MIMO-OFDM技术概述
- 格式:doc
- 大小:508.50 KB
- 文档页数:10
mimo-ofdm技术原理MIMO-OFDM技术是近年来在无线通信领域中大量应用的一种技术。
它将多输入多输出(MIMO)和正交频分复用(OFDM)两种技术结合起来,在多径衰落环境下,提高了无线信道的传输速率和抗干扰性能。
MIMO技术是一种传输多个数据流的技术,它利用了多个天线之间的信道空间多样性。
在信道质量合适的情况下,MIMO技术可以提高信道容量和传输速率。
同时,在干扰和噪声较强的情况下,MIMO技术可以利用空间编码技术提高数据可靠性。
OFDM技术是一种基于正交的子载波技术,它将来自不同载频信道的数据进行正交分解,并将数据分配到多个子载波上进行传输,从而实现了多用户的并行传输和频谱利用。
MIMO-OFDM技术将MIMO技术和OFDM技术结合起来,实现了多用户的并行传输和多个数据流的传输。
在传输端,MIMO-OFDM技术使用空间分集和空间多路复用技术,在多个天线之间传输多个数据流。
在接收端,利用多天线接收技术,对接收数据进行再编码和合并,以提高接收数据的可靠性和传输速率。
在多径衰落信道下,MIMO-OFDM技术可以利用多天线之间的空间多样性,减小多径衰落带来的影响,提高信道容量和传输速率。
同时,利用OFDM技术,提高频谱利用率和抗衰落性能。
在无线通信领域中,MIMO-OFDM技术已经广泛应用于4G和5G通信系统中。
通过采用MIMO-OFDM技术,可以提高无线信道的传输速率和抗干扰性能,在大规模用户和高速数据传输的情况下,更好的满足用户的需求。
总结起来,MIMO-OFDM技术结合了MIMO技术和OFDM技术的优势,实现了多用户的并行传输和多个数据流的传输,在多径衰落环境下提高了无线信道的传输速率和抗干扰性能。
随着5G通信技术的发展,MIMO-OFDM技术将会更加成熟和广泛应用。
MIMO 技术介绍与MIMO 与OFDM 的结合对移动
通信的优化
多输入多输出(MIMO)技术是指在发射端和接收端分别使用多个发射天线和接收天线,信号通过发射端和接收端的多个天线传送和接收,从而改善每个用户的服务质量(误比特率或数据速率)。
MIMO 技术对于传统的单天线系统来说,能够大大提高频谱利用率,使
得系统能在有限的无线频带下传输更高速率的数据业务。
目前,各国已开始或者计划进行新一代移动通信技术(后3G 或者4G)的研究,争取在未来移动通信领域内占有一席之地。
随着技术的发展,未来移动通信宽带和无线接入融合系统成为当前热门的研究课题,而MIMO 系统是人们研究较多的方向之一。
本文重点介绍MIMO 技术的五大研究热点。
MIMO 信道的建模和仿真
为了更好地利用MIMO 技术,必须深入研究MIMO 信道特性,尤其是空间特性。
与传统信道不同的是,MIMO 信道大多数情况下都具有一定的空间相关性,而不是相互独立的。
在2001 年11 月的3GPP 会议中,朗讯、诺基亚、西门子和爱立信公司联合提出了标准化MIMO 信道的建议。
3GPP 和
3GPP2 推荐的链路级MIMO 信道的建模方法有两个:基于相关(CorrlraTIon。
MIMO-OFDM技术概述MIMO-OFDM技术概述摘要现代信息社会中,人们对宽带移动通信系统的数据需求量日益增长。
为此,未来宽带移动通信系统必须提供更高的传输速率和更优的服务质量。
MIMO技术能够利用信号的空时频域特性,可以很好地对抗平坦衰落信道,但对频率选择性信道却无能为力,而OFDM技术可以将频率选择性衰落转化为平坦衰落,MIMO和OFDM两种技术的结合和相互补充,既可以很好地解决未来无线宽带通信系统中信道多径衰落和带宽效率的问题,又能够提高系统容量和传输可靠性,因此采用MIMO 技术的OFDM 系统是现代移动通信的核心技术。
本文首先介绍正交频分复用(OFDM)技术和多输入多输出(MIMO)系统的基本原理,简述MIMO-OFDM 技术及其特点,并初步探讨了MIMO-OFDM 系统的关键技术。
关键词:多输入多输出;正交频分复用;MIMO-OFDM;载波;编码一、引言正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作是一种复用技术。
多载波传输把数据流分解成若干比特流,这样每个子数据将具有低得多的比特速率,用这样的低比特速率形成的低速率多状态符号去调制相应的子载波,这构成了多个低速率符号并行发送的传输系统。
OFDM是对多载波调制(Multi Carrier Modulation)的一种改进,它的特点是各子载波相互正交,所以扩频后的频谱可以相互重叠,不但减小了子载波间的相互干扰,还大大提高了频谱利用率,可以有效地抵抗频率选择性衰落。
