高三理科数学第一轮复习立体几何二面角
- 格式:doc
- 大小:951.50 KB
- 文档页数:9
高中立体几何中二面角求法摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。
(一)、二面角定义的回顾:从一条直线出发的两个半平面所组成的图形就叫做二面角。
二面角的大小是用二面角的平面角来衡量的。
而二面角的平面角是指在二面角的棱上任取一点O,分别在两个半平面内作射线,则为二面角的平面角。
(二)1、由定义作出二面角的平面角;2、利用三垂线定理(逆定理)作出二面角的平面角;3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。
4、空间坐标法求二面角的大小5、平移或延长(展)线(面)法6、射影公式S射影=S斜面cosθ7、化归为分别垂直于二面角的两个面的两条直线所成的角1、利用定义作出二面角的平面角,并设法求出其大小。
例1、如图,已知二面角α-а-β等于120°,PA⊥α,A∈α,PB⊥β,B∈β. 求∠APB的大小.解: 设平面∩PABα=OA,平面PAB∩β=OB。
同理PB⊥а ∴а⊥平面PAB又∵OA⊂平面PAB ∴а⊥OA同理а⊥OB.∴∠AOB是二面角α-а-β的平面角.在四边形PAOB中, ∠AOB=120°,.∠PAO=∠POB=90°, 所以∠APB=60°2、三垂线定理(逆定理)法由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。
例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E是棱BC的中点,求面C 1DE与面CDE所成二面角的正切值.解:在长方体ABCD—A 1B 1C 1D 1中由三垂线定理可得:CD =2 CE=1, DE=3、找(作)公垂面法由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。
二面角求法1 .定义法即在二面角的棱上找一点,在二面角的两个面内分别作棱的射线即得二面角的平面角.·例1 . 正方体ABCD-A 1B 1C 1D 1中,求 二面角A-BD-C 1解析:易知∠COC 1是二面角C-BD-C 1的平面角,且tan ∠COC 1例2.在锥体P-ABCD 中,ABCD 是边长为1的菱形,且∠DAB=60︒,PA PD ==分别是BC,PC 的中点.求:二面角P-AD-B 的余弦值.&解:由(1)知PGB ∠为二面角P AD B --的平面角,在Rt PGA ∆中,2217()24PG =-=;在Rt BGA ∆中,222131()24BG =-=;在PGB ∆中,222cos 2PG BG PB PGB PG BG +-∠==⋅.2 三垂线法此法最基本的一个模型为:如图3,设锐二面角βα--l ,过面α 内一点P 作PA ⊥α于A ,作AB ⊥l 于B ,连接PB ,由三垂线定理得PB ⊥l ,则∠PBA 为二面角βα--l 的平面角,故称此法为三垂线法.《例3.如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2, 求:二面角A 1-AB -B 1的正弦值.分析与略解:作A 1E ⊥AB 1于AB 1于E ,则可证A 1E ⊥平面AB 1B.@—A图3αβP¥BlB 1 A *A 1l%EF@PCS| FGP ASBS;C DSF E,过E 作EF ⊥AB 交AB 于F ,连接A 1F ,则得A 1F ⊥AB , ∴∠A 1FE 就是所求二面角的平面角.依次可求得 AB 1=B 1B=2,A 1B=3,A 1E=22,A 1F=23, 则在Rt △A 1EF 中,sin ∠A 1FE=A 1E A 1F =63 .·例4.如图所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD,点E 在线段PC 上,PC ⊥平面BDE.若PA=1,AD=2,求二面角B-PC-A 的正切值.】解:由(1)得BD ⊥平面PAC, ∴BD ⊥AC.又四边形ABCD 为矩形,∴四边形ABCD 是正方形.设AC 交BD 于O 点,∵PC ⊥平面BDE,∴∠BEO 即为二面角B-PC-A 的平面角. ∵PA=1,AD=2,∴AC=2,BO=OC=,∴PC==3,—又OE===在直角三角形BEO 中,tan ∠BEO===3,∴二面角B-PC-A 的正切值为3.例5. 如图, 四棱锥P-ABCD 中, 底面ABCD 为矩形, PA ⊥底面ABCD, PA=AB=, 点E 是棱PB 的中点.(1) 若AD=, 求二面角A-EC-D的平面角的余弦值.—(1) 过点D作DF⊥CE, 交CE于F, 过点F作FG⊥CE, 交AC于G, 则∠DFG为所求的二面角的平面角.由(Ⅰ) 知BC⊥平面PAB, 又AD∥BC, 得AD⊥平面PAB, 故AD⊥AE, 从而DE==. 在Rt△CBE中, CE==. 由CD=, 所以△CDE为等边三角形, 故F为CE的中点, 且DF=CD·sin=.因为AE⊥平面PBC, 故AE⊥CE, 又FG⊥CE, 知FG=AE, 从而FG=, 且G点为AC的中点. 连结DG, 则在Rt△ADG中, DG=AC==.,所以cos∠DFG==.、3、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。
