高中数学第三章三角恒等变换32简单的三角恒等变换教学案新人教A版
- 格式:doc
- 大小:1.87 MB
- 文档页数:12
第三章 三角恒等变换3.2 简单的三角恒等变换一、教学内容及其分析本节内容《简单的三角恒等变换》选自人教A 版必修四第三章第二节,其中新任务是通过已知的两角和差公式及二倍角公式探索简单的三角恒等变换,通过简单运用,使学生初步理解简单的三角恒等变换的基本原则、方法. 本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.二、教学目标及学科素养分析课程目标:1、能用两角和与差的正弦、余弦,二倍角正弦、余弦公式进行简单的三角恒等变换,记住sin cos y a x b x ωω=+的化简方法.2、能正确的对形如sin()y A x ωϕ=+的三角函数性质进行讨论,能灵活利用公式,通过三角恒等变换,解决函数的最值、周期、单调性等问题.3、能运用三角公式解决一些实际问题.4、通过三角恒等变换的训练,能够培养转化与化归的数学思想. 学科素养:1、 数学抽象:三角函数公式之间的内在联系;2、 逻辑推理:运用三角函数公式进行简单的三角恒等变换;3、 数学运算:利用三角函数公式进行计算和化简;4、 直观想象:让学生感受由特殊到一般的数学思想方法;5、 数学建模:通过对实际问题的探究过程,感知应用数学解决问题的方法,理解转化、化归、换元等数学思想方法在数学中的应用.三、教学重难点教学重点:引导学生以已有的十一个公式为依据,进行三角恒等变换,对形如sin()y A x ωϕ=+的三角函数性质进行讨论教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.对形如sin()y A x ωϕ=+三角函数的应用. 四、教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体,调动学生参与课堂教学的主动性和积极性.五、教学过程探究一:形如sin()y A x ωϕ=+函数性质的探究三角函数主要刻画的是周期性质,随着周期变化,函数的图象发生变化,从而导致函数的相关性质而发生改变.问题1.求函数2sin(2)()6y x x R π=+∈的周期,最大值. 生:函数2sin(2)()6y x x R π=+∈的周期为T π=,最大值为2.问题2.求函数sin ()y x x x R =+∈的周期,最大值.生:函数sin ()y x x x R =+∈的最大值为2,周期为2T π=.学生也可能不会回答.师:通过第一章的学习我们已经对形如sin()y A x ωϕ=+的函数性质做了探究,今天再继续探究形如sin()y A x ωϕ=+的函数性质.只不过今天我们研究的函数没有直接给出sin()y A x ωϕ=+的形式,需要先将所给的函数式化简为sin()y A x ωϕ=+的形式,从而使三角函数的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.这就是本节课我们学习的内容.问题.函数sin y x x =+如何化简为sin()y A x ωϕ=+的形式?提问学生回答:因为sin y x x =12(sin cos )22x x =+ 2(sin cos cos sin )33x x ππ=+2sin()3x π=+. 所以函数sin ()y x x x R =+∈的最大值为2,周期为2T π=.问题4.刚才所化简的函数是形如sin cos y a x b x ωω=+的函数,那么我们如何将形如sin cos y a x b x ωω=+的函数化简为sin()y A x ωϕ=+的形式呢? 生:思考后讨论(2分钟),提问回答:sin cos )y a x b x x x ωωωω=+=+ 令cos ϕϕ==则sin cos y a x b x ωω=+cos cos sin )x x ωϕωϕ=+)x ωϕ=+.师:sin cos y a x b x ωω=+)x ωϕ+,其中tan b aϕ=.这个公式我们称为辅助角公式.现在我们利用这个公式解决下面的例题.例题:函数3sin ()22x x y x R =∈的周期为 .生:思考后,提问回答:3sin 22x x y =-1cos )222x x =-cos cos sin )2626x x ππ=-sin()26x π=-. 所以函数3sin ()22x x y x R =∈的周期为=4T π.。
第三章第二节简单的三角恒等变换第二课时 导入新课思路 1.(问题导入)三角化简、求值与证明中,往往会出现较多相异的角,我们可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获得解决,如:α=(α+β)-β,2α=(α+β)+(α-β)=(π4+α)-(π4-α),π4+α=π2-(π4-α)等,你能总结出三角变换的哪些策略?由此探讨展开.思路 2.(复习导入)前面已经学过如何把形如y =a sin x +b cos x 的函数转化为形如y =A sin(ωx +φ)的函数,本节主要研究函数y =a sin x +b cos x 的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能. 推进新课新知探究提出问题①三角函数y =sin x ,y =cos x 的周期,最大值和最小值是多少?②函数y =a sin x +b cos x 的变形与应用是怎样的?③三角变换在几何问题中有什么应用?活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2k π(k ∈Z 且k ≠0),最小正周期都是2π.三角函数的自变量的系数变化时,会对其周期性产生一定的影响,例如,函数y =sin x 的周期是2k π(k ∈Z 且k ≠0),且最小正周期是2π,函数y =sin2x 的周期是k π(k ∈Z 且k ≠0),且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1].函数y =a sin x +b cos x =a 2+b 2(a a 2+b 2sin x +b a 2+b 2cos x ), ∵(aa 2+b 2)2+(b a 2+b 2)2=1,从而可令a a 2+b 2=cos φ,ba 2+b 2=sin φ,则有a sin x +b cos x =a 2+b 2(sin x cos φ+cos x sin φ)=a 2+b 2sin(x +φ).