =+;③()e e e ex xx x f x ---=+;④()11e x f x -=+.例10.(2022·全国·高三专题练习)定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-.(1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.例11.(2022·全国·高三专题练习)已知函数()(0)2axf x a x =≠-.(1)判断函数()f x 在区间()2,2-上的单调性,并用单调性的定义加以证明;(2)若()33f =,求[]1,1x ∈-时函数()f x 的值域.例12.(2022·山西运城·模拟预测(理))已知a b <,函数()f x 的定义域为I ,若存在[,]a b I ⊆,使得()f x 在[,]a b 上的值域为[,]a b ,我们就说()f x 是“类方函数”.下列四个函数中是“类方函数”的是()①()21f x x =-+;②2()f x x =;③()2f x =+;④1()2xf x ⎛⎫= ⎪⎝⎭.A .①②B .②④C .②③D .③④【方法技巧与总结】利用函数单调性求函数最值时应先判断函数的单调性,再求最值.常用到下面的结论:1.如果函数()y f x =在区间(]a b ,上是增函数,在区间[)b c ,上是减函数,则函数()()y f x x a c =∈,在x b =处有最大值()f b .2.如果函数()y f x =在区间(]a b ,上是减函数,在区间[)b c ,上是增函数,则函数()()y f x x a c =∈,在x b =处有最小值()f b .3.若函数()y f x =在[]a b ,上是严格单调函数,则函数()y f x =在[]a b ,上一定有最大、最小值.4.若函数()y f x =在区间[]a b ,上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a .5.若函数()y f x =在区间[]a b ,上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b .题型四:利用函数单调性求参数的范围例13.(2022·河南濮阳·一模(理))“1b ≤”是“函数()()22,0log 2,20bx x f x x b x +>⎧=⎨++-<≤⎩是在()2,-+∞上的单调函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例14.(2022·全国·江西科技学院附属中学高三阶段练习(理))已知函数()()e 4,0,2log 1,10,x m m x f x x x ⎧+>⎪=⎨-+-<≤⎪⎩若1x ∀,2x ∈R ,()()12120f x f x x x ->-,且()()2g x f x x =--仅有1个零点,则实数m 的取值范围为()A .11,4e ⎡⎫⎪⎢⎣⎭B .11,4e ⎡⎤⎢⎥⎣⎦C .1,1e ⎡⎫⎪⎢⎣⎭D .1,1e ⎛⎫ ⎪⎝⎭例15.(2022·浙江·高三学业考试)已知函数2()2f x x ax b =-+在区间(-∞,1]是减函数,则实数a 的取值范围是()A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]例16.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围()A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1例17.(2022·全国·高三专题练习)已知函数()f x =0a >且1a ≠)在区间[)1,3上单调递增,则实数a 的取值不可能是()A .13B .12C .23D .56例18.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a的范围是_______.例19.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈,则θ的取值范围是___________.例20.(2022·全国·高三专题练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【方法技巧与总结】若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解.1.若()a f x >在[]m n ,上恒成立()a f x ⇔>在[]m n ,上的最大值.2.若()a f x <在[]m n ,上恒成立()a f x ⇔<在[]m n ,上的最小值.题型五:基本初等函数的单调性例21.(2022·全国·高三阶段练习(文))下列函数在()1,3上单调递减的是()A .24y x x =-B .12x y -=C .y =D .cos 1y x =+例22.(2022·全国·高三专题练习)下列函数中,定义域是R 且为增函数的是A .xy e -=B .3y x =C .ln y x=D .y x=例23.(2022·全国·高三专题练习)已知()f x 是奇函数,且()()12120f x f x x x ->-对任意12,x x R ∈且12x x ≠都成立,设32a f ⎛⎫= ⎪⎝⎭,()3log 7b f =,()30.8c f =-,则()A .b a c <<B .c a b <<C .c b a<<D . a c b<<例24.(2022·山东·济南一中模拟预测)设函数()232xf x x ⎛⎫=+ ⎪⎝⎭,若()ln 3a f =,()5log 2b f =-,c f =(e 为自然对数的底数),则().A .a b c>>B .c b a>>C .c a b>>D .a c b>>【方法技巧与总结】1.比较函数值大小,应将自变量转化到同一个单调区间内,然后利用函数单调性解决.2.求复合函数单调区间的一般步骤为:①求函数定义域;②求简单函数单调区间;③求复合函数单调区间(同增异减).3.利用函数单调性求参数时,通常要把参数视为已知数,依据函数图像或单调性定义,确定函数单调区间,与已知单调区间比较,利用区间端点间关系求参数.同时注意函数定义域的限制,遇到分段函数注意分点左右端点函数值的大小关系.题型六:函数的奇偶性的判断与证明例25.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减例26.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x=--C .3y x x=--D .3=-+y x x例27.(2022·广东·二模)存在函数()f x 使得对于x R ∀∈都有()()f g x x =,则函数()g x 可能为()A .()sin g x x=B .()22g x x x=+C .()3g x x x=-D .()()x xg x e e-=+例28.(2022·全国·高三专题练习)判断下列函数的奇偶性:(1)f (x )(2)f (x )=(x +(3)f (x ).(4)f (x )=2221,0,21,0;x x x x x x ⎧-++>⎨+-<⎩例29.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在()0,+∞上的单调性.【方法技巧与总结】函数单调性与奇偶性结合时,注意函数单调性和奇偶性的定义,以及奇偶函数图像的对称性.题型七:已知函数的奇偶性求参数例30.(2022·北京海淀·二模)若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则()A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-例31.(2022·河南洛阳·三模(理))若函数()()322x xx a f x -=⋅-是偶函数,则=a ()A .-1B .0C .1D .±1例32.(2022·江苏南通·模拟预测)若函数()22x x af x a +=-为奇函数,则实数a 的值为()A .1B .2C .1-D .±1例33.(2022·江西·南昌十中模拟预测(理))已知函数()(1)1x mf x x e=++为偶函数,则m 的值为_________.例34.(2022·全国·高三阶段练习(理))已知函数()()22330x xa a a f x -+=-⋅≠为奇函数,则=a ______.例35.(2022·全国·高三阶段练习(文))已知函数()2221x xa b f x x -+⋅=+为偶函数,则=a ______.例36.(2022·陕西·西安中学模拟预测(文))已知函数)1()e ln e x xf x x ⎛⎫=- ⎪⎝⎭为R 上的偶函数,则实数=a ___________.【方法技巧与总结】利用函数的奇偶性的定义转化为()()f x f x -=±,建立方程,使问题得到解决,但是在解决选择题、填空题时还显得比较麻烦,为了使解题更快,可采用特殊值法求解.题型八:已知函数的奇偶性求表达式、求值例37.(2022·安徽省芜湖市教育局模拟预测(理))设()f x 为奇函数,且0x >时,()e ln xf x x =+,则()1f -=___________.例38.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为()A .3-B .3C .5-D .5例39.(2022·河北衡水·高三阶段练习)已知()f x 是定义在R 上的奇函数,且0x ≤时,()232f x x x m =-+,则()f x 在[]1,2上的最大值为()A .1B .8C .5-D .16-例40.(2022·江西·模拟预测(理))(),()f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25+=--x f x g x x x ,则下列说法错误的是()A .(0)1g =B .()g x 在[]0,1上单调递减C .(1101)-g x 关于直线1101=x 对称D .()g x 的最小值为1例41.(2022·山西吕梁·一模(文))已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()21x f x x =+-,则当0x <时,()f x =()A .21x x ---B .21x x -++C .121x ----D .121x --++例42.(2022·北京·高三专题练习)已知定义在R 上的奇函数()f x 满足()()2f x f x =+,且当()0,1x ∈时,()241xxf x =+.(1)求()1f 和()1f -的值;(2)求()f x 在[]1,1-上的解析式.例43.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式.【方法技巧与总结】抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的解析式.题型九:已知()f x =奇函数+M例44.(2022·重庆一中高三阶段练习)已知()34f x ax =++(a ,b 为实数),()3lg log 102022f =,则()lg lg3f =______.例45.(2022·河南·西平县高级中学模拟预测(理))已知函数()2sin 414x xf x x -=++,且()5f a =,则()f a -=()A .2B .3C .-2D .-3例46.(2022·福建省福州第一中学高二期末)若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为()A .4B .8C .12D .16例47.(2022·上海·高一专题练习)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫ ⎪⎝⎭D .416,33ππ⎛⎫ ⎪⎝⎭例48.(2022·河南·温县第一高级中学高三月考(理))若函数()()113e sin 1ex x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,则p q +的值为().A .2B .1C .6D .3例49.(2022·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为()A .2-B .0C .2D .4例50.(2022·广东潮阳·高一期末)函数()()22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.例51.(2022·安徽·合肥市第九中学高三月考(理))已知定义域为R 的函数2222020sin ()2x x e e x xf x x λλμ++=++有最大值和最小值,且最大值和最小值的和为6,则λ-μ=___.【方法技巧与总结】已知()f x =奇函数+M ,[,]x a a ∈-,则(1)()()2f x f x M -+=(2)max min ()()2f x f x M +=题型十:函数的对称性与周期性例52.(2022·天津三中二模)设函数()y f x =的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(,)a b 为函数()y f x =的对称中心,研究函数1()1tan(1)1f x x x x =+++--的对称中心,求13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()A .2022B .4043C .4044D .8086例53.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则()A .()f x 是偶函数B .()f x 的图象关于直线12x =对称C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称例54.(2022·全国·模拟预测)已知函数()f x 的定义域为R ,且()()()2220222f x f x f +=-+对任意x ∈R 恒成立,又函数()2021f x +的图象关于点()2021,0-对称,且()12022f =,则()2021f =()A .2021B .2021-C .2022D .2022-例55.(2022·新疆·三模(文))已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e x f x x =,则下面结论正确的是()A .