真题演练集训1.[2022·新课标全国卷Ⅱ]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值. (1)证明:由已知,得AC ⊥BD ,AD =CD . 又由AE =CF ,得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H . 由AB =5,AC =6,得 DO =BO =AB 2-AO 2=4. 由EF ∥AC ,得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解:如图,以H 为坐标原点,HF →的方向为x 轴正方向,HD →的方向为y 轴正方向,HD →′的方向为z 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0), AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0, 所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0, 所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n|m||n|=-1450×10=-7525,sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.2.[2022·山东卷]在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点.求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值. (1)证明:设FC 的中点为I ,连接GI ,HI ,在△CEF 中,由于点G 是CE 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,由于H 是FB 的中点, 所以HI ∥BC .又HI ∩GI =I ,OB ∩BC =B , 所以平面GHI ∥平面ABC .由于GH ⊂平面GHI , 所以GH ∥平面ABC .(2)解:解法一:连接OO ′,则OO ′⊥平面ABC . 又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz .由题意,得B (0,23,0),C (-23,0,0), 所以BC →=(-23,-23,0). 过点F 作FM 垂直OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).故BF →=(0,-3,3).设m =(x ,y ,z )是平面BCF 的法向量, 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎪⎨⎪⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎪⎫-1,1,33.由于平面ABC 的一个法向量n =(0,0.1),所以cos〈m,n 〉=m·n|m||n|=77.所以二面角F-BC-A的余弦值为7 7.解法二:如图,连接OO′.过点F作FM垂直OB于点M,则有FM∥OO′.又OO′⊥平面ABC,所以FM⊥平面ABC.可得FM=FB2-BM2=3.过点M作MN垂直BC于点N,连接FN.可得FN⊥BC,从而∠FNM为二面角F-BC-A的平面角.又AB=BC,AC是圆O的直径,所以MN=BM sin 45°=6 2,从而FN=422,可得cos ∠FNM=77.所以二面角F-BC-A的余弦值为7 7.3.[2022·新课标全国卷Ⅲ]如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD ∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.(1)证明:由已知,得AM=23AD=2.如图,取BP的中点T,连接AT,TN.由N为PC的中点知,TN∥BC,TN=12BC=2.又AD∥BC,故TN綊AM,四边形AMNT为平行四边形,于是MN∥AT.由于AT⊂平面P AB,MN⊄平面P AB,所以MN∥平面P AB.(2)解:取BC的中点E,连接AE.由AB=AC,得AE⊥BC,从而AE⊥AD,且AE=AB2-BE2=AB2-⎝⎛⎭⎪⎫BC22= 5.以A为坐标原点,AE→的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝ ⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2.