多输入多输出(MIMO)技术是指利用多发送和多接收天线进行空间分集的技术,是无限移动通信领域智能天线技术的重大突破。
在无线通信领域,对MIMO的研究源于对多个天线阵元空间分集的性能研究。
从20世纪80年代开始,研究学者发现与合并技术结合的多天线空间分集可进一步改善无线链路性能并增加系统容量,Salzzai研究了单用户MIMO高斯信道,以两径传播信道模型分析了空间分集对信道容量和容量分布的影响。
mimoofdm无线通信技术与matlab代码1. 引言1.1 概述无线通信技术的发展迅猛,随着移动互联网时代的到来,人们对高速、稳定的无线通信需求日益增加。
MIMO-OFDM无线通信技术作为一种重要的解决方案,在提升系统容量和抗干扰性能方面具有显著优势。
本文旨在介绍MIMO-OFDM 无线通信技术原理,并借助MATLAB代码实现,通过仿真和性能评估分析展示其有效性和优越性。
1.2 文章结构本文分为五个部分:引言、MIMO-OFDM无线通信技术、MATLAB代码实现、实验结果与讨论以及结论与展望。
在引言部分,我们将简要介绍文章的背景和目标。
接下来,会详细讲解MIMO-OFDM无线通信技术的基本原理,并说明其在提高系统容量和抗干扰性能方面的作用。
然后,我们会详细描述如何使用MATLAB编写MIMO-OFDM系统模拟代码,并进行性能评估与分析。
随后,我们会展示仿真参数设置和结果展示,并对结果进行深入分析和性能讨论。
最后,在结论与展望部分,我们将总结本文的研究工作和贡献,并讨论目前的不足之处以及可能的改进方案。
1.3 目的本文的主要目的是深入介绍MIMO-OFDM无线通信技术及其原理,并通过MATLAB代码实现来验证其性能。
通过对实验结果进行分析和讨论,我们旨在揭示MIMO-OFDM技术在提高系统容量和抗干扰性能方面的优势。
同时,本文也希望为读者提供一个了解和学习MIMO-OFDM无线通信技术以及使用MATLAB进行系统模拟的参考。
以上就是“1. 引言”部分内容,概述了本文的背景、目标和结构。
在接下来的章节中,我们将逐一展开讲解MIMO-OFDM无线通信技术、MATLAB代码实现、实验结果与讨论以及结论与展望部分。
2. MIMO-OFDM无线通信技术:2.1 MIMO技术介绍:多输入多输出(MIMO)技术是一种通过在发射和接收端使用多个天线来增加系统容量和提高通信质量的无线通信技术。
MIMO技术利用空间上的多样性,通过在不同天线之间形成独立的传输通道,从而带来更好的抗干扰能力和信号接收品质。
MIMO-OFDM技术MIMO-OFDM技术MIMO-OFDM技术1 MIMO技术无线通信的不可靠性主要是由无线衰落信道的时变和多径特性引起的,如何有效地对抗无线信道的衰落是高速移动通信必须要解决的问题。
在无线通信系统中提高信息传输可靠性的一种有效手段是采用分集技术,以多输入多输出(MIMO)技术为代表的空间分集技术是当前的优选方案之一。
MIMO的意思是Multiple Input Multiple Output,其原理为MIMO系统在发射端和接收端均采用多天线(或阵列天线)和多通道。
任何一个无线通信系统,只要其发射端和接收端均采用了多个天线或者天线阵列,就构成了一个无线MIMO 系统。
MIMO技术是现代通信的一大突破,该技术提供了解决未来无线网络传输瓶颈的方法。
MIMO技术的核心思想是信号的空间-时间联合处理,即把数字信号固有的时间维度与多个空间分离天线带来的空间维度联合起来。
在某种意义上,MIMO技术也可以看作是传统智能天线技术的扩展。
概述联合考虑发送分集和接收分集就构成了多输入多输出(MIMO,Multi-Input Multi-Output)系统,该系统能够获得更大的分集增益。
MIMO系统的重要特征是能够利用无线通信的多径传播特性来提高系统的性能,即能够有效地利用无线链路中的随机衰落和延迟扩展特性来成倍地提高传输的速率或可靠性。
分集技术为了保证无线通信的可靠传输,主要用于补偿信道衰落损耗的分集技术是其中一种十分有效的方法。
分集技术,是指在通信的过程中,系统要能够提供发送信号的副本,使得接收机能够获得更加准确的判断。
根据获得独立路径信号的方法的不同可以分为时间分集、频率分集和空间分集等。
其中,空间分集技术没有时延和环境的限制,能够获得更好的系统性能,可以分为接收分集和发射分集。
传统的空间分集主要是接收分集,在这种接收方式中接收机对它收到的多个衰落特性相互独立但携带同一信息的信号进行特定的处理,以降低信号电平的起伏,这样显然会导致接收机的复杂度增加。
《MIMO-OFDM系统中信道估计及信号检测算法的研究》篇一一、引言随着无线通信技术的飞速发展,多输入多输出(MIMO)技术和正交频分复用(OFDM)技术因其卓越的性能在无线通信系统中得到了广泛应用。