()()()3ln 3e e f f f <<-B .()()()3e ln 3ef f f -<<C .()()()3e e ln 3f f f <-<D .()()()3ln 3e ef f f <-<例56.(2022·山东·肥城市教学研究中心模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f =则(45)f =()A .2021B .2021-C .2022D .2022-例57.(2022·广东茂名·模拟预测)已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为()A .4B .4-C .0D .6-例58.(2022·江西鹰潭·二模(文))已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=()A .2-B .4C .4-D .6例59.(2022·江苏·徐州市第七中学高三阶段练习)函数()()()222f x x x x ax b =+++满足:对x R ∀∈,都有()()11f x f x +=-,则函数()f x 的最小值为()A .-20B .-16C .-15D .0例60.(2022·黑龙江·哈尔滨三中三模(理))定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;②函数()1y f x =+的图象关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为()A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>例61.(2022·陕西·榆林市教育科学研究所模拟预测(理))已知函数()f x 满足()()f x f x -=--,且函数()f x 与()cos 2g x x x =≠-⎛⎫ ⎪⎝⎭的图象的交点为()11,x y ,()22,x y ,()33,x y ,()44,x y ,则()41i ii x y =+=∑()A .-4πB .-2πC .2πD .4π【方法技巧与总结】(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.题型十一:类周期函数例62.(2022·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A .[]2,3B .[]1,3C .[]1,4D .[]2,4例63.(2022·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18f x t t≥-恒成立,则实数t 的取值范围是()A .(](],10,3-∞- B.((,-∞ C .[)[)1,03,-+∞ D.))⎡+∞⎣ 例64.(2022山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为()A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤例65.(2022·湖北·高三月考)已知函数()11,022(2),2x x f x f x x ⎧--≤≤=⎨->⎩,其中R a ∈,给出以下关于函数()f x 的结论:①922f ⎛⎫= ⎪⎝⎭②当[]0,8x ∈时,函数()f x 值域为[]0,8③当4,15k ⎛⎤∈ ⎥⎝⎦时方程()f x kx =恰有四个实根④当[]0,8x ∈时,若()22xf x a +≤恒成立,则1a ≥-)A .1B .2C .3D .4【方法技巧与总结】1.类周期函数若()y f x =满足:()()f x m kf x +=或()()f x kf x m =-,则()y f x =横坐标每增加m 个单位,则函数值扩大k 倍.此函数称为周期为m 的类周期函数.xx类周期函数图象倍增函数图象2.倍增函数若函数()y f x =满足()()f mx kf x =或()(xf x kf m=,则()y f x =横坐标每扩大m 倍,则函数值扩大k倍.此函数称为倍增函数.注意当m k =时,构成一系列平行的分段函数,222311()[1)(1)[)()(1)[)(1)[)n n ng x x m g x m x m m f x g x m x m m g x m x m m --∈⎧⎪-+∈⎪⎪=-+∈⎨⎪⎪⎪-+∈⎩,,,,,,,,.题型十二:抽象函数的单调性、奇偶性、周期性例66.(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤--<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为()A .()3,1-B .()()3,11,1---C .()(),11,1-∞-- D .()(),31,-∞-⋃+∞例67.(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图象关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =-,12b f ⎛⎫=- ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为()A .c b a <<B .b a c <<C .b c a <<D .c a b<<例68.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1x f x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为()A .8B .7C .6D .5例69.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)求()()22f xg x -的值;(2)判断并证明函数()f x 的奇偶性.例70.(2022·上海·高三专题练习)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (1x y xy ++);②当x ∈(-1,0)时,有f (x )>0.求证:21111()()()()511312f f f f n n +++>++ .【方法技巧与总结】抽象函数的模特函数通常如下:(1)若()()()f x y f x f y +=+,则()(1)f x xf =(正比例函数)(2)若()()()f x y f x f y +=,则()[(1)]x f x f =(指数函数)(3)若()()()f xy f x f y =+,则()log b f x x =(对数函数)(4)若()()()f xy f x f y =,则()a f x x =(幂函数)(5)若()()()f x y f x f y m +=++,则()(1)f x xf m =-(一次函数)(6)对于抽象函数判断单调性要结合题目已知条件,在所给区间内比较大小,有时需要适当变形.题型十三:函数性质的综合例71.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x=---,则关于t 的不等式()()20f t f t +<的解集为()A .()2,1-B.(-C .()0,1D.(例72.(2022·安徽·六安市裕安区新安中学高三开学考试(文))已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增.若实数a 满足212(log )(lo )g )2(1f a f f a +≤,则a 的最小值是()A .32B .1C .12D .2例73.(2022·河南许昌·高三月考(理))已知函数31()224e e x xf x x x =-++-,其中e 是自然对数的底数,若()2(6)8f a f a -+>,则实数a 的取值范围是()A .(2,)+∞B .(3,2)-C .(,3)-∞-D .(,3)(2,)-∞-⋃+∞例74.(2022·河南·新蔡县第一高级中学高三月考(文))已知函数()3112e 33ex x f x x x =-+-+,其中e是自然对数的底数,若()2(23)6f a f a -+≥,则实数a 的取值范围是()A .(,3][1,)-∞-+∞ B .(,3]-∞-C .[1,)+∞D .[]3,1-例75.(2022·江苏·南京市中华中学高三月考)定义在R 上的函数()f x 满足()(2)f x f x -=,且当1x ≥时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为()A .1-B .23-C .13-D .13例76.(2022·内蒙古·赤峰二中高一月考(理))设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意[]2x a a ∈+,,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是()A.)+∞B.)+∞C .()1-∞,D.⎡⎣例77.(2022·湖南·岳阳一中一模)已知函数221e e ()312x x xf x --=++,若不等式2(4)(2)1f ax f ax -+≤对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]e,0-B .[]2,0-C .[]4,0-D .2e ,0⎡⎤-⎣⎦例78.(2022·全国·模拟预测)已知函数()2121xx f x -=+,若()()e 0x f f ax +<有解,则实数a 的取值范围为()A .()0,∞+B .(),e -∞-C .[]e,0-D .()(),e 0,-∞-⋃+∞例79.(2022·黑龙江·哈师大附中三模(理))已知函数()()1ln e 12x f x x =+-(e 为自然对数的底数),若()()21f a f a ≥-,则实数a 的取值范围是()A .1,3⎛⎤-∞ ⎥⎝⎦B .[1,+∞)C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦【方法技巧与总结】(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.【过关测试】一、单选题1.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x =--C .3y x x =--D .3=-+y x x2.(2022·河南·模拟预测(文))已知0x >,0y >,且2e e sin 2sin x y x y ->-,则()A .2x y<B .2x y>C .x y>D .x y<3.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为()A .()(),12,-∞-+∞B .()1,2-C .()(),21,-∞-+∞ D .()2,1-4.(2022·浙江浙江·高三阶段练习)已知定义在R 上的奇函数()f x 在0x >时满足32()(1)62f x x x =-++,且()()8f x m f x +≤在[]1,3x ∈有解,则实数m 的最大值为()A .23B .2C .53D .45.(2022·河北·石家庄二中高三开学考试)已知函数(()cos ln 4f x x x π=+⋅+在区间[5,5]-的最大值是M ,最小值是m ,则()f M m +的值等于()A .0B .10C .4πD .2π6.(2022·安徽·蒙城第一中学高三阶段练习(理))已知()f x 为奇函数,且当0x >时()211e xf x x-=+,则曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为()A .240x y ++=B .240x y -+=C .220x y -+=D .220x y ++=7.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭()A .-11B .-8C .3log 4D .38log 4-8.(2022·江西·南昌市实验中学一模(理))对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()2ln ,0,0x x f x mx mx x >⎧=⎨--≤⎩的图像恰好有2对“隐对称点”,则实数m 的取值范围是()A .10,e ⎛⎫ ⎪⎝⎭B .()0,1⋃(1,)+∞C .1,e ⎛⎫+∞ ⎪⎝⎭D .(1,)+∞二、多选题9.(2022·海南·模拟预测)下面关于函数23()2x f x x -=-的性质,说法正确的是()A .()f x 的定义域为(,2)(2,)-∞⋃+∞B .()f x 的值域为RC .()f x 在定义域上单调递减D .点(2,2)是()f x 图象的对称中心10.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是()A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点11.(2022·重庆巴蜀中学高三阶段练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是()A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-12.(2022·河北秦皇岛·二模)已知函数())lg f x x =,()212xg x =+,()()()F x f x g x =+,则()A .()f x 的图象关于()0,1对称B .()g x 的图象没有对称中心C .对任意的[](),0x a a a ∈->,()F x 的最大值与最小值之和为4D .若()3311F x x x -+-<-,则实数x 的取值范围是()(),13,-∞⋃+∞三、填空题13.(2022·山东临沂·二模)已知函数e ()1xmxf x x =+-是偶函数,则m =__________.14.(2022·湖北·房县第一中学模拟预测)已知函数()()ln 0f x x a a a =-+>在21,e ⎡⎤⎣⎦上的最小值为1,则a 的值为________.15.(2022·广东佛山·三模)已知函数()22x x f x a -=+⋅的图象关于原点对称,若3(21)2f x ->,则x 的取值范围为________.16.