设n =(x ,y ,z )为平面PMN 的法向量, 则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎨⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN 所成角的正弦值为8525.4.[2021·新课标全国卷Ⅰ]如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3. 由BE ⊥平面ABCD ,AB =BC 可知,AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 由于EG ⊂平面AEC , 所以平面AEC ⊥平面AFC .(2)解:如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G -xyz .由(1)可得A (0,-3,0),E (1,0,2),F ⎝⎛⎭⎪⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.5.[2021·新课标全国卷Ⅱ]如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 解:(1)交线围成的正方形EHGF 如图所示.(2)作EM ⊥AB ,垂足为M , 则AM =A 1E =4,EM =AA 1=8. 由于四边形EHGF 为正方形, 所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向, 建立如图所示的空间直角坐标系D -xyz , 则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8), FE →=(10,0,0),HE →=(0,-6,8). 设n =(x ,y ,z )是平面α的法向量, 则⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0, 所以可取n =(0,4,3).又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面α所成角的正弦值为4515. 课外拓展阅读巧用向量法求立体几何中的探究性问题立体几何中的探究性问题立意新颖,形式多样,近年来在高考中频频消灭,而空间向量在解决立体几何的探究性问题中扮演着举足轻重的角色,它是争辩立体几何中的探究性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探究性问题供应了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探究性问题的常见类型及其求解策略.1.条件追溯型解决立体几何中的条件追溯型问题的基本策略是执果索因.其结论明确,需要求出访结论成立的充分条件,可将题设和结论都视为已知条件,即可快速找到切入点.这类题目要求考生变换思维方向,有利于培育考生的逆向思维力量.[典例1] 如图所示,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CEBE =λ,当实数λ的值为________时,∠AFE 为直角.[思路分析][解析] 由于SA ⊥平面ABCD ,∠BAD =90°, 故可建立如图所示的空间直角坐标系A -xyz .由于AB =4,SA =3, 所以B (0,4,0),S (0,0,3). 设BC =m ,则C (m,4,0), 由于SF BF =CEBE =λ,所以SF →=λFB →.所以AF →-AS →=λ(AB →-AF →).所以AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3).所以F ⎝ ⎛⎭⎪⎪⎫0,4λ1+λ,31+λ. 同理可得E ⎝ ⎛⎭⎪⎪⎫m 1+λ,4,0, 所以FE →=⎝ ⎛⎭⎪⎫m 1+λ,41+λ,-31+λ. 由于F A →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角,即F A →·FE →=0, 则0·m 1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,所以16λ=9, 解得λ=916. [答案] 916 2.存在推断型以“平行、垂直、距离和角”为背景的存在推断型问题是近年来高考数学中创新型命题的一个重要类型,它以较高的新颖性、开放性、探究性和制造性深受命题者的青睐,此类问题的基本特征是:要推断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种状况:假如存在,找出一个来;假如不存在,需要说明理由.这类问题常用“确定顺推”的方法.求解此类问题的难点在于涉及的点具有运动性和不确定性,所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简洁、解法固定、操作便利.[典例2] 如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.