第三章调制技术(2)QAM与OFDM
- 格式:ppt
- 大小:933.00 KB
- 文档页数:55
2023-11-09•OFDM原理•OFDM实现的关键技术•OFDM系统设计目录•OFDM系统性能评估•OFDM系统应用01 OFDM原理OFDM(正交频分复用)是一种无线通信传输技术,其主要思想是将高速数据流分割为多个低速子数据流,并在多个正交子载波上并行传输。
OFDM技术可以有效抵抗多径效应和频率选择性衰落,提高频谱利用率,实现高速数据传输。
OFDM基本概念OFDM系统主要由调制器、IFFT/FFT变换器和并/串转换器等组成。
调制器负责将输入的数据符号调制到各个子载波上,IFFT/FFT变换器则进行时域/频域变换,实现子载波的并行传输,最后通过并/串转换器将数据符号转换为串行信号进行传输。
OFDM系统组成OFDM信号调制主要采用QAM(Quadrature Amplitude Modulation)等调制方式,将输入的数据符号调制到各个子载波上。
QAM是一种同时对幅度和相位进行调制的调制方式,其调制符号由幅度和相位共同表示。
OFDM信号解调需要经过串/并转换、FFT/IFFT变换、解调等步骤。
串/并转换器将接收到的串行信号转换为并行信号,然后通过FFT/IFFT变换器进行频域/时域变换,得到各个子载波上的数据符号。
最后,解调器对数据符号进行解调,恢复出原始的数据。
02 OFDM实现的关键技术IFFT和FFT算法快速傅里叶变换(FFT)算法FFT是一种高效计算离散傅里叶变换(DFT)及其逆变换的算法,用于将信号从时域转换到频域,以及从频域转换到时域。
在OFDM系统中,FFT用于接收端解调数据,而IFFT则用于发射端调制数据。
逆快速傅里叶变换(IFFT)算法IFFT是FFT的逆运算,用于将信号从频域转换到时域。
在OFDM系统中,IFFT用于将调制后的数据转换为时域信号进行发射。
为了消除多径效应和符号间干扰(ISI),OFDM系统在每个符号之间插入了一段保护间隔。
保护间隔通常为一段循环前缀,其长度与符号长度相同。
调制方式概述1、ASK--又称幅移键控法2、PSK--又称相移键控法3、FSK--又称频移键控法4、QAM--又称正交幅度调制法5、MSK--又称最小移频键控法6、GMSK--又称高斯滤波最小移频键控法7、OFDM -- 正交频分复用调制概述11Mbps DSSS物理层采用补码键控(CCK)调制模式。
CCK与现有的IEEE802.11 DSSS具有相同的信道方案,在2.4GHz ISM频段上有三个互不干扰的独立信道,每个信道约占25MHz。
因此,CCK具有多信道工作特性。
在通信原理中把通信信号按调制方式可分为调频、调相和调幅三种。
数字传输的常用调制方式主要分为:正交振幅调制(QAM):调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。
键控移相调制(QPSK):调制效率高,要求传送途径的信噪比低,适合卫星广播。
残留边带调制(VSB):抗多径传播效应好(即消除重影效果好),适合地面广播。
编码正交频分调制(COFDM):抗多径传播效应和同频干扰好,适合地面广播和同频网广播。
世广数字卫星广播系统的下行载波的调制技术采用TDM QPSK调制体制。
它比编码正交频分多路复用(COFDM)调制技术更适合卫星的大面积覆盖。
通信的最终目的是在一定的距离内传递信息。
虽然基带数字信号可以在传输距离相对较近的情况下直接传送,但如果要远距离传输时,特别是在无线或光纤信道上传输时,则必须经过调制将信号频谱搬移到高频处才能在信道中传输。
为了使数字信号在有限带宽的高频信道中传输,必须对数字信号进行载波调制。
如同传输模拟信号时一样,传输数字信号时也有三种基本的调制方式:幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)。
它们分别对应于用载波(正弦波)的幅度、频率和相位来传递数字基带信号,可以看成是模拟线性调制和角度调制的特殊情况。
理论上,数字调制与模拟调制在本质上没有什么不同,它们都是属正弦波调制。