(2022·陕西宝鸡·二模(文))若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有()()0f x f x +-=;(2)对于定义域上的任意12,x x ,当12x x ≠,恒有()()12120f x f x x x -<-,则称函数f (x )为“理想函数”,下列①()1f x x=,②()=f x ,③()1212xxf x -=+,④22,0(),0x x f x x x ⎧-=⎨<⎩四个函数中,能被称为“理想函数”的有___________.(填出函数序号)四、解答题17.(2022·上海市市西中学高三阶段练习)设a ∈R ,函数2()21x x af x +=+;(1)求a 的值,使得f (x )为奇函数;(2)若3()2a f x +<对任意x ∈R 成立,求a 的取值范围.18.(2022·全国·高三专题练习)已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数;(3)解不等式()()10f x f x -+<.19.(2022·陕西·武功县普集高级中学高三阶段练习(理))设函数()()20,1,R x xf x ka a a a k -=->≠∈,()f x 是定义域为R 的奇函数(1)确定k 的值(2)若()13f =,判断并证明()f x 的单调性;(3)若3a =,使得()()()221f x f x λ≤+对一切[]2,1x ∈--恒成立,求出λ的范围.20.(2022·全国·高三专题练习)定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥;(3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.21.(2022·全国·高三专题练习)定义在R 上的函数()f x ,对任意12,x x R ∈,满足下列条件:①1212()()()2f x x f x f x +=+-②(2)4f =(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由.(2)证明:()()2g x f x =-为奇函数;22.(2022·上海·二模)对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数π()2cos 3f x x ⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”?并说明理由;(2)设1()423x x f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围;(3)若()22log 2,3()2,3x mx x f x x ⎧->⎪=⎨-<⎪⎩为其定义域上的“M 类函数”,求实数m 取值范围.。
函 数 的 对 称 性一个函数的自对称定义1、定义域为R 的函数()f x ,若满足()()f a x f a x +=-或是(2)()f a x f x -=,图像特征函数自身关于x a =对称。
就是该函数的对称轴是x a =。
定义2、定义域为R 的函数()f x ,若满足()()f a x f a x +=--或是(2)()f a x f x -=-,图像特征函数自身关于点(,0)a 对称。
就是该函数的对称点是(,0)a 。
定义3、定义域为R 的函数()f x ,若满足()()f a x f b x +=-,图像特征函数自身关于2a b x +=对称。
就是该函数的对称轴是2a b x +=。
定义2、定义域为R 的函数()f x ,若满足()()f a x f b x +=--,图像特征函数自身关于点(,0)2a b +对称。
就是该函数的对称点是(,0)2a b +。
还可以推广为()()f a x m f b x +=-- 含义:函数()f x 关于(,)22a b m +这个点对称。
周期性:若()f x 对于定义域中的任意x 均有()()f x T f x +=,则()f x 是周期函数.它的变形有: (1)f(x-1)=f(x+1) (2)f(x+2)=-f(x);(3)f(x+2)=1()f x - (4)f(x+3) +f(x)=1 (5)f(x+1)=)(11)(x f x f -+ 特征是x 的符号相同。
习 题1、已知()f x 是R 上的偶函数,且f(-x-1)=f(-x+1) 当[0,1]x ∈时,()1f x x =-+,求当[5,7]x ∈时,()f x 的解析式。
2、定义域为R 的()f x 既是奇函数又是周期函数,T 是它的一个周期.问:区间[,]T T -上它有几个根?(财富:奇函数的半周期也是0点)3、定义在R 上的偶函数()f x 以3为周期,且(2)0f =,则方程()0f x =在区间(0,6) 上有几个根?4、()f x 是R 上的偶函数,若将()f x 的图象向右平移一个单位又得到一个奇函数,且(2)1f =-,求(1)(2)(3)(2008)f f f f ++++L 的值.5、定义在R 上的函数()f x 满足5()()02f x f x ++=且5()4f x +为奇函数,下列结论谁正确? ①函数()f x 的最小正周期是52;②函数()f x 的图象关于点(5,04)对称;③函数()f x 的图象关于52x =对称;④函数()f x 的最大值为5()2f . 6、函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数; (B) ()f x 是奇函数(C) ()(2)f x f x =+ ; (D) (3)f x +是奇函数例4举例子,构造新函数,用定义,平移,伸缩处理四道抽象函数题。
微专题抽象函数与奇偶性、周期性、对称性等综合问题抽象函数是高中数学的难点,也是近几年考试的热点和重点,尤其函数奇偶性、周期性、对称性结合的题目往往使考生无从下手,本文从多方面例举其应用. 考向1 抽象函数的单调性【例1】(2019秋•静宁县校级期末)已知偶函数()f x 在区间(-∞,0]单调递减,则满足(21)()f x f x -的x 取值范围是( )A .[1,)+∞B .(-∞,1]C .(-∞,1][13,)+∞D .1[3,1]解:根据题意,偶函数()f x 在区间(-∞,0]单调递减,则()f x 在[0,)+∞上为增函数, 则22(21)()(|21|)(||)|21|||(21)f x f x f x f x x x x x -⇒-⇒-⇒-,解可得:113x , 即x 取值范围是1[3,1];故选:D .【例2】(2019秋•武汉期末)若146()7a -=,157()6b =,27log 8c =,定义在R 上的奇函数()f x 满足:对任意的1x ,2[0x ∈,)+∞且12x x ≠都有1212()()0f x f x x x -<-,则f (a ),f (b ),f (c )的大小顺序为( ) A .f (b )f <(a )f <(c ) B .f (c )f >(b )f >(a ) C .f (c )f >(a )f >(b )D .f (b )f >(c )f >(a )解:根据题意,函数()f x 满足:对任意的1x ,2[0x ∈,)+∞且12x x ≠都有1212()()0f x f x x x -<-,则()f x 在[0,)+∞上为减函数,又由()f x 为定义在R 上的奇函数,则函数()f x 在(-∞,0]上为减函数, 则函数()f x 在R 上为减函数,27log 08c =<,14467()()76a -==,而157()6b =,则0a b >>,故f (c )f >(b )f >(a ).故选:B .【变式训练】(2020•南开区模拟)已知定义在R 上的函数()f x ,若函数(2)y f x =+为偶函数,且()f x 对任意1x ,2[2x ∈,12)()x x +∞≠,都有2121()()0f x f x x x -<-,若f (a )(31)f a +,则实数a 的取值范围是()A .13[,]24-B .[2-,1]-C .1(,]2-∞-D .3(,)4+∞【解答】解:根据题意,函数(2)y f x =+为偶函数,则函数()f x 的图象关于2x =对称,()f x 对任意1x ,2[2x ∈,12)()x x +∞≠,都有2121()()0f x f x x x -<-,则函数()f x 在[2,)+∞上为减函数, 则f (a )(31)|2||312|f a a a +⇔-+-,即|2||31|a a --,解可得:1324a-,即a 的取值范围为1[2-,3]4.故选:A . 考向2 抽象函数的周期性【例3】(2020•汉中一模)已知函数()f x 是定义在R 上的奇函数,33()()22f x f x +=-,且3(,0)2x ∈-时,2()log (31)f x x =-+,则(2020)(f = )A .4B .2log 7C .2D .2-解:根据题意,()f x 满足33()()22f x f x +=-,即(3)()f x f x +=,函数()f x 是周期为3的周期函数,则(2020)(12019)f f f =+=(1),又由()f x 为奇函数,则f (1)2(1)log (31)2f =--=-+=-,故选:D .【例4】(2020春•天心区校级月考)已知函数()f x 对x R ∀∈满足(2)()f x f x +=-,(1)()(2)f x f x f x +=+,且()0f x >,若f (1)4=,则(2019)(2020)(f f += ) A .34B .2C .52D .4解:根据题意,(1)()(2)f x f x f x +=+,则有(2)(1)(3)f x f x f x +=++, 变形可得(2)()(2)(3)f x f x f x f x +=++,又由()0f x >,则有()(3)1f x f x +=,变形可得1(3)()f x f x +=, 则有1(6)()(3)f x f x f x +==+,即函数()f x 是周期为6的周期函数;()(6)f x f x =+,即函数()f x 的周期为6,则有(2019)(33366)f f f =+⨯=(3),(2020)(43366)f f f =+⨯=(4), 则(2019)(2020)f f f +=(3)f +(4), 对于1(3)()f x f x +=,令1x =可得f (4)11(1)4f ==; 对于(1)()(2)f x f x f x +=+和(2)()f x f x +=-,令0x =可得f (1)(0)f f =(2)4=且(0)f f =(2),()0f x >, 则有(0)f f =(2)2=,则f (3)11(0)2f ==;故f (3)f +(4)113424=+=故选:A . 【变式训练】(2019秋•胶州市期末)已知定义在R 上函数()f x 的图象是连续不断的,满足(1)(1)f x f x -=+,()()f x f x -=-,且()f x 在[0,1]上单调递增,若2(log 3)a f=,b f =,(2020)c f =,则( )A .a b c <<B .a c b <<C .c b a <<D .b c a <<解:因为(1)(1)f x f x -=+,所以函数()f x 关于1x =对称, 又因为()()f x f x -=-,所以函数()f x 为奇函数,所以(1)(1)(1)f x f x f x +=-=--,令1x x =-,则()(2)f x f x =--①令2x x =-,则(2)(4)f x f x -=--②,由①②得,()(4)f x f x =-,即函数()f x 的周期为4. 又因为()f x 在[0,1]上单调递增,于是可以作出如图所示的函数图象,而2log 3(1,2)∈(3,4),所以0a >,0b <,(2020)(5054)(0)0f f f =⨯==,所以0c =, 因此b c a <<.故选:D . 考向3 抽象函数的零点问题【例5】(2019秋•水富市校级期末)若偶函数()()y f x x R =∈满足()(2)f x f x =-,且[1x ∈-,0]时,2()1f x x =-,函数(0)()1(0)lnx x g x x x>⎧⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[5-,5]内的零点的个数为( )A .5B .6C .7D .8解:因为()(2)f x f x =-以及函数为偶函数,所以函数()f x 是周期为2的函数. 因为[1x ∈-,0]时,2()1f x x =-,所以作出它的图象,利用函数()f x 是周期为2的函数,如图,可作出()f x 在区间[5-,5]上的图象,再作出函数(0)()1(0)lnx x g x x x>⎧⎪=⎨-<⎪⎩的图象,可得函数()()()h x f x g x =-在区间[5-,5]内的零点的个数为6个,故选:B .【例6】(2019秋•珠海期末)若偶函数()f x 的图象关于32x =对称,当3[0,]2x ∈时,()f x x =,则函数20()()log ||g x f x x =-在[20-,20]上的零点个数是( )A .18B .26C .28D .30解:令20()log ||h x x =,则()h x 为偶函数且0x ≠,因为()f x 是偶函数,所以()g x 是偶函数且0x ≠, 由20()()log ||0g x f x x =-=得20()log ||f x x =,当0x >时有20()log f x x =, 因为偶函数()f x 的图象关于32x =对称,所以()()f x f x -=且()(3)f x f x =-, 则(3)[3(3)]()()f x f x f x f x +=-+=-=,即()f x 是3T =的周期函数,32kx =,k Z ∈为()f x 的对称轴, 又因为当3[0,]2x ∈时,()f x x =,所以(20)(211)(1)f f f f =-=-=(1)1(20)h ==当(0x ∈,20],()f x ,()h x 在同一坐标系中的图象如下可知()f x 与()h x 在(0,20]上有13个交点,即()g x 在(0,20]上有13个零点, 又因为()g x 是偶函数,所以()g x 在[20-,20]上共有26个零点.故选:B .【变式训练】(2019秋•益阳期末)已知()f x 是在R 上的奇函数,满足()(2)f x f x =-,且[0x ∈,1]时,函数()21x f x =-,函数()()log (1)a g x f x x a =->恰有3个零点,则a 的取值范围是( ) A .1(0,)9B .11(,)95C .(1,5)D .