[思路分析][解] (1)如图所示,以D 为坐标原点,建立空间直角坐标系D -xyz . 依题意,得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E ⎝ ⎛⎭⎪⎫12,1,0, 所以NE →=⎝⎛⎭⎪⎫-12,0,-1,AM →=(-1,0,1),由于|cos 〈NE →,AM →〉|=|NE →·AM →||NE →||AM →|=1252×2=1010. 所以异面直线NE 与AM 所成角的余弦值为1010.(2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN . 连接AE ,如图所示.由于AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ), 又EA →=⎝⎛⎭⎪⎫12,-1,0,所以ES →=EA →+AS →=⎝⎛⎭⎪⎫12,λ-1,λ.由ES ⊥平面AMN ,得⎩⎨⎧ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧-12+λ=0,(λ-1)+λ=0,解得λ=12,此时AS →=⎝ ⎛⎭⎪⎫0,12,12,|AS →|=22.经检验,当|AS |=22时,ES ⊥平面AMN .故在线段AN 上存在点S ,使得ES ⊥平面AMN ,此时|AS |=22. 3.结论探究型立体几何中的结论探究型问题的基本特征是:给出肯定的条件与设计方案,推断设计的方案是否符合条件要求.此类问题的难点是“阅读理解”和“整体设计”两个环节,因此,应做到审得认真、找得有法、推得有理、证得有力,整合过程无可辩驳.[典例3] 某设计部门承接一产品包装盒的设计(如图所示),客户除了要求AB ,BE 边的长分别为20 cm,30 cm 外,还特殊要求包装盒必需满足:①平面ADE ⊥平面ADC ;②平面ADE 与平面ABC 所成的二面角不小于60 °;③包装盒的体积尽可能大.若设计出的样品满足:∠ACB 与∠ACD 均为直角且AB 长20 cm ,矩形DCBE 的边长BE =30 cm ,请你推断该包装盒的设计是否符合客户的要求,并说明理由.[思路分析]建立空间直角坐标系→验证所给样品是否满足条件①②③→得出结论[解] 该包装盒的样品设计符合客户的要求.理由如下: 由于四边形DCBE 为矩形,∠ACB 与∠ACD 均为直角,所以以C 为原点,分别以直线CA ,CB ,CD 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系C -xyz .由于BE =30 cm ,AB =20 cm , 设BC =t cm ,则AC =400-t 2 cm , 则A (400-t 2,0,0),B (0,t,0),D (0,0,30),E (0,t,30),设平面ADE 的法向量为n 1=(x ,y ,z ), DA →=(400-t 2,0,-30),DE →=(0,t,0),由于n 1·DA →=0且n 1·DE →=0,所以⎩⎨⎧400-t 2x -30z =0,ty =0,取x =1,则n 1=⎝⎛⎭⎪⎪⎫1,0,400-t 230. 又平面ADC 的一个法向量CB →=(0,t,0), 所以n 1·CB →=1×0+0×t +400-t 230×0=0, 所以n 1⊥CB →,所以平面ADE ⊥平面ADC ,所以满足条件①. 由于平面ABC 的一个法向量为n 2=(0,0,1),设平面ADE 与平面ABC 所成二面角的平面角为θ,则cos θ≤12,所以cos θ=|cos 〈n 1,n 2〉|=400-t 2301+400-t 2900≤12,所以10≤t ≤20,即当10≤t <20时,平面ADE 与平面ABC 所成的二面角不小于60°.由∠ACB 与∠ACD 均为直角知, AC ⊥平面DCBE ,该包装盒可视为四棱锥A -BCDE ,所以V A -BCDE =13S 矩形BCDE ·AC =13·30t ·400-t 2=10·t 2(400-t 2) ≤10⎝ ⎛⎭⎪⎪⎫t 2+400-t 222=2 000,当且仅当t2=400-t2,即t=10 2 cm时,V A-BCDE的体积最大,最大值为2 000 cm3.而10<t=102<20,可以满足平面ADE与平面ABC所成的二面角不小于60°的要求.综上可知,该包装盒的设计符合客户的要求.方法总结解决立体几何中的结论探究型问题的策略是:先把题目读懂,全面、精确地把握题目所供应的全部信息和题目提出的全部要求,分析题目的整体结构,找好解题的切入点,对解题的主要过程有一个初步的设计,在此基础上建立空间直角坐标系,把所求的问题转化为空间几何体中的证明线面位置关系、角与最值等问题.。
二面角一、学习目标:1.掌握二面角的定义、范围2.会用不同的方法求解二面角,提高空间想象能力二、重难点:重点:求二面角的方法难点:利用向量法等求解二面角问题三、知识梳理1.二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角。