MIMO-OFDM系统结合了MIMO和OFDM的优点,具有高数据传输速率、频谱利用率高和抗多径干扰能力强等特点。
然而,在实际应用中,由于无线信道的复杂性和时变性,信道估计和信号检测成为了MIMO-OFDM系统中的关键技术。
本文将重点研究MIMO-OFDM系统中的信道估计及信号检测算法。
二、MIMO-OFDM系统概述MIMO-OFDM系统是一种高效的无线通信技术,通过在发送端使用多个天线发送信号,同时在接收端使用多个天线接收信号,实现了空间复用和分集增益。
OFDM技术则通过将频带划分为多个正交子载波,将高频信号转换为并行低频信号进行传输,从而提高了频谱利用率和抗多径干扰能力。
三、信道估计技术研究信道估计是MIMO-OFDM系统中的一项关键技术,其主要目的是通过对接收信号进行分析和处理,估计出信道的响应特性。
常见的信道估计方法包括最小均方误差(MMSE)估计、最大似然(ML)估计和基于导频的信道估计等。
(一)MMSE信道估计MMSE信道估计是一种基于最小均方误差准则的估计方法。
该方法通过最小化估计误差的均方值来求解信道参数。
在实际应用中,MMSE信道估计具有良好的性能和稳定性,适用于各种信道条件。
(二)最大似然(ML)信道估计ML信道估计是一种基于最大似然准则的估计方法。
该方法通过最大化接收信号与实际发送信号之间的似然函数来求解信道参数。
ML信道估计在信噪比较高的情况下具有较好的性能,但在低信噪比条件下性能较差。
(三)基于导频的信道估计基于导频的信道估计是一种常见的信道估计方法。
该方法通过在发送信号中插入已知的导频符号,接收端根据导频符号的接收情况来估计信道的响应特性。
基于导频的信道估计具有计算复杂度低、实现简单等优点,但需要额外的频谱资源。
MIMO-OFDM系统原理及其关键技术未来的宽带无线通信系统,将在高稳定性和高数据传输速率的前提下,满足从语音到多媒体的多种综合业务需求。
而要在有限的频谱资源上实现综合业务内容的快速传输,需要频谱效率极高的技术。
MIMO技术充分开发空间资源,利用多个天线实现多发多收,在不需要增加频谱资源和天线发送功率的情况下,可以成倍地提高信道容量。
OFDM(正交频分复用)技术是多载波窄带传输的一种,其子载波之间相互正交,可以高效地利用频谱资源。
二者的有效结合可以克服多径效应和频率选择性衰落带来的不良影响,实现信号传输的高度可靠性,还可以增加系统容量,提高频谱利用率,是第四代移动通信的热点技术。
OFDM技术原理及实现无线信道的频率响应曲线大多是非平坦的,而OFDM技术的主要思想就是在频域内将给定信道分成多个正交子信道,然后将高速数据信号转换成多个并行的低速子数据流,调制到每个信道的子载波上进行窄带传输。
每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道可以看成平坦性衰落,从而可以消除信道波形间的干扰。
由于OFDM是一种多载波调制技术,OFDM系统采用正交方法来区分不同子载波,子载波间的频谱可以相互重叠,这样不但减小了子载波间的相互干扰,同时又极大地提高了频谱利用率。
如图1可见OFDM的正交性。
图1 OFDM信号频谱由于OFDM系统中有大量载波,所以在实际应用中不可能像传统的处理方法一样,使用几十个甚至几百个振荡器和锁相环进行相干解调。
因此,Weinstein提出了一种用离散傅里叶变换实现OFDM的方法。
设OFDM信号发射周期为[0,T],在一个周期内传输的N个符号为(D0,D1,…,DN-1)。
第k个符号Dk调制第k个载波fk,所以合成的OFDM信号为:由式⑤可见,以fs对C(t)采样所得的N个样值(C0,C1,…,CN-1)刚好为(D0,D1,…,DN-1)的N 点反向离散傅里叶变换(IDFT)。
因此OFDM系统可以这样实现:在发射端,先由(D0,D1,…,DN-1)的IDFT 求得(C0,C1,…,CN-1),再经过低通滤波器即得所需的OFDM信号C(t);在接收端,先对C(t)采样得到(C0,C1,…,CN-1),再对(C0,C1,…,CN-1)求DFT,即得(D0,D1,…,DN-1)。
课程思政优秀案例——《MIMO-OFDM无线通信技术》课程一、课程简介《MIMO-OFDM无线通信技术》为是面向通信工程专业开设的专业课程,主要讲授现代无线通信系统基本框架、各模块的功能和基本算法,OFDM技术发展历程、同步、信道估计、PAPR减小等关键技术,MIMO的信道容量、预编码、接收滤波、天线选择等关键技术。
使学生了解先进数字通信系统所涉及的基础理论,掌握现代数字通信系统的构成,掌握新兴OFDM、MIMO技术的原理及性能分析方法,掌握利用MATLAB进行建模、求解的方法,进一步提高学生理论分析和实践应用能力。