(5,9)解:()f x 是在R 上的奇函数,满足()(2)f x f x =-,函数关于1x =对称,()(2)f x f x =--,可得(4)()f x f x +=,函数的周期为4,且[0x ∈,1]时,函数()21x f x =-,函数的图象如图:当1a >时,函数()()log a g x f x x =-恰有3个零点,就是方程()log a f x x =的解个数为3,可得()y f x =与log a y x =由3个交点,两个函数的图象夹在蓝色与红色,之间满足条件,所以log 51a <,并且log 91a >,解得(5,9)a ∈.故选:D .课后训练1.(2020•模拟)函数()f x 满足3()()()()(f x f y f x y f x y x =++-,)y R ∈,且f (1)13=,则(2020)(f =) A .23B .23-C .13-D .13【解答】解:取1x =,0y =,得3(0)f f (1)f =(1)f +(1)23=,2(0)3f ∴=, 取x n =,1y =,有3()f n f (1)(1)(1)f n f n =++-,即()(1)(1)f n f n f n =++-, 同理:(1)(2)()f n f n f n +=++,(2)(1)f n f n ∴+=--,()(3)(6)f n f n f n ∴=--=- 所以函数是周期函数,周期6T =,故(2020)(33364)f f f =⨯+=(4). 3()()()()f x f y f x y f x y =++-令1x y ==,得23f (1)f =(2)(0)f +,可得f (2)13=-,令2x =,1y =,得3f (2)f (1)f =(3)f +(1),解得f (3)23=-,令3x =,1y =,得3f (3)f (1)f =(4)f +(2),解得f (4)13=-.1(2020)3f ∴=-;选:C .2.(2019秋•北碚区校级期末)已知函数()f x 是定义在R 上的函数,且满足2(1)(1)f x f x +=--,f (1)2<且f (1)0≠,则(2019)f 的取值范围为( ) A .(,1)-∞- B .(1,)-+∞C .(1,)+∞D .(-∞,1)(0-⋃,)+∞解:由题意,令1t x =-,则12x t +=+,故2(2)()f t f t +=-. 22(4)()2(2)()f t f t f t f t +=-=-=+-.∴函数()f x 是以4为最小正周期的周期函数.201945043÷=⋯,(2019)f f ∴=(3)22(21)(21)(1)f f f =+=-=--. f (1)2<且f (1)0≠,∴10(1)f <,或11(1)2f >,则20(1)f ->,或21(1)f -<-. (2019)f ∴的取值范围为(-∞,1)(0-⋃,)+∞.故选:D .3.(2020•许昌一模)已知定义域为R 的函数()f x 满足()()f x f x -=,1(2)()f x f x +=,当[0x ∈,2]时,2()2log (3)f x x =+,则(923)(f = )A .16B .923C .4D .1解:因为定义域为R 的函数()f x 满足()()f x f x -=,所以函数()f x 是偶函数, 又因为1(2)()f x f x +=,所以11(4)()1(2)()f x f x f x f x +===+,所以函数()f x 的周期是4, 所以(923)(42303)f f f =⨯+=(3)(1)f f =-=(1),因为当[0x ∈,2]时,2()2log (3)f x x =+,所以(923)f f =(1)22log 44==,故选:C .4.(2019秋•大理市校级期末)已知函数()f x 是定义在R 上的奇函数,对任意的x R ∈都有33()()22f x f x +=-,当3(,0)2x ∈-时,12()log (1)f x x =-,则(2017)(2019)(f f += )A .1B .2C .1-D .2-解:根据题意,函数()f x 满足任意的x R ∈都有33()()22f x f x +=-,则()(3)f x f x =-,则函数()f x 是周期为3的周期函数,(2017)(16723)f f f =+⨯=(1),(2019)(6733)(0)f f f =⨯=, 又由函数()f x 是定义在R 上的奇函数,则(0)0f =,3(,0)2x ∈-时,12()log (1)f x x =-,则12(1)log [1(1)]1f -=--=-,则f (1)(1)1f =--=;故(2017)(2019)(0)f f f f +=+(1)1=;故选:A .5.(2020•宝鸡二模)已知函数1()3()3x x f x =+,则使得(2)(1)f x f x >+成立的x 的取值范围是( )A .(,1)-∞B .(1,)+∞C .1(3-,1)D .1(,)(1,)3-∞-+∞解:根据题意,函数1()3()3x x f x =+,有1()3()3x x f x -=+,则函数()f x 为偶函数,其导数()3333(33)30x x x x f x ln ln ln --'=-=-,即函数()f x 在[0,)+∞上为增函数, 若(2)(1)f x f x >+,则有(|2|)(|1|)f x f x >+,即|2||1|x x >+,解可得:13x <-或1x >,即不等式的解集为(-∞,1)(13-⋃,)+∞;故选:D .6.若函数()y f x =在区间[a ,]b 上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若f (a )f (b )0>,不存在实数(,)c a b ∈使得f (c )0=B .若f (a )f (b )0>,有可能存在实数(,)c a b ∈使得f (c )0=C .若f (a )f (b )0<,存在且只存在一个实数(,)c a b ∈使得f (c )0=D .若f (a )f (b )0<,有可能不存在实数(,)c a b ∈使得f (c )0= 解:首先,设函数()y f x =在区间[a ,]b 上的图象如下图:上图满足f (a )f (b )0>,有可能存在实数(,)c a b ∈使得f (c )0=,故A 错误,B 正确; 其次,设函数()y f x =在区间[a ,]b 上的图象如图: 上图满足f (a )f (b )0<,但C 都错误,D 、根据零点存在定理,一定存在实数(,)c a b ∈使得f (c )0=,所以D 错误,故选:B .7设函数()f x 是定义在R 上的周期为2的函数,对任意的实数x ,恒()()0f x f x --=,当[1x ∈-,0]时,2()f x x =,若()()log (||1)a g x f x x =-+在R 上有且仅有五个零点,则a 的取值范围为( ) A .[3,5] B ..[2,4]C ..(3,5)D ..(2,4)解:())()0f x f x --=,()()f x f x ∴=-,()f x ∴是偶函数,根据函数的周期和奇偶性作出()f x 的图象如图所示()()log (||1)a g x f x x =-+在R 上有且仅有五个零点,又log (||1)a y x =+也是偶函数且都过(0,0)()y f x ∴=和log (||1)a y x =+在(0,)+∞上只有2个交点,∴(11)1(31)11a a log log a +'<⎧⎪+<⎨⎪>⎩,解得24a <<.故选:D .8.(2019秋•上饶期末)若函数2()1af x lg x =+在(0,)+∞内存在两个互异的x ,使得(1)()f x f x f +=+(1)成立,则a 的取值范围是( ) A.(3-+B.(3C.(1,3 D.(2,3+解:根据条件可得f (1)2alg=,0a >, 且在(0,)+∞上,存在两个不同的x 使得22(1)112a a alglg lgx x =++++成立, 即存在两个互异的(0,)x ∈+∞,使得2222(2)2(22)0a a x a x a a -++-=成立, ①若220a a -=,即2a =时,方程可化为840x +=,解得12x =-,不满足条件,②若220a a -≠时,2()20i a a ->,即2a >时,要想满足条件,则422222244(2)(22)02022202a a a a a a a a a aa a⎧⎪=--->⎪⎪->⎨-⎪⎪->⎪-⎩, 此时因为20a >,220a a ->,故22202a a a-<-矛盾;2()20ii a a -<,即02a <<时,则422222244(2)(22)02022202a a a a a a a a a aa a⎧⎪=--->⎪⎪->⎨-⎪⎪->⎪-⎩,此时(1,3a ∈-,故选:B . 9.(2019秋•安徽期中)定义在R 上的偶函数()f x 满足(4)()f x f x -=,且当[0x ∈,2]时,()f x x =,则(2019)f 的值为( )A .1-B .0C .1D .2解:根据题意,()f x 为偶函数,则()()f x f x -=,又由(4)()f x f x -=,则有(4)()f x f x -=-,变形可得(4)()f x f x +=, 即函数()f x 是周期为4的周期函数,又由[0x ∈,2]时,()f x x =,则()f x 的图象如图所示, 则(2019)(20194505)(1)f f f f =-⨯=-=(1)1=,故选:C .10.(2019秋•运城期中)已知定义在R 上的函数()f x 满足(32)(21)f x f x -=-,且()f x 在[1,)+∞上单调递增,则( )A .0.3 1.13(0.2)(log 0.5)(4)f f f <<B .0.3 1.13(0.2)(4)(log 0.5)f f f <<C . 1.10.33(4)(0.2)(log 0.5)f f f <<D .0.3 1.13(log 0.5)(0.2)(4)f f f <<解:因为由(32)(21)f x f x -=-,所以函数()f x 关于1x =对称, 又因为()f x 在[1,)+∞上单调递增,所以()f x 在(,1)-∞上单调递减,0.3 1.131log 0.500.2144-<<<<<<,所以0.3 1.13(02)(0.5)(4)f f log f <<,故选:A .11.已知定义在R 上的函数()f x ,对任意实数x ,y 满足:()()()f x y f x f y +=,若(0,)x ∈+∞时,0()1f x <<恒成立,则满足不等式2(4)1f x -<的实数x 的取值范围是 .解:特值法,不妨设()(01)x f x a a =<<,满足()()()f x y f x f y +=,且(0,)x ∈+∞时,0()1f x <<恒成立, 则不等式2(4)1f x -<等价于2(4)(0)f x f -<,由函数()f x 为R 上的减函数,故240x ->,解得2x <-或2x >; 故答案为:(-∞,2)(2-⋃,)+∞.12.(2019秋•沙坪坝区校级期末)定义在R 上的函数()f x 满足(2)f x -是偶函数,且对任意x R ∈恒有(3)(1)2020f x f x -+-=,又(2)2019f -=,则(2020)f = .解:定义在R 上的函数()f x 满足(2)f x -是偶函数,(2)(2)f x f x ∴--=-, x R ∀∈,有(3)(1)2020f x f x -+-=,(4)(2)2020f x f x ∴-+-=,(4)(2)2020f x f x ∴-+--=,即(4)(2)2020f x f x ++-=,从而有(6)()2020f x f x ++=,(12)(6)2020f x f x +++=,(12)()f x f x ∴+=,即函数()f x 的最小正周期为12,(2020)(121684)f f f ∴=⨯+=(4)2020(2)1f =--=,故答案为:1. 13.(2019秋•天河区校级期末)已知定义在R 上的函数()F x 满足()()()F x y F x F y +=+,且当0x >时,()0F x <,若对任意[0x ∈,1],不等式组22(2)(4)()(3)F kx x F k F x kx F k ⎧-<-⎨-<-⎩恒成立,则实数k 的取值范围是 . 解:设12x x <,则210x x ->,则21()0F x x -<;则22111()()()()F x F x x F x F x =-+<,则函数()F x 在R 上为减函数; 则对任意[0x ∈,1],不等式组22(2)(4)()(3)F kx x F k F x kx F k ⎧-<-⎨-<-⎩恒成立可化为 22243kx x k x kx k ⎧->-⎨->-⎩对[0x ∈,1]成立,依题22()240()30f x x kx k g x x kx k ⎧=-+-<⎨=--+>⎩对[0x ∈,1]成立,由于()0f x <对[0x ∈,1]成立,则(0)40(1)30f k f k =-<⎧⎨=--<⎩,解得,34k -<<;由于()0g x >对[0x ∈,1]成立,234(1)211x k x x x +∴<=++-++恒成立;2k ∴<;综上所述,32k -<<.故答案为:(3,2)-.14.(2020•攀枝花一模)已知函数()f x 对x R ∀∈满足(2)()f x f x +=-,(1)()(2)f x f x f x +=+,且()0f x >,若f (1)4=,则(2019)(2020)f f += . 解:(1)()(2)f x f x f x +=+,(2)(1)(3)f x f x f x ∴+=++,(2)()(2)(3)f x f x f x f x ∴+=++,且()0f x >, ()(3)1f x f x ∴+=,即1()(3)f x f x =+,则1(3)(6)f x f x +=+,()(6)f x f x ∴=+,即函数()f x 的周期为6,(2019)(2020)f f f ∴+=(3)f +(4), 令0x =,则f (1)(0)f f =(2)4=,且(0)f f =(2),()0f x >,(0)f f ∴=(2)2=, 令1x =,则f (2)f =(1)f (3),即24f =(3),∴1(3)2f =, 令2x =,则f (3)f =(2)f (4),即12(4)2f =,∴1(4)4f =, ∴113(2019)(2020)(3)(4)244f f f f +=+=+=.故答案为:34.。