但是,数字调制是调制信号为数字型的正弦波调制,而模拟调制则是调制信号为连续型的正弦波调制。
OFDM技术原理OFDM(Orthogonal Frequency Division Multiplexing)是一种多载波调制技术,它将一个高速数据流分成许多低速子载波流进行传输,每个子载波都与一个正交的载波进行调制。
OFDM技术在现代通信系统中广泛应用,特别是在无线通信和数字音视频广播领域。
OFDM技术的主要原理是利用正交载波,将原始数据流分成多个子载波,并通过将其组合传输来提高系统的可靠性和容量。
OFDM可以通过分配不重叠的子载波来提供更高的频谱利用率,因此可以在有限的频谱范围内传输更多的数据。
同时,OFDM通过将所有的子载波强度协调地分配在整个信道带宽上来减小频率选择性衰落和多径干扰的影响,从而提高系统的抗干扰能力和传输质量。
1.分割数据流:将原始数据流分割成多个较低速度的子载波流。
每个子载波都以不同的频率进行调制,子载波之间是正交的,即它们的波形在相互之间没有重叠。
2. 调制:将子载波流通过调制器进行调制,其中常用的调制方式包括QAM(Quadrature Amplitude Modulation)和PSK(Phase Shift Keying)等。
3.构建OFDM符号:将调制后的子载波流组合起来形成一个OFDM符号。
在一个OFDM符号中,每个子载波都占据了整个信道的一小部分带宽。
4.加载导频:为了在接收端进行频率和相位同步,OFDM符号中通常包含一些已知的导频序列。
这些导频序列在发送端与待传输的数据并行传输。
5.反向调制:在OFDM接收机中,对接收到的OFDM符号进行反向操作,包括提取子载波、解调、去除导频和恢复原始数据流等。
1.高频谱利用率:由于OFDM技术将整个信道带宽分成多个子载波进行传输,因此可以在较小的频谱范围内传输更多的数据,提高频谱利用率。
2.抗多径干扰:OFDM技术可以通过在频率域上为每个子载波分配适当的补偿来对抗多径干扰。
这使得OFDM系统具有优异的传输抗干扰能力,能够有效地抵御多径衰落、多普勒效应等信道问题。
MIMO与OFDM:无线局域网核心技术分析-电脑资料MIMO技术与OFDM技术相结合被视为下一代高速无线局域网的核心技术,。
本文全面分析了MIMO与OFDM技术在无线局域网中的应用,探讨了MIMO、OFDM中的关键技术,并展望了其发展前景。
1.引言无线通信作为新兴的通信技术在日常生活中的作用越来越大。
近年来,无线局域网技术发展迅速,但无线局域网的性能、速度与传统以太网相比还有一定距离,因此如何提高无线网络的性能和容量日益显得重要。
目前,IEEE802.11已成为无线局域网的主流标准。
1997年802.11标准的制定是无线局域网发展的里程碑,它是由大量的局域网以及计算机专家审定通过的标准。
其定义了单一的MAC层和多样的物理层,先后又推出了802.1lb,a和g物理层标准。
802.1lb使用了CCK调制技术来提高数据传输速率,最高可达11Mbit/s。
但是传输速率超过11Mbit/s,CCK为了对抗多径干扰,需要更复杂的均衡及调制,实现起来非常困难。
因此,802.1l工作组为了推动无线局域网的发展,又引入0FDM调制技术。
最近,刚刚正式批准的802.1lg标准采用OFDM技术,和802.1la一样数据传输速率可达54Mbit/s。
另外,IEEE802.1la运行在5GHz的UNII频段上,采用OFDM技术。
但是,它不能兼容IEEE802.11b的产品,对于现在市场上占统治地位的IEEE802.11b来说,不能兼容就意味着推广存在着巨大的困难;其次,由于无线电波传输的特性,在5GHz上运行的IEEE802.1la覆盖范围相对较小。
IEEE802.11g工作在2.4GHz频段上,能够与802.1lb的WIFI系统互相连通,共存在同一AP的网络里,保障了后向兼容性。
这样原有的WLAN系统可以平滑地向高速无线局域网过渡,延长了IEEE802.1lb产品的使用寿命,降低用户的投资。
而对于今后要开展的在无线局域网中的多媒体业务来说,最高为54Mbit/s的数据速率还远远不够。