这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所组成的角就叫做二面角的平面角。
2.范围:3.三垂线定理:平面内的一条直线,如果和这个平面的一条射线的射影垂直,那么它就和这条斜线垂直;4.求法:方法一:(几何法)找→作(定义法、垂面法、射影面积法)→证(定义)→指(指出)→求方法二:(向量法)首先求出两个平面的法向量→→n m ,;再代入公式||||||cos →→→→∙±=n m n m α,(求解过程中注意观察二面角大小,选择“±”)四、典例分析题型一定义法BC CD BCD ABC ABC BCD A ⊥⊥∆-,1面为等边三角形,且面中,:如图,三棱锥例的余弦值,求二面角所成角为与平面当B AD C BCD AD --︒45],0[π题型二垂面法C C E C C BB A ABB C B A ABC 11111111,.2为棱平面中,平面如图,在直三棱柱例⊥-的中点1,221===BC BB AB ,已知EAB ABE 11平面)求证:平面(⊥的大小)求二面角(A EB A --112题型三射影面积法cos 斜射影(S S =θ凡二面角的图形中含有可求原图形面积和该图形在另外一个半平面上的射影图形面积的,都可利用射影面积公式求出二面角的大小。
例3.正方体ABCD C EB AA E D C B A ABCD 和平面的中点,求平面为棱中,111111-所成二面角的余弦值。
例4.在四棱锥a AB P A ABCD P A ABCD ABCD P ==⊥-,平面为正方形,中,四边形求平面PBA 与平面PDC 所成二面角的大小。
高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。
解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1. 如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2. 如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a =(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=∙-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。
高中立体几何中二面角求法摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。
(一)、二面角定义的回顾:从一条直线出发的两个半平面所组成的图形就叫做二面角。
二面角的大小是用二面角的平面角来衡量的。
而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。
(二)1 23 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。
例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。
∵PA ⊥α, а⊂α ∴PA ⊥а同理PB ⊥а ∴а⊥平面PAB又∵OA ⊂平面PAB ∴а⊥OA 同理а⊥OB.∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. ∠PAO=∠POB=90°, 所以∠APB=60° 2、 三垂线定理(逆定理)法由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。
例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DEC 1D 1与面CDE 所成二面角的正切值.解:在长方体ABCD —A 1B 1C 1D 1中由三垂线定理可得: ∴ CD =2 CE=1, DE=53、找(作)公垂面法由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。
考点突破考点一、二面角的定义求法典例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
解题思路 利用二面角的定义。
在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,取SA 的中点G ,连GF ,易证GF AM ⊥,则GFB ∠即为所求二面角.解题过程 (I )作MN ∥SD 交CD 于N ,作NE AB ⊥交AB 于E ,连ME 、NB ,则MN ⊥面ABCD ,ME AB ⊥,2NE AD ==,设MN x =,则NC EB x ==,在RT MEB ∆中,Q 60MBE ∠=︒3ME x ∴=。
在RT MNE∆中由222ME NE MN =+2232x x ∴=+解得1x =,从而12MN SD =∴ M 为侧棱SC 的中点M. (II ):利用二面角的定义。