备战高考数学“棘手”问题培优专题讲座---函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用一.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)即可.(2)应用:根据函数的周期性,可以由函数的局部性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期.函数y=f(x)满足:(1)若f(x+a)=f(x-a),则函数的周期为2a;(2)若f(x+a)=-f(x),则函数的周期为2a;(3)若f(x+a)=-1f(x),则函数的周期为2a;(4)若f(x+a)=1f(x),则函数的周期为2a;(5)若函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|;(6)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|;(7)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期是4|b-a|;(8)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a;(9)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a.【方法点拨】1.函数奇偶性、对称性间关系:(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称;一般的,若对于R上的任意x都有f(a-x)=f(a+x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (-x +a )+f (x +a )=2b , 则y =f (x )的图象关于点(a ,b )中心对称.2. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍, 为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍. (注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)3. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化. 【典型题示例】例1.已知函数f (x )对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________.【分析】由f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12对称,由函数f (x +1)是奇函数,f (x )关于点(1,0)中心对称,根据函数对称性、周期性间关系,知函数f (x )的周期为2,作出函数f (x )的图象即可.【解析】因为函数f (x +1)是奇函数,所以f (-x +1)=-f (x +1),又因为f ⎝ ⎛⎭⎪⎫12+x = f ⎝ ⎛⎭⎪⎫12-x ,所以f (1-x )=f (x ),所以f (x +1)=-f (x ),即f (x +2)=-f (x +1)=f (x ), 所以 函数f (x )的周期为2,且图象关于直线x =12对称.作出函数f (x )的图象如图所示,由图象可得f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4.【答案】4 二、典型例题1.奇偶性与周期性的综合问题1.已知偶函数y =f (x )(x ∈R)在区间[-1,0]上单调递增,且满足f (1-x )+f (1+x )=0,给出下列判断:①f (5)=0; ②f (x )在[1,2]上是减函数; ③函数f (x )没有最小值; ④函数f (x )在x =0处取得最大值; ⑤f (x )的图象关于直线x =1对称. 其中正确的序号是________.解:因为f (1-x )+f (1+x )=0,所以f (1+x )=-f (1-x )=-f (x -1),所以f (2+x )=-f (x ),所以f (x +4)=f (x ),即函数f (x )是周期为4的周期函数.由题意知,函数y =f (x )(x ∈R)关于点(1,0)对称,画出满足条件的图象如图所示,结合图象可知①②④正确.答案:①②④2. 已知定义在R 上的偶函数()f x 满足:当(]1,0x ∈-时,()2x f x =,且()1f x +的图像关于原点对称,则20192f ⎛⎫= ⎪⎝⎭( )A .2B C .2-D .【解题思路】根据偶函数及()1f x +的图像关于原点对称可知,函数的周期;根据周期性及()1f x +为奇函数,可得20192f ⎛⎫⎪⎝⎭的值.解:由题可知函数()f x 的图像关于直线0x =和点()1,0对称,所以函数()f x 的周期为4,则12201933114252222222f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+==-=--=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 答案:C3.已知定义在R 上的函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1,则( )A .f (-3)<f (2)<f ⎝⎛⎭⎫52B .f ⎝⎛⎭⎫52<f (-3)<f (2)C .f (2)<f (-3)<f ⎝⎛⎭⎫52D .f (2)<f ⎝⎛⎭⎫52<f (-3) 解: ∵f (x -1)=f (x +1),则函数f (x )的周期T =2.当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1=x ·e x-1e x +1,则f (-x )=-x ·e -x -1e -x +1=-x ·1-e x 1+e x =x ·e x -1e x +1=f (x ),则函数f (x )为偶函数,因此f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12,f (-3)=f (-1)=f (1),f (2)=f (0). 当0 ≤x ≤1时,函数y =x 与y =1-2e x +1均为增函数且都不小于0, 所以f (x )=x ⎝⎛⎭⎫1-2e x +1在区间[0,1]上是增函数,∴f (1)>f ⎝⎛⎭⎫12>f (0),即f (-3)>f ⎝⎛⎭⎫52>f (2). 答案:D4.(2018年全国2卷)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.【答案】C点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.5. 已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ⎝⎛⎭⎫2 0192=( )A.3+1B.3-1 C .-3-1D .-3+1解:由题可知f (x +2)=f (x )=-f (-x ),所以f ⎝⎛⎭⎫2 0192=f ⎝⎛⎭⎫1 008+32=f ⎝⎛⎭⎫32=-f ⎝⎛⎭⎫-32=-f ⎝⎛⎭⎫12. 又当x ∈(0,1)时,f (x )=3x -1,所以f ⎝⎛⎭⎫12=3-1,则f ⎝⎛⎭⎫2 0192=-f ⎝⎛⎭⎫12=-3+1. 答案:D奇偶性与周期性综合问题的解题策略函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.6. 已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为______ 解:∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1, ∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4. 答案:(-1,4)7. 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 解:∵f (x )的周期为2,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12, 又∵当-1≤x <0时,f (x )=-4x 2+2, ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:18. 若函数f (x )(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 解:由于函数f (x )是周期为4的奇函数,所以f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫2×4-34+f ⎝⎛⎭⎫2×4-76=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76 =-316+sin π6=516.答案:5169.已知f (x )是定义在R 上的偶函数,且f (x +2)=-f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.解:由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=-[-f (x )]=f (x ),所以函数f (x )的周期为4,∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5)=2.5. 答案:2.510.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=________. 解:由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2,f (4)=f (-1)=-f (1)=-1, ∴f (3)-f (4)=-1.答案:-111.已知定义在R 上的函数f (x )满足f (2)=15,且对任意的x 都有f (x +3)=-1f (x ),则f (8)=________;f (2 015)=________. 解:由f (x +3)=-1f (x ),得f (x +6)=-1f (x +3)=f (x ), 故函数f (x )是周期为6的周期函数.故f (8)=f (2)=15,f (2 015)=f (6×335+5)=f (5)=-1f (2)=-115=-5.答案:15;-513.奇函数f (x )的周期为4,且x ∈[0,2],f (x )=2x -x 2,则f (2 018)+f (2 019)+f (2 020)的值为________.解:函数f (x )是奇函数,则f (0)=0,由f (x )=2x -x 2,x ∈[0,2]知f (1)=1,f (2)=0,又f (x )的周期为4,所以f (2 018)+f (2 019)+f (2 020)=f (2)+f (3)+f (0)=f (3)=f (-1)=-f (1)=-1. 答案:-114.已知函数f (x )是周期为2的奇函数,当x ∈[0,1)时,f (x )=lg(x +1),则f ⎝⎛⎭⎫2 0165+lg 18=________.解:由函数f (x )是周期为2的奇函数得f ⎝⎛⎭⎫2 0165=f ⎝⎛⎭⎫65=f ⎝⎛⎭⎫-45=-f ⎝⎛⎭⎫45, 又当x ∈[0,1)时,f (x )=lg(x +1), 所以f ⎝⎛⎭⎫2 0165=-f ⎝⎛⎭⎫45=-lg 95=lg 59, 故f ⎝⎛⎭⎫2 0165+lg 18=lg 59+lg 18=lg 10=1. 答案:115.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1.则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f (x )为奇函数且周期为2,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 答案: 216.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.解:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1, 即3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22, 即b =-2a .② 由①②得a =2,b =-4,从而a +3b =-10. 答案:-1017.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为________.解:因为当0≤x <2时,f (x )=x 3-x ,又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,所以f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,所以f (3)=f (5)=0.故函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为7. 答案:718.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0.其中所有正确命题的序号是________.解:在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确;当x ∈[0,1]时,f (x )=2x 是增函数,根据函数的奇偶性知,f (x )在[-1,0]上是减函数,根据函数的周期性知, 函数f (x )在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f (x )在[0,2]上的最大值f (x )max =f (1)=2,f (x )的最小值f (x )min =f (0)=f (2)=20=1, 且f (x )是周期为2的周期函数.∴f (x )的最大值是2,最小值是1,故③错误. 答案:①②1. 已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝⎛⎭⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.a >b =c B.b >a =c C.b >c >a D.a >c >b解:依题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的函数,f (2)=f (0)=0,又f (3)=-f (2)=0,且f (x )在[0,1)上是增函数, 于是有f ⎝⎛⎭⎫12>f (0)=f (2)=f (3),即a >b =c . 