二、思政目标讲授无线通信技术发展历程时,介绍移动通信标准制定过程中,由我国在1G、2G很少参与,到3G、4G、5G的跟跑、并跑、领跑的角色转换。
华为成为5G领先者,华为的专利申请数可以说是遥遥领先于其他公司,让学生充分感受到祖国科学技术的快速发展,厚植家国情怀,增强民族自豪感。
三、案例设计及实施过程(一)思政元素类型民族自豪感、职业理想、职业道德教育。
(二)课堂教学方法教学手段:采用PPT、图片、视频等多媒体形式。
课程思政融入点:讲授多址技术时,一代移动通信体制都具有对应的关键多址技术,移动通信体制制定代表着国家力量、民族实力,从而引出课程思政案例。
(三)元素内容结合多址体制讲授无线通信技术发展历程,介绍移动通信标准制定过程中,中国的通信网络发展经历了“1G空白、2G跟随、3G突破、4G并跑、5G引领”这一曲折艰难的历程。
移动通信的技术标准由1G(模拟蜂窝网/FDMA)、2G(GSM/TDMA、IS95/CMDA)、3G(CDMA2000/ WCDMA/ T-DSCDMA)、4G(LTE/OFDM)发展到如今的5G。
无线通信的标准争夺主要体现在“标准必要专利”的份额。
谁控制了“标准必要专利”,就会在开发新一代先进产业的竞赛中拔得头筹,不仅掌握着核心技术,更会牵涉到知识产权带来的巨大经济利益。
移动通信技术与应用(第2版)122 6.3.1 LTE 关键技术之OFDM 和MIMOOFDM (Orthogonal Frequency Division Multiplexing )即正交频分复用技术,实际上OFDM 是MCM (Multi -Carrier Modulation )多载波调制的一种。
其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。
正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ICI )。
每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落信号,从而可以消除符号间干扰。
而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,所以信道均衡变得相对容易。
1.OFDM这个技术说得很玄乎,其实在WiMax 和Wi -Fi 里早就利用了。
OFDM 并不比CDMA 的频谱利用率更高,但是它的优势是大宽带的支持更简单更合理,而且配合MIMO 更好。
举个例子,CDMA 是一个班级,又说中文又说英文,如果大家音量控制得好,虽然是一个频率,但是可以达到互不干扰,所以1.25Mbit/s 的带宽可以实现4.9Mbit/s 的速率。
而OFDMA 则可以想象成上海的高架桥,10m 宽的路,上面架设一座5m 宽的高架桥,实际上道路的通行面积就是15m ,这样虽然水平路面不增加,但是可以通行的车辆增加了。
而OFDM 也是利用这个技术,利用傅里叶快速变换导入正交序列,相当于在有限的带宽里架设了N 个高架桥,目前是一个OFDM 信号的前半个频率和上一个频点的信号复用,后半个频率和后一个频点的信号复用。
那信号频率重叠了怎么区分,很简单,OFDM ,O 就是正交的意思,正交就是能保证唯一性。
举例子,A 和B 重叠,但是A ×a +B ×b ,a 和b 是不同的正交序列,如果要从同一个频率中只获取A ,那么通过计算,(A ×a +B ×b )×a =A ×a ×a +B ×b ×a =A +0=A (因为正交,a ×a =1,a ×b =0)。
MIMO与OFDM:无线局域网核心技术分析-电脑资料MIMO技术与OFDM技术相结合被视为下一代高速无线局域网的核心技术,。
本文全面分析了MIMO与OFDM技术在无线局域网中的应用,探讨了MIMO、OFDM中的关键技术,并展望了其发展前景。
1.引言无线通信作为新兴的通信技术在日常生活中的作用越来越大。
近年来,无线局域网技术发展迅速,但无线局域网的性能、速度与传统以太网相比还有一定距离,因此如何提高无线网络的性能和容量日益显得重要。
目前,IEEE802.11已成为无线局域网的主流标准。
1997年802.11标准的制定是无线局域网发展的里程碑,它是由大量的局域网以及计算机专家审定通过的标准。
其定义了单一的MAC层和多样的物理层,先后又推出了802.1lb,a和g物理层标准。
802.1lb使用了CCK调制技术来提高数据传输速率,最高可达11Mbit/s。
但是传输速率超过11Mbit/s,CCK为了对抗多径干扰,需要更复杂的均衡及调制,实现起来非常困难。
因此,802.1l工作组为了推动无线局域网的发展,又引入0FDM调制技术。
最近,刚刚正式批准的802.1lg标准采用OFDM技术,和802.1la一样数据传输速率可达54Mbit/s。