在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点,∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG FG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-易错点拨 准确找出二面角的平面角是解决本问题的关键,定义是常用方法,另外,用向量解法也可。
变式 如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值. 点拨 第1题容易发现,可通过证AE ⊥AD 后推出AE⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。
答案 二面角的余弦值为515 考点二、三垂线法求二面角的大小典例2 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。
(1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。
解题思路 (1)证CF 1//EE 1 (2)过二面角B-FC 1-C 中半平面BFC 上的一已知点B 作另一半平面FC 1C 的垂线,得垂足O ;再过该垂足O 作棱FC 1的垂线,得垂足P ,连结起点与终点得斜线段PB ,便形成了三垂线定理的基本构图(斜线PB 、垂线BO 、射影OP )。
再解直角三角形求二面角的度数。
解题过程 解法一:(1)在直四棱柱ABCD-A 1B 1C 1D 1中,取A 1B 1的中点F 1, 连接A 1D ,C 1F 1,CF 1,因为AB=4, CD=2,且AB//CD ,EABCFE 1A 1B 1C 1D 1D CE 1A 1B 1C 1D 1DF 1P所以CD=//A 1F 1,A 1F 1CD 为平行四边形,所以CF 1//A 1D , 又因为E 、E 1分别是棱AD 、AA 1的中点,所以EE 1//A 1D , 所以CF 1//EE 1,又因为1EE ⊄平面FCC 1,1CF ⊂平面FCC 1, 所以直线EE 1//平面FCC 1.(2)因为AB=4, BC=CD=2, 、F 是棱AB 的中点,所以BF=BC=CF,△BCF 为正三角形,取CF 的中点O,则OB ⊥CF,又因为直四棱柱ABCD-A 1B 1C 1D 1中,CC 1⊥平面ABCD,所以CC 1⊥BO,所以OB ⊥平面CC 1F,过O 在平面CC 1F 内作OP ⊥C 1F,垂足为P,连接BP,则∠OPB 为二面角B-FC 1-C 的一个平面角, 在△BCF 为正三角形中,3OB =,在Rt △CC 1F 中, △OPF ∽△CC 1F,∵11OP OF CC C F =∴2222222OP =⨯=+, 在Rt △OPF 中,2211432BP OP OB =+=+=,272cos 714OP OPB BP ∠===,所以二面角B-FC 1-C 的余弦值为77. 解法二:(1)因为AB=4, BC=CD=2, F 是棱AB 的中点, 所以BF=BC=CF,△BCF 为正三角形, 因为ABCD 为 等腰梯形,所以∠BAC=∠ABC=60°,取AF 的中点M, 连接DM,则DM ⊥AB,所以DM ⊥CD,以DM 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系, ,则D (0,0,0),A 3,-1,0),F 3,1,0),C (0,2,0),C 1(0,2,2),E (3,12-,0),E 1(3,-1,1),所以131,,1)22EE =-u u u r ,(3,1,0)CF =-u u u r ,1(0,0,2)CC =u u u u r 1(3,1,2)FC =-u u u u r 设平面CC 1F 的法向量为(,,)n x y z =r 则100n CF n CC ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u u r所以300x y z -==⎪⎩取3,0)n =r ,则1311310022n EE ⋅=-⨯=r u u u r ,所以1n EE ⊥r u u u r ,所以直线EE 1//平面FCC 1.EA BCFE 1 A 1 B 1C 1D 1Dxz M(2)(0,2,0)FB =u u u r ,设平面BFC 1的法向量为1111(,,)n x y z =u r ,则1110n FB n FC ⎧⋅=⎪⎨⋅=⎪⎩u r u u u ru r u u u u r所以11110320y x y z =⎧⎪⎨-++=⎪⎩,取1(2,0,3)n =u r ,则12130032n n ⋅=⨯-⨯+⨯=r u r , 2||1(3)2n =+=r ,221||20(3)7n =++=u r ,所以1117cos ,7||||27n n n n n n ⋅〈〉===⨯r u rr u r r u u r ,由图可知二面角B-FC 1-C 为锐角,所以二面角B-FC 1-C 的余弦值为77. 易错点拨 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。