答案:A2.奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2解:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1),∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1), 即f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ), 则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A.3. 已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f (x ),若f (x )在[-1,0]上是减函数, 那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数 解:由题意知f (x +2)=1f (x +1)=f (x ),所以f (x )的周期为2, 又函数f (x )是定义域为R 的偶函数,且f (x )在[-1,0]上是减函数, 则f (x )在[0,1]上是增函数,所以f (x )在[2,3]上是增函数.选A7.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解:∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π,又∵当0≤x <π时,f (x )=0, ∴f ⎝⎛⎭⎫5π6=0,∴f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12. 故选A. 8.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2 014)=( )A .0B .-4C .-8D .-16解:由题可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f(x+12)=f[(x+6)+6]=-f(x+6)=f(x),∴函数f(x)的周期T=12.把y=f(x-1)的图象向左平移1个单位得y=f(x-1+1)=f(x)的图象,关于点(0,0)对称,因此函数f(x)为奇函数,∴f(2 014)=f(167×12+10)=f(10)=f(10-12)=f(-2)=-f(2)=-4,故选B.9.已知f(x)是定义在R上的偶函数,且对任意x∈R,都有f(x+4)=f(x)+f(2),则f(2 014)等于( )A.0B.3C.4D.6解:依题意,得f(-2+4)=f(-2)+f(2)=f(2),即2f(2)=f(2),f(2)=0,f(x+4)=f(x),f(x)是以4为周期的周期函数,又2014=4×503+2,所以f(2014)=f(2)=0.故选A.答案:A11.奇函数f(x)的定义域为R. 若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2 B.-1 C.0 D.1解:因为f(x)为R上的奇函数,所以f(-x)=-f(x),f(0)=0.因为f(x+2)为偶函数,所以f(x+2)=f(-x+2),所以f(x+4)=f(-x)=-f(x),所以f(x+8)=f(x),即函数f(x)的周期为8,故f(8)+f(9)=f(0)+f(1)=1. 故选D12.f(x)是R上的偶函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x2,则函数y=f(x)-|log5x|的零点个数为( )A.4 B.5 C.8 D.10解:由零点的定义可得f(x)=|log5x|,两个函数图象如图,总共有5个交点,所以共有5个零点。
09年高考抽象函数归类分析221400 新沂市第一中学 孙小星抽象函数是指没有明确给出函数表达式,只给出它具有的某些特征或性质(函数恒等式或函数方程),并用一种符号表示的函数。
由于问题呈现的都是抽象函数的有关性质,便难以像常规问题那样去寻求信息、布置解题方案,故感觉无法(法则)可依。
利用抽象这一特点设计考题可以更好地考查学生对函数概念、性质、图像等知识的理解是否深刻,掌握是否牢固。
正因为如此,抽象函数深受命题专家的青睐,已成为近几年高考的热点之一。
为了追踪热点,透视命题规律,本文就2009年高考中的抽象函数题作一归类分析。
1、抽象函数的奇偶性例1、(2009四川卷理)已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是 A.0 B.12 C.1 D.52解析:令21-=x ,则0)21()21(21)21(21)21(21=⇒=-=-f f f f ; 令0=x ,则0)0(=f ,由(1)(1)()xf x x f x +=+得)(1)1(x f x x x f +=+,所以0)0())25((0)21(212335)23(35)23(2325)25(==⇒=⋅===f f f f f f f ,故选择A 。
点评 解此类问题时,必须紧扣奇函数或偶函数的定义同时注意抽象函数的函数值之赋值法。
2、抽象函数的奇偶性与单调性的整合例2、(2009陕西卷文)定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则 (A)(3)(2)(1)f f f <-< (B) (1)(2)(3)f f f <-<(C) (2)(1)(3)f f f -<< (D) (3)(1)(2)f f f <<-答案:A.解析:由2121()(()())0x x f x f x -->等价于2121()()0f x f x x x ->-则()f x 在1212,(,0]()x x x x ∈-∞≠上单调递增, 又()f x 是偶函数,故()f x 在1212,(0,]()x x x x ∈+∞≠单调递减.且满足*n N ∈时, (2)(2)f f -=, 03>21>>,得(3)(2)(1)f f f <-<,故选A.例3、(2009辽宁卷文)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是 (A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 解析 由于f(x)是偶函数,故f(x)=f(|x|)∴得f(|2x -1|)<f(13),再根据f(x)的单调性 得|2x -1|<13 解得13<x <23答案A点评 处理上述两例,关键要弄清下述两个的问题:(1)偶函数的对称性和利用定义确定抽象函数的单调性的方法。
高中数学函数的对称性知识点讲解及典型习题分析新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。
尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。
一、对称性的概念及常见函数的对称性1、对称性的概念:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。
②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。
③二次函数:是轴对称,不是中心对称,其对称轴方程为ab x 2-=。
④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与y=-x 均为它的对称轴。
⑤指数函数:既不是轴对称,也不是中心对称。
⑥对数函数:既不是轴对称,也不是中心对称。
⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性。
⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,2ππ+=k x 是它的对称轴。
⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x ,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x ,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。
抽象函数的性质问题解析抽象函数是高中数学的一个难点,也是近几年来高考的热点。
考查方法往往基于一般函数,综合考查函数的各种性质。
本节给出抽象函数中的函数性质的处理策略,供内同学们参考。
1、 定义域:解决抽象函数的定义域问题——明确定义、等价转换。
材料一:若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=xf y 的定义域。
解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=xf y 而言,有1124x-≤+<,解之得:),21(]31,(+∞--∞∈ x 。
所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞ 总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x 的范围等同。
2、 值域:解决抽象函数的值域问题——定义域、对应法则决定。
材料二:若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域。
解析:函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-。
总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。
3、 对称性:解决抽象函数的对称问题——定义证明是根本、图象变换是捷径、特值代入是妙法。
材料三:设函数)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=的图象关于( )A 、直线0=y 对称B 直线0=x 对称C 直线1=y 对称D 直线1=x 对称 解法一(定义证明):设点),(00y x P 是函数)1(-=x f y 的图象上的任意一点,则)1(00-=x f y ,),(00y x P 关于直线m x =的对称点为),2(00/y x m P -,要使点),2(00/y x m P -在函数)1(x f y -=的图象上,则)21()]2(1[000m x f x m f y -+=--=,应有121-=-m ,故1=m ,所以函数)1(-=x f y 与)1(x f y -=的图象关于直线1=x 对称。
高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解【典型例题】例1、(2023·广东·高三统考学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =;④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增.则上述所有正确结论的编号是________【答案】①③【解析】对于①令0x y ==,则()()()0000f f f +=+,解得()00f =,①正确;对于②令y x =−,则()()()00f f x f x =+−=,∴()()f x f x −=−,∴()f x 是R 上的奇函数,②错误;对于③令1x y ==,则()()()()211212f f f f =+==,∴()11f =,③正确;对于④设12x x >,则120x x −>,∴()()()12120f x x f x f x −=+−<,则()()()122f x f x f x <−−=,∴()f x 在R 上单调递减,④错误.故答案为:①③.例2、(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤−−<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1−B .()()3,11,1−−−C .()(),11,1−∞−− D .()(),31,−∞−⋃+∞ 【答案】B【解析】由()()121221()[]0f x f x x x x x −−<,得()()11221212()[]0x f x x f x x x x x −−<, 因为121200x x x x −>>,,所以()()11220x f x x f x −<,即()()1122x f x x f x <,设()()g x xf x =,则()g x 在()0,∞+上单调递减,而()()()()()1114222g x x f x f g +=++>==,则012x <+<,解得:11x −<<;因为()f x 为R 上的奇函数,所以()()()()g x xf x xf x g x −=−−==,则()g x 为R 上的偶函数,故()g x 在(,0)−∞上单调递增,()()()()11142g x x f x g +=++>=−,则210x −<+<,解得:31x −<<−;综上,原不等式的解集为(),111)3(,−−−.故选:B .例4、(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图像关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =−,12b f ⎛⎫=− ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<【答案】C【解析】 由函数()f x 的图像关于直线1x =对称可得()()31f f =−,结合奇函数的性质可知 ()3a f =−()()()311f f f =−=−−=,()()200c f f ===.由奇函数的性质结合()y f x =在[]0,1上单调递增可得()y f x =在[]1,1−上单调递增, 所以()()1012f f f ⎛⎫−<< ⎪⎝⎭, 所以b c a <<.故选:C例5、(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x −=,当01x ≤≤时,()1e 1x f x −=−,则方程()11f x x =−在区间[]3,5−上所有解的和为( ) A .8B .7C .6D .5【答案】A【解析】 解:因为函数()f x 满足()()2f x f x −=,所以函数()f x 的图像关于直线1x =对称, 又函数()f x 为偶函数,所以()()()2−==−f x f x f x ,所以函数()f x 是周期为2的函数, 又1()1g x x =−的图像也关于直线1x =对称, 作出函数()f x 与()g x 在区间[]3,5−上的图像,如图所示:由图可知,函数()f x 与()g x 的图像在区间[]3,5−上有8个交点,且关于直线1x =对称, 所以方程。