另外,IEEE802.1la运行在5GHz的UNII频段上,采用OFDM技术。
但是,它不能兼容IEEE802.11b的产品,对于现在市场上占统治地位的IEEE802.11b来说,不能兼容就意味着推广存在着巨大的困难;其次,由于无线电波传输的特性,在5GHz上运行的IEEE802.1la覆盖范围相对较小。
IEEE802.11g工作在2.4GHz频段上,能够与802.1lb的WIFI系统互相连通,共存在同一AP的网络里,保障了后向兼容性。
这样原有的WLAN系统可以平滑地向高速无线局域网过渡,延长了IEEE802.1lb产品的使用寿命,降低用户的投资。
而对于今后要开展的在无线局域网中的多媒体业务来说,最高为54Mbit/s的数据速率还远远不够。
mimoofdm无线通信技术与matlab pdfMIMO-OFDM无线通信技术与MATLAB PDF无线通信在现代社会中扮演着重要的角色,而MIMO-OFDM无线通信技术则是其中一种重要的通信技术。
本文将介绍MIMO-OFDM无线通信技术的基本原理和应用,并提供一本关于该技术的MATLAB PDF资源供读者学习参考。
MIMO-OFDM无线通信技术是一种利用多天线和正交频分复用技术相结合的通信系统。
其中,MIMO(Multiple-Input Multiple-Output)指的是多天线技术,通过在发送和接收端使用多个天线,可以提高信号的传输效率和可靠性。
而OFDM (Orthogonal Frequency Division Multiplexing)则是正交频分复用技术,通过将高速数据流分成多个低速子流,在不同的子流上进行传输,有效地提高了频谱利用率。
MIMO-OFDM无线通信技术的优点之一是提高了信号的传输速率和可靠性。
通过利用多个天线,可以同时传输多个数据流,从而将数据传输速率提高到传统通信技术的数倍。
同时,MIMO技术还可以通过利用空间多样性和信道编码技术来提高信号的可靠性,减少信号的传输误码率。
除了传输速率和可靠性的提升,MIMO-OFDM无线通信技术还具有抗干扰和抗衰落的特点。
由于多个天线可以同时接收多个信号,MIMO技术可以通过空间分集和空间复用的方式来减少信号的传输误差和干扰。
此外,OFDM技术通过将频谱分成多个子载波,在传输过程中可以充分利用频谱,从而有效地抵抗多径衰落等信道问题。
针对MIMO-OFDM无线通信技术的学习和研究,MATLAB是一个非常实用的工具。
MATLAB提供了丰富的工具箱和函数,可以用于模拟、设计和优化MIMO-OFDM系统。
对于初学者来说,一本关于MIMO-OFDM无线通信技术的MATLAB PDF资源将会是一个很好的学习资料。
在这本MATLAB PDF资源中,读者可以学习到MIMO-OFDM系统的基本原理和信道模型,了解到MIMO技术和OFDM技术的具体实现方式。
CHINA NEW TELECOMMUNICATIONS December 2009CHINA NEW TELECOMMUNICATIONS1引言4G 移动通信在描绘高速的数据传输,提供从语音到多媒体业务丰富业务美好前景的同时,也面临着两大挑战:多径衰落和带宽利用率。
OFDM 技术通过将频率选择性多径衰落信道在频域内转化为平坦信道,减小了多径衰落的影响。
而M IMO 技术能够在空间上产生独立的并行信道并同时传输多路数据流,在不增加系统带宽的情况下增加频谱利用率,有效的提高了系统的传输速率。
因此,将OFDM 技术和MIMO 技术结合成为4G 中的核心技术。
2OFDM 技术正交频分复用的基本原理是把高速的数据流通过串并变换,分配到传输速率相对较低的若干子信道中进行传输,在频域内将信道划分为若干互相正交的子信道,每个子信道均拥有自己的载波分别进行调制,信号通过各个子信道独立传输。
如果每个子信道的带宽被划分得足够窄,每个子信道的频率特性就可近似看作是平坦的,即每个子信道都可看作无符号间干扰(ISI)的理想信道,这样在接收端不需要使用复杂的信道均衡技术即可对接收信号可靠地解调。
在OFDM 系统中,在OFDM 符号之间插入保护间隔来保证频域子信道之间的正交性,消除OFDM 符号之间的干扰[1]。
OFDM 技术有很多独特的优点:①频谱利用率很高,频谱效率比串行系统高近一倍;②抗多径干扰与频率选择性衰落能力强;③通过各子载波的联合编码,可具有很强的抗衰落能力;④基于离散傅立叶变换的OFDM 有快速算法,可采用IFFT 和FFT 来实现调制和解调,易用DSP 实现。
尽管有如此优点,OFDM 还是具有本身难以克服的缺点,如对频偏和相位噪声敏感,功率峰值与均值比(PAPR )大,所采用的自适应技术以及负载算法会增加发射机和接收机的复杂度。