无线通信系统中的调制解调基础(三):扩频和OFDM作者:Ian PooleAdrio Communications Ltd第三部分讨论扩频通信技术,包括被广泛应用的直接序列扩频通信(DSSS),和正交频分复用(OFDM)第二部分解析了频移键控(PSK)和正交幅度调制(QAM)。
扩频通信技术在许多场合中需要使无线信号的频带尽量的窄来满足节省带宽的需求,然而,在一些场合中更需要采用所谓的扩频通信方式,这时传输频谱被扩的很宽。
有几种方式可以实现扩频通信:一是采用跳频扩频(FHSS),该方式以背景噪声的形式占用了比较广的频带。
另两种实现的方法也被广泛应用,就是DSSS和OFDM。
跳频在一些场合,特别是军事应用方面,需要阻止有人监听和干扰信号。
跳频可以有效的减少干扰,虽然干扰信号会影响一个频道,但跳频信号只会在那个频道停留短暂的时间,所以影响不大。
跳频已经制定了很好的规范,在该系统中,信号在一秒内通过多次改变的伪随机序列跳到指定的频段上。
不同应用要求的跳动的快慢不同,一般的应用一秒钟都会有数百次跳动,尽管在HF频段可能少一些。
接收机一样会在一个给定的频率上停留一段时间,从一个频率跳到另一个频率过程中会有一个死区,在该时段内发射机输出被禁止。
这样可以执行频率合成,且阻止信号频道间干扰的产生。
要接收并解调信号,接收器必须与发射机的跳频序列同步,要达到这个要求,发射机和接收器必须获得相同的跳频序列,并且时域上必须同步。
跳频发射机通常采用数字发射机,传送语音信号时,必须先进行模数转换,而空中传输的数据量必须比输出要大的多,才能满足跳频时预留死区时间的需求。
直接序列扩频直接序列扩频(DSSS)是另一种扩频调制方式,在一些系统上已经得到了广泛的应用,尽管在发射机和接收机方面会带来更多的成本上升。
DSSS在军方的应用较多,因为安全性比较高,在一些新的无线通信领域也有采用,因为可以提供更高的容量。
采用DSSS 的应用包括码分多址CDMA,CDMA有多个不同的用户通过不同的“码”接入,而另一些老的系统采用频分多址(FDMA),或时分多址(TDMA)。
第1篇一、实验背景随着信息技术的飞速发展,移动通信技术已成为现代社会不可或缺的一部分。
为了更好地理解和掌握移动通信的基本原理和应用,本学期我们进行了移动通信期末实验。
本次实验旨在通过实际操作,加深对移动通信系统组成、信号调制解调、信道特性等方面的理解。
二、实验目的1. 熟悉移动通信系统的组成和基本功能。
2. 掌握信号调制解调的基本原理和方法。
3. 了解移动通信信道的特性和建模方法。
4. 提高动手实践能力和分析问题的能力。
三、实验内容1. 移动通信系统组成及功能实验本实验通过观察移动通信设备,了解其组成和基本功能。
实验内容如下:(1)观察GSM手机,了解其外观、按键、屏幕等组成部分;(2)观察GSM基站,了解其外观、天线、设备室等组成部分;(3)分析GSM手机与基站之间的通信过程,理解其基本功能。
2. 信号调制解调实验本实验通过实际操作,掌握信号调制解调的基本原理和方法。
实验内容如下:(1)观察GSM手机的信号调制解调过程,了解其工作原理;(2)通过实验软件,实现信号的调制解调过程,验证调制解调效果;(3)分析不同调制方式(如QAM、GMSK)的特点和适用场景。
3. 移动通信信道建模实验本实验通过模拟实验,了解移动通信信道的特性和建模方法。
实验内容如下:(1)观察白噪声信道的特性,了解其产生原因和影响;(2)通过实验软件,模拟白噪声信道对信号的影响,分析信噪比的变化;(3)研究多径干扰对信号的影响,了解其产生原因和抑制方法。
4. 移动通信系统仿真实验本实验通过仿真软件,模拟移动通信系统的性能。
实验内容如下:(1)使用OFDM仿真软件,模拟OFDM调制解调过程,分析其性能;(2)研究DSSS调制解调过程,了解其抗干扰能力;(3)分析不同信道条件下的系统性能,评估系统可靠性。
四、实验结果与分析1. 移动通信系统组成及功能实验通过观察GSM手机和基站,我们了解了其组成和基本功能。
实验结果表明,GSM手机主要由天线、射频模块、基带处理器、显示屏等部分组成,基站主要由天线、射频模块、基带处理器、控制单元等部分组成。