抽象函数与复合函数的应用①抽象函数的性质(定义域、单调性、奇偶性、周期性、对称性)②常见抽象函数模型①-一次函数、二次函数、反比例函数③常见抽象函数模型②-指对幂函数、三角函数④复合函数的应用一、必备知识整合一、抽象函数的性质1.周期性:f x +a =f x ⇒T =a ;f x +a =−f x ⇒T =2a ;f x +a =kf x⇒T =2a ;(k 为常数);f x +a =f x +b ⇒T =a −b 2.对称性:对称轴:f a −x =f a +x 或者f 2a −x =f x ⇒f x 关于x =a 对称;对称中心:f a −x +f a +x =2b 或者f 2a −x +f x =2b ⇒f x 关于a ,b 对称;3.如果f x 同时关于x =a 对称,又关于b ,c 对称,则f x 的周期T =a −b 4.单调性与对称性(或奇偶性)结合解不等式问题①f x 在R 上是奇函数,且f x 单调递增⇒若解不等式f x 1 +f x 2 >0,则有x 1+x 2>0;f x 在R 上是奇函数,且f x 单调递减⇒若解不等式f x 1 +f x 2 >0,则有x 1+x 2<0;②f x 在R 上是偶函数,且f x 在0,+∞ 单调递增⇒若解不等式f x 1 >f x 2 ,则有x 1 >x 2 (不变号加绝对值);f x 在R 上是偶函数,且f x 在0,+∞ 单调递减⇒若解不等式f x 1 >f x 2 ,则有x 1 <x 2 (变号加绝对值);③f x 关于a ,b 对称,且f x 单调递增⇒若解不等式f x 1 +f x 2 >2b ,则有x 1+x 2>2a ;f x 关于a ,b 对称,且f x 单调递减⇒若解不等式f x 1 +f x 2 >2b ,则有x 1+x 2<2a ;④f x 关于x =a 对称,且f x 在a ,+∞ 单调递增⇒若解不等式f x 1 >f x 2 ,则有x 1−a >x 2−a (不变号加绝对值);f x 关于x =a 对称,且f x 在a ,+∞ 单调递减⇒若解不等式f x 1 >f x 2 ,则有x 1−a <x 2−a (不变号加绝对值);5.常见的特殊函数性质一览①f x =log a 1+mx 2±mx 是奇函数②f x =log ak −x k +x f x =log a k +xk −x(k 为常数)是奇函数③f x =1−a x 1+a x 或者f x =1+a x 1−a x 或者f x =a x +1a x −1或者f x =a x −1a x +1是奇函数④f x =m a x+1关于0,m2 对称⑤f g x 复合函数的奇偶性:有偶为偶,全奇为奇二、抽象函数的模型【反比例函数模型】反比例函数:f (x +y )=f (x )f (y )f (x )+f (y ),则f (x )=f (1)x ,x ,f (x ),f (y ),f (x +y )均不为0【一次函数模型】模型1:若f (x ±y )=f (x )±f (y ),则f (x )=f (1)x ;模型2:若f (x ±y )=f (x )±f (y ),则f (x )为奇函数;模型3:若f (x +y )=f (x )+f (y )+m ,则f (x )=f 1 +m x -m ;模型4:若f (x -y )=f (x )-f (y )+m ,则f (x )=f 1 -m x +m ;【指数函数模型】模型1:若f (x +y )=f (x )f (y ),则f (x )=[f (1)]x ;f (x )>0模型2:若f (x -y )=f (x )f (y ),则f (x )=[f (1)]x ;f (x )>0模型3:若f (x +y )=f (x )f (y )m ,则f (x )=f 1 mxm;模型4:若f (x -y )=m f (x )f (y ),则f (x )=m f 1 m x ;【对数函数模型】模型1:若f (x n )=nf (x ),则f (x )=f a log a x a >0且≠1,x >0模型2:若f (xy )=f (x )+f (y ),则f (x )=f a log a x a >0且≠1,x ,y >0模型3:若fxy=f(x)-f(y),则f(x)=f a log a x a>0且≠1,x,y>0模型4:若f(xy)=f(x)+f(y)+m,则f(x)=f a +mlog a x-m a>0且≠1,x,y>0模型5:若fxy=f(x)-f(y)+m,则f(x)=f a -mlog a x+m a>0且≠1,x,y>0【幂函数模型】模型1:若f(xy)=f(x)f(y),则f x =f a log a x a>0且≠1模型2:若fxy=f(x)f(y),则f x =f a log a x a>0且≠1,y≠0,f y ≠0代入f a 则可化简为幂函数;【余弦函数模型】模型1:若f(x+y)+f(x-y)=2f(x)f(y)f(x)不恒为0,则f(x)=cos wx模型2:若f(x)+f(y)=2fx+y2f x-y2f(x)不恒为0,则f(x)=cos wx【正切函数模型】模型:若f(x±y)=f(x)±f(y)1∓f(x)f(y)f(x)f(y)≠1,则f(x)=tan wx模型3:若f(x+y)+f(x-y)=kf(x)f(y)f(x)不恒为0,则f(x)=2kcos wx三、复合函数1.复合函数定义:两个或两个以上的基本初等函数经过嵌套式复合成一个函数叫做复合函数。
函数的单调性、奇偶性、周期性、对称性及函数的图像(一)复习指导单调性:设函数y =f (x)定义域为A ,区间MA ,任取区间M 中的两个值x 1,x 2,改变量Δx =x 2-x 1>0,则当Δy =f(x 2)-f(x 1)>0时,就称f(x)在区间M 上是增函数,当Δy=f(x 2)-f(x 1)<0时,就称f(x)在区间M 上是减函数.如果y =f(x)在某个区间M 上是增(减)函数,则说y=f(x)在这一区间上具有单调性,这一区间M 叫做y=f(x)的单调区间.函数的单调性是函数的一个重要性质,在给定区间上,判断函数增减性,最基本的方法就是利用定义:在所给区间任取x 1,x 2,当x 1<x 2时判断相应的函数值f(x 1)与f(x 2)的大小.利用图象观察函数的单调性也是一种常见的方法,教材中所有基本初等函数的单调性都是由图象观察得到的.对于y=f[φ(x)]型双重复合形式的函数的增减性,可通过换元,令u=φ(x),然后分别根据u=φ(x),y=f(u)在相应区间上的增减性进行判断,一般有“同则增,异则减”这一规律.此外,利用导数研究函数的增减性,更是一种非常重要的方法,这一方法将在后面的复习中有专门的讨论,这里不再赘述.奇偶性:(1)设函数f(x)的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f(-x)=-f(x),则这个函数叫做奇函数;设函数f(x)的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f(-x)=f(x),则这个函数叫做偶函数.函数的奇偶性有如下重要性质:f(x)奇函数f(x)的图象关于原点对称.f(x)为偶函数f(x)的图象关于y 轴对称.此外,由奇函数定义可知:若奇函数f(x)在原点处有定义,则一定有f(0)=0,此时函数f(x)的图象一定通过原点.周期性:对于函数f(x),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f(x+T)=f(x)成立,则函数f(x)叫做周期函数,非零常数T 叫做这个函数的周期.关于函数的周期性,下面结论是成立的.(1)若T 为函数f(x)的一个周期,则kT 也是f (x)的周期(k 为非零整数).(2)若T 为y=f(x)的最小正周期,则||T 为y=Af(ωx+φ)+b 的最小正周期,其中ω≠0.对称性:若函数y=f(x)满足f(a -x)=f(b+x)则y=f(x)的图象关于直线2ba x对称,若函数y=f (x)满足f(a -x)=-f(b+x)则y=f(x)的图象关于点(2ba ,0)对称.函数的图象:函数的图象是函数的一种重要表现形式,利用函数的图象可以帮助我们更好的理解函数的性质,我们首先要熟记一些基本初等函数的图象,掌握基本的作图方法,如描点作图,三角函数的五点作图法等,掌握通过一些变换作函数图象的方法.同时要特别注意体会数形结合的思想方法在解题中的灵活应用.(1)利用平移变换作图:y=f(x)左右平移y=f(x +a) y=f(x)上下平移y=f(x)+b(2)利用和y=f(x)对称关系作图:y=f(-x)与y=f (x)的图象关于y 轴对称;y=-f(x)与y=f(x)的图象关于x 轴对称y=-f(-x)与y =f(x)的图象关于原点对称;y=f -1(x)与y=f(x)的图象关于直线y=x 对称(3)利用y=f(x)图象自身的某种对称性作图y=|f(x)|的图象可通过将y=f(x)的图象在x 轴下方的部分关于x 轴旋转180°,其余部分不变的方法作出.y=f(|x|)的图象:可先做出y=f(x),当x ≥0时的图象,再利用偶函数的图象关于y 轴对称的性质,作出y=f(x)(x<0)的图象.此外利用伸缩变换作图问题,待三角的复习中再进行研究.还要记住一些结论:若函数y=f(x)满足f (a -x)=f(b+x)则y=f(x)的图象关于直线2ba x对称,若函数y=f (x)满足f(a -x)=-f(b+x)则y=f(x)的图象关于点(2ba ,0)对称.(二)解题方法指导例1.设a ≠0,试确定函数21)(xax x f 在(-1,1)上的单调性.例2.讨论xxx f 2)(的增减性.例3.f(x)在(-∞,2)上是增函数,且对任意实数x 均有f(4-x)=f(x)成立,判断f(x)在(2,+∞)上的增减性.例4*.已知函数f(x)的定义域为R ,对任意实数m ,n ,都有21)()()(n f m f n m f 且当21x时,f(x)>0.又.0)21(f (Ⅰ)求证;1)21(,21)0(f f (Ⅱ)判断函数f(x)的单调性并进行证明例5.在R 上求一个函数,使其既是奇函数,又是偶函数例6.判断下列函数的奇偶性)1lg()()1(2xxx f (2)11)()(xx aa x x f (其中φ(x)为奇函数,a >0且a ≠1).例7.设函数])1,1[(1)(2x bxxa x x f 是奇函数,判断它的增减性.例8.设f(x)是定义域为R 且以2为一个周期的周期函数,也是偶函数,已知当x ∈[2,3]时f (x)=(x -1)2+1,求当x ∈[1,2]时f(x)的解析式.例9.作出112xx y的图象,并指出函数的对称中心,渐近线,及函数的单调性.例10.作出函数的图象(1)1)1(32x y(2)y=|lg|x||例11.(1)作出方程|x |+|y |=1所表示的曲线.(2)作出方程|x -1|+|y+1|=1所表示的曲线.例12.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x 2+2x .(1)求函数g(x)的解析式;(2)解不等式g(x)≥f(x)-|x -1|.例题解析例1解:任取x 1,x 2∈(-1,1),且Δx=x 2-x 1>0,则)1)(1()1)((11)()(2221211222122212x x x x x x a x ax x ax x f x f y由于-1<x 1<x 2<1,所以Δx=x 2-x 1>0,1+x 1x 2>0,1-21x >0,1-22x >0.因此当a >0时,Δy=f(x 2)-f(x 1)>0,当a <0时,Δy=f(x 2)-f(x 1)<0.所以当a >0时f(x)在(-1,1)上是增函数,当a <0时,f(x)在(-1,1)上是减函数.例2分析:可先在(0,+∞)上研究f(x)的增减性,然后根据f(x)的奇偶性判断其在(-∞,0)上的增减性,而当x >0时,有,222)(xxx f 当且仅当x x2即2x 时“=”成立,即当2x 时,f(x)取得最小值,2由此可知x=2是函数单调区间的一个分界点.解:任取x 1,x 2∈(0,2],且Δx=x 2-x 1>0则)21)(()2()2()()(2112112212x x x x x x x x x f x f y因为,2021x x Δx=x 2-x 1>0,且02121x x ,因此Δy=f(x 2)-f(x 1)<0,故f(x)在]2,0(上是减函数.同理可证f(x)在),2[是增函数.又由),(2)(x f xxx f 可知f(x)是奇函数,其图像关于原点对称,所以可知f(x)在]2,(上是增函数,在)0,2[上是减函数.综上所述,x xx f 2)(在]2,(和),2[上是增函数,在)0,2[,]2,0(上是减函数.例3解:任取x 1,x 2∈(2,+∞),且x 1<x 2,则由2<x 1<x 2得2>4-x 1>4-x 2 因为f(x)在(-∞,2)上是增函数,所以有f(4-x 1)>f(4-x 2)而由已知又有f(4-x 1)=f(x 1),f(4-x 2)=f(x 2),所以f(x 1)>f(x 2),故f(x)在(2,+∞)上是减函数.小结:注意体会解题中的划归思想.此题若是一个小题,由f(4-x)=f(x)可知f (x)的图像关于x=2对称,立即就可以判断出f(x)在(2,+∞)上是减函数.例4分析:判断这类抽象函数的单调性,关键是根据已知去创造条件,利用单调性的定义进行和判断,可以采用分析法寻求解题思路.解:(Ⅰ)由f(m +n)=f(m)+f(n)21得f(0)=f(0+0)=2f(0)21有f(0)=-21又由及0)21(f 得1)21(f (Ⅱ)任取x 1,x 2∈R 且Δx =x 2-x 1>0则212112x x 根据已知可得)21(12x x f 则有21)()()()(1121122x f x x f x x x f x f 21)(21)21()21(21)()2121(112112x f f x x f x f x x f ).(1)(11)()21(0111x f x f x f f 函数f(x)在R 上为增函数.例5解:设所求的R 上的函数为f(x),则由函数奇偶性定义得f(-x)=-f(x)①,f(-x)=f(x)②,联立①②,消去f(-x),得f(x)=0.显然函数f(x)=0既是奇函数又是偶函数,所以f(x)=0就是所求的函数.