3MIMO 技术MIM O (多输入多输出)技术利用多天线来抑制信道衰落[2]。
MIMO-OFDM系统时频快速同步算法MIMO-OFDM是一种复杂、高效的无线通信方式,能够实现高速数据传输。
然而,MIMO-OFDM系统中时频偏移是一种严重的问题,会导致误码率增高,影响通信质量。
因此,设计一种快速且准确的时频同步算法对于MIMO-OFDM系统的性能提升至关重要。
时频同步算法的基本思想是通过预测接收信号的载波频率和时钟偏移量,从而实现同步。
其中,常用的算法包括Maximum-Likelihood (ML)算法、Schmidl-Cox 算法、Blind 算法等。
在MIMO-OFDM系统中,需要考虑多个天线的时频偏移,因此,基于Schmidl-Cox 算法的扩展算法是目前较为常用的解决方案。
MIMO-OFDM系统中使用的Schmidl-Cox 算法主要用于估计单个天线的时频偏移,其基本步骤如下:1. 添加导频序列:在发送端添加特定的导频信号以用于同步。
导频序列通常是一组知道的数据序列,由发送端在指定时刻发送。
2. 接收导频序列:接收端接收到导频序列后,将其样本值作为接收信号传递给同步模块。
这些样本值包括了接收信号的有关载波频率、相位和时钟偏移信息。
3. 时频偏移估计:通过对接收数据的导频符号进行解调和相关分析来得到载波频率和时钟偏移量的估计值。
在MIMO-OFDM系统中,扩展Schmidl-Cox算法主要考虑多个天线之间的时频偏移关系。
算法的步骤可以简述为:1. 发送多组导频序列:在不同的天线之间以不同时刻同时发送多组导频序列,使得每对天线接收的导频序列都存在时频偏移。
这些序列需要以相同的频率发射,但存在时相偏移。
2. 接收导频序列:不同天线之间收到的导频序列均存在时频偏移,从中提取出载波频率和时钟偏移信息。
3. 多组导频序列比对:将接收到的多组导频序列的时频偏移信息进行比对,得到各个天线之间的相对时频偏移量。
4. 校正:在接收端进行时频偏移校正,以实现同步。
基于扩展Schmidl-Cox算法的MIMO-OFDM时频快速同步具有较高的准确性和可靠性。
TD-LTE关键技术(OFDM和MIMO)1 OFDM1.1 OFDM发展历史1.2 OFDM概述概念:正交频分复用技术,多载波调制的一种。
将一个宽频信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到每个子信道上进行传输。
1.3 OFDM的优势1.3.1 对比传统FDM的优势与传统FDM的区别?传统FDM:为避免载波间干扰,需要在相邻的载波间保留一定保护间隔,大大降低了频谱效率。
OFDM:各(子)载波重叠排列,同时保持(子)载波的正交性(通过FFT实现)。
从而在相同带宽内容纳数量更多(子)载波,提升频谱效率。
1.3.2 对比CDMA的优势考虑到系统设计的复杂程度及成本,OFDM更适用于宽带移动通信。
1.4 OFDM不足较高的峰均比(PARP)OFDM输出信号是多个子载波时域相加的结果,子载波数量从几十个到上千个,如果多个子载波同相位,相加后会出现很大幅值,造成调制信号的动态范围很大。
因此对RF功率放大器提出很高的要求受频率偏差的影响→子载波间干扰(ICI)●高速移动引起的Doppler频移;●系统设计时已通过增大导频密度(大致为每0.25ms发送一次导频,时域密度大于TD-S)来减弱此问题带来的影响。
受时间偏差的影响→ISI(符号间干扰)& ICI●折射、反射较多时,多径时延大于CP(Cyclic Prefix,循环前缀),将会引起ISI及ICI;●系统设计时已考虑此因素,设计的CP能满足绝大多数传播模型下的多径时延要求(4.68us),从而维持符号间无干扰。
1.5 L TE多址方式1.5.1 下行下行多址方式—OFDMA将传输带宽划分成一系列正交的子载波资源,将不同的子载波资源分配给不同的用户实现多址。
因为子载波相互正交,所以小区内用户之间没有干扰。
集中式:连续RB分给一个用户优点:调度开销小分布式:分配给用户的RB不连续优点:频选调度增益较大下行多址方式特点同相位的子载波的波形在时域上直接叠加。
MIMO-OFDM技术概述MIMO-OFDM技术概述摘要现代信息社会中,人们对宽带移动通信系统的数据需求量日益增长。
为此,未来宽带移动通信系统必须提供更高的传输速率和更优的服务质量。
MIMO技术能够利用信号的空时频域特性,可以很好地对抗平坦衰落信道,但对频率选择性信道却无能为力,而OFDM技术可以将频率选择性衰落转化为平坦衰落,MIMO和OFDM两种技术的结合和相互补充,既可以很好地解决未来无线宽带通信系统中信道多径衰落和带宽效率的问题,又能够提高系统容量和传输可靠性,因此采用MIMO 技术的OFDM 系统是现代移动通信的核心技术。