本定理亦提供了另一种添辅助线的一般规律。
变式 如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知ο60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.点拨 本题是一道典型的利用三垂线定理求二面角问题,在证明AD ⊥平面PAB 后,容易发现平面PAB ⊥平面ABCD ,点P 就是二面角P-BD-A 的半平面上的一个点,于是可过点P 作棱BD 的垂线,再作平面ABCD 的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。
答案 (Ⅰ)证明:在PAD ∆中,由题设22,2==PD PA 可得222PD AD PA =+于是PA AD ⊥.在矩形ABCD 中,AB AD ⊥.又A AB PA =I ,所以⊥AD 平面PAB .(Ⅱ)证明:由题设,AD BC //,所以PCB ∠(或其补角)是异面直线PC 与AD 所成的角,在PAB ∆中,由余弦定理得由(Ⅰ)知⊥AD 平面PAB ,⊂PB 平面PAB ,所以PB AD ⊥,因而PB BC ⊥,于是PBC ∆是直角三角形,故27tan ==BC PB PCB 所以异面直线PC 与AD 所成的角的大小为27arctan. 7cos 222=⋅⋅-+=PAB AB PA AB PA PB(Ⅲ)解:过点P 做AB PH ⊥于H ,过点H 做BD HE ⊥于E ,连结PE因为⊥AD 平面PAB ,⊂PH 平面PAB ,所以PH AD ⊥.又A AB AD =I , 因而⊥PH 平面ABCD ,故HE 为PE 再平面ABCD 内的射影.由三垂线定理可知, PE BD ⊥,从而PEH ∠是二面角A BD P --的平面角。
由题设可得,134,13,2,160cos ,360sin 22=⋅==+==-==⋅==⋅=BH BD AD HE AD AB BD AH AB BH PA AH PA PH οο于是再PHE RT ∆中,439tan =PEH 所以二面角A BD P --的大小为439arctan . 综合突破求二面角与空间向量结合考查典例3 如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=12AD (I) 求异面直线BF 与DE 所成的角的大小; (II) 证明平面AMD ⊥平面CDE ;(III )求二面角A-CD-E 的余弦值。
解题思路 以点A 为坐标原点建立空间直角坐标系,利用空间向量这一工具解决。
异面直线BF 与DE 所成的角即为BF u u u r 与DE u u u r所成的角;证明面面垂直即证两个平面的法向量垂直,求二面角即为两个平面的法向量垂直所成的角。
两个向量所成角公式:|.|cos ,||.||a b a b a b <>=r rr r rr 解题过程 如图所示,建立空间直角坐标系,以点A 为坐标原点。
设,1=AB 依题意得(),,,001B (),,,011C (),,,020D (),,,110E(),,,100F .21121M ⎪⎭⎫⎝⎛,, (I )(),,,解:101B -= (),,,110-= .2122100DEBF DE cos =•++==,于是BF所以异面直线B F 与DE 所成的角的大小为060.(II )证明:,,,由⎪⎭⎫ ⎝⎛=21121AM (),,,101CE -= ()0AM CE 020AD =•=,可得,,, .AMD CE A AD AM .AD CE AM CE .0AD CE 平面,故又,因此,⊥=⊥⊥=•I.CDE AMD CDE CE 平面,所以平面平面而⊥⊂(III )⎪⎩⎪⎨⎧=•=•=.0D 0)(CDE E u CE u z y x u ,,则,,的法向量为解:设平面.111(1.00),,,可得令,于是==⎩⎨⎧=+-=+-u x z y z x又由题设,平面ACD 的一个法向量为).100(,,=v.3313100cos =•++=•=v u v u v u ,所以, 快乐训练1、正方形ABCD-A 1B 1C 1D 1中,二面角B-A 1C-A 的大小为___ _;2、将∠A 为60°的棱形ABCD 沿对角线BD 折叠,使A 、C 的距离等于BD ,则二面角A-BD-C 的余弦值是 __;3、正四棱柱ABCD —A 1B 1C 1D 1中对角线BD 1=8,BD 1与侧面B 1BCC 所成的为30°,则二面角C 1—BD 1—B 1的大小为____ __;4、从点P 出发引三条射线PA 、PB 、PC ,每两条的夹角都是60°,则二面角B-PA-C 的余弦值是___ ___;5、二面角α-l -β的平面角为120°,A 、B ∈l ,AC ⊂α,BD ⊂β,AC ⊥l ,BD ⊥l ,若AB=AC=BD=1,则CD 的长___ ___;6、ABCD 为菱形,∠DAB =60°,PD ⊥面ABCD ,且PD =AD ,则面PAB 与面PCD 所成的锐二面角的大小为___ ___。