例6解:(1)因为对任意x ∈R ,都有0||122xx x xx x,所以函数定义域为R任取x ∈R ,则-x ∈R 且有)()1lg()1lg()1lg()(2122x f xxxxxx x f 所以)1lg()(2xxx f 是奇函数(2)函数的定义域为R .任取x ∈R ,则-x ∈R ,且有.11)(11)(11)()(xx xxxx aa x a a x aa x x f 所以11)()(xx aa x x f 是偶函数.例7解:显然x ∈[-1,1],-x ∈[-1,1],因为f(x)为奇函数,所以对区间[-1,1]内任意实数x 均有f(-x)=-f(x)成立,即1122bx xa x bxxa x ,也就是1122bxxa x bxxa x 这是关于x 的恒等式,比较两端分子分母对应项的系数,可得a=b=0.所以1)(2xx x f 任取x 1,x 2∈[-1,1],且Δx=x 2-x 1>0 则)1)(1()1)((11)()(2221211221122212xxx x x x x x x x x f x f y因为-1≤x 1<x 2≤1,所以Δx=x 2-x 1>0,1-x 1x 2>0,因此Δy=f(x 2)-f(x 1)>0,所以当x ∈[-1,1]时1)(2xx x f 为增函数.注:此题也可以通过f(0)=0,f(-1)=-f (-1)求得a=b=0例8分析:此题的解答要抓住两个关键点,一个是f(x)为偶函数,再一个是f(x)为周期函数,通过画出草图,就会发现可以先求出当x ∈[-3,-2]时函数的解析式,在利用周期性求出当x ∈[1,2]时f(x)的解析式,要注意体会划归的思想方法.解:当x ∈[-3,-2]时-x ∈[2,3]所以f(-x)=(-x -1)2+1=(x +1)2+1,因为f(x)是偶函数,因此当x ∈[-3,-2]时,f(x)=(x +1)2+1当x ∈[1,2]时,x -4∈[-3,-2],有f(x -4)=(x -4+1)2+1=(x -3)2+1,因为2为f(x)的周期,可知-4也为f(x)一个周期,有f(x -4)=f(x)故x ∈[1,2]时f(x)=(x -3)2+1.例9解:因为112112x x x y所以将xy1的图象向左平移一个单位,再向上平移两个单位,即可得到112xx y的图象,如图由图象可以得到:对称中心为(-1,2)渐近线分别为x=-1,y=2函数在(-∞,-1)和(-1,+∞)上都是增函数.例10解:(1)将函数32x y的图象向右平移一个单位,再向上平移一个单位,即可的得到1)1(32xy ,如图.(2)y=|lg |x ||为偶函数,当x >0时先作出y=lg x 的图象,在根据奇偶性作出y=lg |x |的图象,最后将y=lg |x |在横轴下面的图象关于x 轴旋转180°,其余部分不变.即可得到y=|lg |x ||的图象,如图.例11分析,曲线|x |+|y |=1是关于x 轴,y 轴和原点的对称图形,利用对称性可以很快的作出曲线,至于曲线|x -1|+|y +1|=1,只需通过将曲线|x |+|y |=1适当平移即可得到.解:(1)先作出线段x +y=1(x ≥1,y ≥1),再作出该线段分别关于x 轴,y 轴和原点分别对称的线段,就得到方程|x |+|y |=1所表示的曲线,如图.(2)将(1)中方程|x |+|y |=1所表示的曲线右移一个单位,下移一个单位就得到方程|x -1|+|y +1|=1所表示的曲线,如图.例12解:(1)设f(x)上任意一点P(x 0,y 0)关于原点的对称点为P (x ,y)则220y y x x 即yy x x 00因为点P(x 0,y 0)在f (x)=x 2+2x 的图像上,所以20xy 2x 0,即-y=(-x)2+2(-x)故g(x)=-x 2+2x .(2)由g(x)≥f(x)-|x -1|得2x 2≤|x -1|当x ≥1时,不等式化为2x 2-x +1≤0,此式无实数解.当x <1时,不等式化为2x 2+x -1≤0解得211x,因此g(x)≥f(x)-|x -1|解集为].21,1[。
复习专题5--抽象函数的奇偶性周期性对称性抽象函数的奇偶性、周期性和对称性是数学中重要的概念,它们用来描述函数的特点和性质。
在本文中,我们将对这些概念进行复习和详细解释。
首先,我们来复习抽象函数的奇偶性。
奇函数是指满足f(-x)=-f(x)的函数,即对于函数的定义域内的任意x,函数值f(-x)与f(x)有相反的符号。
奇函数的图像关于原点对称,通常呈现出关于原点对称的特点。
例如,f(x)=x^3是一个奇函数,因为f(-x)=-x^3、对于奇函数,如果其函数图像在原点通过,则其图像也必然经过一些关于原点对称的点。
与奇函数相对的是偶函数。
偶函数是指满足f(-x)=f(x)的函数,即对于函数的定义域内的任意x,函数值f(-x)与f(x)相等。
偶函数的图像关于y轴对称,通常呈现出关于y轴对称的特点。
例如,f(x)=x^2是一个偶函数,因为f(-x)=(-x)^2=x^2、对于偶函数,如果其函数图像在y轴通过,则其图像在整个y轴上对称。
接下来,我们来复习抽象函数的周期性。
周期函数是指满足f(x+T)= f(x)的函数,其中T是一个常数,称为函数的周期,函数定义域内的任意x都满足这个条件。
周期函数的特点是其函数图像在横坐标上以一定的间隔重复出现。
例如,f(x) = sin(x)是一个周期函数,它的周期是2π,即对于任意x,f(x+2π) = sin(x)。
最后,我们来复习抽象函数的对称性。
对称函数是指满足f(x)=f(-x)的函数,即对于函数的定义域内的任意x,函数值f(x)与f(-x)相等。
对称函数的图像有一个对称轴,即对于任意在对称轴上的点x,其关于对称轴的对称点也属于函数的图像。
例如,f(x)=x^4是一个对称函数,因为f(x)=f(-x)=x^4、对称函数的对称轴可以是y轴、原点或其他直线。
综上所述,奇偶性、周期性和对称性是抽象函数重要的特性。
它们可以帮助我们更好地理解函数的性质和图像,并在解决问题中起到指导作用。
抽象函数的对称性、奇偶性与周期性一、典例分析1.求函数值例1.设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于( )(A )0.5;(B )-0.5; (C )1.5; (D )-1.5.例2.已知)(x f 是定义在实数集上的函数,且[])(1)(1)2(x f x f x f +=-+,,32)1(+=f 求)1989(f 的值.(1989)f = 。
2、比较函数值大小例3.若))((R x x f ∈是以2为周期的偶函数,当[]1,0∈x 时,,)(19981xx f =试比较)1998(f 、)17101(f 、)15104(f 的大小.3、求函数解析式例4.设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当0I x ∈时,.)(2x x f =求)(x f 在k I 上的解析式.例5.设)(x f 是定义在),(+∞-∞上以2为周期的周期函数,且)(x f 是偶函数,在区间[]3,2上,.4)3(2)(2+--=x x f 求[]2,1∈x 时,)(x f 的解析式.4、判断函数奇偶性例6.已知)(x f 的周期为4,且等式)2()2(x f x f -=+对任意R x ∈均成立,判断函数)(x f 的奇偶性.5、确定函数图象与x 轴交点的个数例7.设函数)(x f 对任意实数x 满足)2()2(x f x f -=+,=+)7(x f ,0)0()7(=-f x f 且判断函数)(x f 图象在区间[]30,30-上与x 轴至少有多少个交点.6、在数列中的应用例8.在数列{}n a 中,)2(11,3111≥-+==--n a a a a n n n ,求数列的通项公式,并计算.1997951a a a a ++++7、在二项式中的应用例9.今天是星期三,试求今天后的第9292天是星期几?8、复数中的应用例10.(XX 市1994年高考题)设)(2321是虚数单位i i z +-=,则满足等式,z z n =且大于1的正整数n 中最小的是()(A ) 3 ; (B )4 ; (C )6 ; (D )7.9、解“立几”题例11.ABCD —1111D C B A 是单位长方体,黑白二蚁都从点A 出发,沿棱向前爬行,每走一条棱称为“走完一段”。
白蚁爬行的路线是,111 →→D A AA 黑蚁爬行的路线是.1 →→BB AB 它们都遵循如下规则:所爬行的第2+i 段所在直线与第i 段所在直线必须是异面直线(其中)N i ∈.设黑白二蚁走完第1990段后,各停止在正方体的某个顶点处,这时黑白蚁的距离是()(A )1; (B )2;(C )3 ; (D )0.例题与应用例1:f(x) 是R 上的奇函数f(x)=- f(x+4) ,x ∈[0,2]时f(x)=x ,求f(2007) 的值例2:已知f(x)是定义在R 上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,求f(2009) 的值 。
例3:已知f(x)是定义在R 上的偶函数,f(x)= f(4-x),且当[]0,2-∈x 时,f(x)=-2x+1,则当[]6,4∈x 时求f(x)的解析式例4:已知f(x)是定义在R 上的函数,且满足f(x+999)=)(1x f -,f(999+x)=f(999-x), 试判断函数f(x)的奇偶性.例5:已知f(x)是定义在R 上的偶函数,f(x)= f(4-x),且当[]0,2-∈x 时,f(x)是减函数,求证当[]6,4∈x 时f(x)为增函数例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a ∈[5,9]且f(x)在[5,9]上单调.求a 的值.例7:已知f(x)是定义在R 上的函数,f(x)= f(4-x),f(7+x)= f(7-x),f(0)=0,求在区间[-1000,1000]上f(x)=0至少有几个根?例8、 函数y =f(x)是定义在实数集R 上的函数,那么y =-f(x +4)与y =f(6-x)的图象之间()A .关于直线x =5对称B .关于直线x =1对称C .关于点(5,0)对称D .关于点(1,0)对称例9、 设f(x)是定义在R 上的偶函数,其图象关于x =1对称,证明f(x)是周期函数。
例10、 设f(x)是(-∞,+∞)上的奇函数,f(x +2)=-f(x),当0≤x≤1时f(x)=x ,则f(7.5)等于()例11、 设f(x)是定义在R 上的函数,且满足f(10+x)=f(10-x),f(20-x)=-f(20+x),则f(x)是()A .偶函数,又是周期函数B .偶函数,但不是周期函数C .奇函数,又是周期函数D .奇函数,但不是周期函数二、巩固练习1、函数y =f(x)是定义在实数集R 上的函数,那么y =-f(x +4)与y =f(6-x)的图象( )。
A .关于直线x =5对称B .关于直线x =1对称C .关于点(5,0)对称D .关于点(1,0)对称2、设f(x)是(-∞,+∞)上的奇函数,f(x +2)=-f(x),当0≤x≤1时,f(x)=x ,则f(7.5)=( )。
A .0.5B .-0.5C .1.5D .-1.53、设f(x)是定义在(-∞,+∞)上的函数,且满足f(10+x)=f(10-x),f(20-x)=-f(20+x),则f(x)是( )。
A .偶函数,又是周期函数B .偶函数,但不是周期函数C .奇函数,又是周期函数D .奇函数,但不是周期函数4、f(x)是定义在R 上的偶函数,图象关于x =1对称,证明f(x)是周期函数。
5、在数列12211(*)n n n n x x x x x x n N ++===-∈{}中,已知,,求100x =抽象函数的对称性、奇偶性与周期性常用结论一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若为偶函数则称)()()(x f y x f x f ==-。
分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
关于点与(函数),(0)2,2(0),b a y b x a F y x F =--=(2)轴对称:对称轴方程为:0=++C By Ax 。
①))(2,)(2(),(),(2222//B A C By Ax B y B A C By Ax A x B y x B y x A +++-+++-=与点关于直线成轴对称;0=++C By Ax ②函数))(2()(2)(2222B A C By Ax A x f B A C By Ax B y x f y +++-=+++-=与关于直线 0=++C By Ax 成轴对称。
③0))(2,)(2(0),(2222=+++-+++-=BA C By AxB y B AC By Ax A x F y x F 与关于直线 0=++C By Ax 成轴对称。
二、函数对称性的几个重要结论(一)函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。
推论1:)()(x a f x a f -=+⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -=⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=-⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++-⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数3、函数)(x f y =与()y f x =-图象关于X 轴对称4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称推论2:函数)(x f y =与)2(x a f y -=图象关于直线a x =对称推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称(三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数y =f(x)关于直线x =a 轴对称,则以下三个式子成立且等价:(1)f(a +x)=f(a -x) (2)f(2a -x)=f(x) (3)f(2a +x)=f(-x)性质2 若函数y =f(x)关于点(a ,0)中心对称,则以下三个式子成立且等价:(1)f(a +x)=-f(a -x)(2)f(2a -x)=-f(x)(3)f(2a +x)=-f(-x)易知,y =f(x)为偶(或奇)函数分别为性质1(或2)当a =0时的特例。