本文首先介绍正交频分复用(OFDM)技术和多输入多输出(MIMO)系统的基本原理,简述MIMO-OFDM 技术及其特点,并初步探讨了MIMO-OFDM 系统的关键技术。
关键词:多输入多输出;正交频分复用;MIMO-OFDM;载波;编码一、引言正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作是一种复用技术。
多载波传输把数据流分解成若干比特流,这样每个子数据将具有低得多的比特速率,用这样的低比特速率形成的低速率多状态符号去调制相应的子载波,这构成了多个低速率符号并行发送的传输系统。
OFDM是对多载波调制(Multi Carrier Modulation)的一种改进,它的特点是各子载波相互正交,所以扩频后的频谱可以相互重叠,不但减小了子载波间的相互干扰,还大大提高了频谱利用率,可以有效地抵抗频率选择性衰落。
多输入多输出(MIMO)技术是指利用多发送和多接收天线进行空间分集的技术,是无限移动通信领域智能天线技术的重大突破。
在无线通信领域,对MIMO的研究源于对多个天线阵元空间分集的性能研究。
从20世纪80年代开始,研究学者发现与合并技术结合的多天线空间分集可进一步改善无线链路性能并增加系统容量,Salzzai研究了单用户MIMO高斯信道,以两径传播信道模型分析了空间分集对信道容量和容量分布的影响。
Winters讨论了干扰受限的无线系统中,利用多天线空间分集所能带来的容量增益,并明确地指出了增加分集天线数目可以增加系统容量。
多输入多输出系统充分开发空间资源,利用多个天线实现多发多收,在不需要增加频谱资源和天线发送功率的情况下,可以成倍地提高信道容量。
二、正交频分复用(OFDM)技术正交频分复用(OFDM)是一种特殊的多载波传输方案,它可以看作是一种调制技术,也可以当作一种复用技术。
多载波传输把数据流分解成若干子比特流,这样每个子数据流具有低得多的比特数据流,再去调制成相应的子载波,各子载波相互正交,所以扩频调制后的频谱可以相互重叠。
在OFDM 系统中,在各个频段上发送的并行数据信号合并成一个独立的复用数据流,这些数据由多个子载波组合而成,然后在OFDM 系统中传输。
这样增加了数据的吞吐量,提高了传输速度。
传统的FDM系统中,两个信道之间存在较大的频率间隔作为保护带来防止干扰,这样就降低了系统的频谱利用率。
因此,OFDM系统比传统FDM 系统具有更高的带宽利用率。
OFDM 通信系统基本模型如图1所示。
输入的二元数字序列首先进行串并串行输入串并转换···编码映射··S1(t)S k(t)IFFT···并串转换D/ALPF上变频信道噪声串行输出并串转换译码映射···均衡LPFA/D下变频串并转换FFT·········图1 OFDM 通信系统基本模型图转换和编码映射,然后经过快速傅里叶逆变换(IFFT)对编码后的星座点进行基带调制,再经并串转换,D/A 转换及低通滤波后经过上变频送到信道。
接收端的处理过程与发送端相反,信道出来的信号先经过下变频,低通滤波(LPF),A/D 转换及串并转换后,再进行快速傅里叶变换(FFT),然后对所得数据进行均衡,以校正信道失真,最终进行译码判决和并串转换,恢复出原始的二元数字序列。
在OFDM 系统中,符号连续传输,每个传输符号的速率大约在几十bit/s 到几十kbit/s 之间,每个符号的频谱几乎占据了整个系统的可用带宽。
当OFDM 符号在无线信道中进行传输时,系统子载波会受到频率选择性作用,产生严重的衰减,从而造成在接收端解调出错误信号。
通常错误的出现是连续的,采用前向纠错编码方法(FEC)可以有效地降低错误概率,为了进一步提高系统的性能,可以将串行的数据流转换成并行数据流。
OFDM 是一种多载波调制方式,通过减小和消除码间串扰的影响来克服信道的频率选择性衰落。
快速傅里叶变换(FFT)和逆快速傅里叶变换(IFFT)可以分别执行OFDM 系统的调制和解调的功能,快速傅里叶变换优势在于可以大大降低OFDM 系统的计算复杂度。
三、 多输入多输出(MIMO )系统在通信两端发送和接收信号称为单输入单输出系统(SISO ),而在通信两端使用多个天线进行发送和接收信号称为多输入多输出系统 (MIMO )。
由于电磁环境较为复杂,多径效应、频率选择性衰落和其他干扰的存在,使得实现无线信道的高速数据传输比有线信道传输难。
通常多径效应会引起衰落,被视为有害因素。
但对于 MIMO 系统来说,多径效应可以作为一个有利因素加以利用,因 MIMO 系统在发射端和接收端均采用多天线和多通道,多输入和多输出针对多径无线信道而言的。
MIMO 系统的原理图如图2 所示,传输信息流S(k)经过时空编码形成 N C 1(k)S(k)信源信源时空编码时空解码天线矩阵···C N (k)R 1(k)···R M (k)S(k)发射接收图2 MIMO 系统原理图个信息子流 C N (k)。
这 N 个子流由 N 个天线发射出去,经空间信道后由 M 个接收天线接收。
多天线接收利用先进的空时编码处理就能够分开并解码这些数据子流,,从而实现最佳的处理。
特别是这 N 个子流同时发送到信道时,各发射信号占用同一频带,因而并未增加带宽。
若各发射和接收天线间的通道响应独立, 则MIMO 系统可以创造多个并行空间信道。
通过这些并行空间信道独立地传输信息,在不占用额外的带宽,也不消耗额外的发射功率的情况下,利用MIMO 技术可以成倍地提高系统传输容量,大大提高了频谱利用率。
MIMO技术不仅包含了智能天线技术的信号处理,其近来的发展已经涉及编码、调制和网络系统结构等方面,它使用多个发送天线和多个接收天线可以在不降低频谱利用率条件下实现天线分集。
在实现空间分集时,信号在时间域和频域内都没有引入冗余,因此有利于信号在无线信道中进行高速传输。
MIMO 技术使用阵列天线可以降低共道干扰和多径衰落的影响,同时利用分集技术提高接收信号的信干噪比(SINR)。
因此在一定的SINR条件下可以降低接收信号的误码率,使得基站和移动终端的发射功率得到了一定程度的降低。
MIMO技术能够利用传播中的多径分量,在空间中产生独立的并行信道同时传输多路数据流,在不增加系统带宽的情况下增加频谱效率,提高了系统的传输速率,有效地改善了多径衰落对系统的影响。
但是对于频率选择性深衰落,MIMO系统依然无能为力。
四、OFDM 调制的MIMO系统OFDM 技术是一种特殊的多载波传输方案,其多载波之间相互正交,可以高效利用频谱资源,同时OFDM将总带宽分割为若干个窄带子载波,可以有效抵抗频率选择性衰落。
与MIMO技术相结合的MIMO-OFDM系统既可以达到很高的传输效率,又可以通过分集达到很强的可靠性,从而成为现代移动通信系统核心技术的解决方案。
MIMO-OFDM 系统模型如图3所示,发射端N 个发射天线的工作流程如下:输入的数据符号流经串并电路分成N个子符号流,采用信道编码技术对每MIMOB编码器···OFDM调制器1OFDM调制器2OFDM调制器NMIMOB检测器···OFDM解调器1OFDM解调器2OFDM解调器M图3 MIMO-OFDM 系统基本结构个符号流进行无失真压缩并加入冗余信息,调制器对编码后的数据进行空时调制;调制后的信号在IFFT电路中实现OFDM调制处理,完成将频域数据变换为时域数据的过程,然后输出的每个OFDM 符号前加一个循环前缀以减弱信道延迟扩展产生的影响,每个时隙前加前缀用以定时,这些处理过的OFDM 信号流相互平行地传输,每一个信号流对应一个指定的发射天线,并经数模转换及射频模块处理后发射出去。
接收端进行与发射端相反的信号处理过程,首先通过接收端的M 根接收天线接收信号,这些信号经过放大、变频、滤波等射频处理后,得到基带模拟接收信号;并分别通过模数转换将模拟信号转换为数字信号后进行同步,在去循环前缀后通过FFT 解调剩下的OFDM 符号;此时,时延数据变换成为频域数据,接下来在频域内,从解调后的OFDM 符号中提取出频率导频,然后通过精细的频率同步和定时,准确地提取出导频和数据符号,实现数据还原。
MIMO和OFDM两种技术结合,不但能够实现很高的数据传输速率,还能通过分集实现增强传输的可靠性。
MIMO和OFDM技术的互补特性促使了两者在宽带传输领域的结合。
MIMO-OFDM技术,综合了MIMO高频谱效率和OFDM简化接收机的特点,通过在OFDM传输系统中采用阵列天线引入空间资源,同时利用时间、频率和空间处理方式,使移动通信系统对噪声、干扰、多径的容限大大增加,有效地提高了无线链路的传输速率和系统可靠性。
MIMO-OFDM技术作为4G LTE-Advanced的核心技术,两者的结合在提高无线链路的有效性和可靠性方面都具有很大的潜力。
五、MIMO-OFDM 的关键技术MIMO-OFDM系统实现过程中有很多关键技术,以下简要介绍几种。
(1)MIMO-OFDM 系统中的时频同步。
对于MIMO-OFDM 系统的同步问题涉及前导序列的设计,时间和频率同步,以及信号检测技术等方面。
一般来说,在MI MO-OFDM 系统在下行和上行链路传播之间都存在同步时隙,用于实施相位和频率对齐,并且实施频率偏差估计。
时隙可按以下方式构成:在偶数序号的子载波上发送数据和练习符号,而在奇数序号的子载波上设置为零。
这样经过IFFT 变化后得到的时域信号就会被重复,有利于信号的检测。
(2)MIMO-OFDM 信道估计。
在MIMO-OFDM 系统中,发送端编码和接收端信号检测都需要真实准确的信道状态信息,信道状态信息的准确性将直接影响着MIMO-OFDM 系统的整体性能。