因此,我们有如下结论:a sin x +b cos x =a 2+b 2sin(x +φ),其中tan φ=b a.在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题.我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过三角变换来解决几何中的有关问题,是一种重要的数学方法.讨论结果:①y =sin x ,y =cos x 的周期是2k π(k ∈Z 且k ≠0),最小正周期都是2π;最大值都是1,最小值都是-1.②~③(略)见活动.应用示例思路1例1如图1,已知OPQ 是半径为1,圆心角为π3的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.活动:要求当角α取何值时,矩形ABCD 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.找S 与α之间的函数关系可以让学生自己解决,得到:S =AB ·BC =(cos α-33sin α)sin α=sin αcos α-33sin 2α.求这种y =a sin 2x +b sin x cos x +c cos 2x 函数的最值,应先降幂,再利用公式化成A sin(ωx +φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行:(1)找出S 与α之间的函数关系;(2)由得出的函数关系,求S 的最大值.解:在Rt△OBC 中,OB =cos α,BC =sin α,图1在Rt△OAD 中,DA OA =tan60°=3, 所以OA =33DA =33BC =33sin α. 所以AB =OB -OA =cos α-33sin α. 设矩形ABCD 的面积为S ,则S =AB ·BC =(cos α-33sin α)sin α =sin αcos α-33sin 2α =12sin2α+36cos2α-36=13(32sin2α+12cos2α)-36 =13sin(2α+π6)-36. 由于0<α<π3,所以当2α+π6=π2,即α=π6时,S 最大=13-36=36. 因此,当α=π6时,矩形ABCD 的面积最大,最大面积为36. 点评:可以看到,通过三角变换,我们把形如y =a sin x +b cos x 的函数转化为形如y =A sin(ωx +φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠COP =α”,结论改成“求矩形ABCD 的最大面积”,这时,对自变量可多一种选择,如设AD =x ,S =x (1-x 2-33x ),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点.最小值;并写出该函数在[0,π]上的单调递增区间.活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题.解:y =sin 4x +23sin x cos x -cos 4x=(sin 2x +cos 2x )(sin 2x -cos 2x )+3sin2x =3sin2x -cos2x=2sin(2x -π6). 故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0,π3],[5π6,π]. 点评:本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.例1已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π2]上是单调函数,求φ和ω的值.活动:学生在解此题时,对f (x )是偶函数这一条件的运用不存在问题,而在对“f (x )的图象关于M (3π4,0)对称”这一条件的使用上,多数考生都存在一定问题.一般地,定义在R 上的函数y =f (x )对定义域内任意x 满足条件:f (x +a )=2b -f (a -x ),则y =f (x )的图象关于点(a ,b )对称,反之亦然.教师在这类问题的教学时要给予充分的提示与总结,多做些这种类型的变式训练.解:由f (x )是偶函数,得f (-x )=f (x ),即sin(-ωx +φ)=sin(ωx +φ),所以-cos φsin ωx =cos φsin ωx 对任意x 都成立.又ω>0,所以,得cos φ=0.依题设0≤φ≤π,所以,解得φ=π2. 由f (x )的图象关于点M 对称,得f (3π4-x )=-f (3π4+x ). 取x =0,得f (3π4)=-f (3π4),所以f (3π4)=0. ∵f (3π4)=sin(3ωπ4+π2)=cos 3ωπ4,∴cos 3ωπ4=0. 又ω>0,得3ωπ4=π2+k π,k =0,1,2,….∴ω=23(2k +1),k =0,1,2,…. 当k =0时,ω=23,f (x )=sin(23x +π2)在[0,π2]上是减函数; 当k =1时,ω=2,f (x )=sin(2x +π2)在[0,π2]上是减函数; 当k ≥2时,ω≥103,f (x )=sin(ωx +π2)在[0,π2]上不是单调函数.所以,综合得ω=23或ω=2. 点评:本题是利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题.∴cos B 2cos C 2=2sin B sin C =8sin B 2·cos B 2cos C 2sin C 2.∴sin B 2sin C 2=18. 积化和差,得4(cos B +C2-cos B -C2)=-1,若存在θ使等式cos θ-sin θ=4(cosB +C 2-cos B -C 2)成立,则2cos(θ+π4)=-1, ∴cos(θ+π4)=-22.而π<θ≤2π, ∴5π4<θ+π4≤9π4.∴这样的θ不存在. 点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先假设结论是肯定的,再进行演绎推理,若推证出现矛盾,即可否定假设;若推出合理结果,即假设成立.这个探索结论的过程可概括为假设——推证——定论.例2已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.解:∵2α-β=2(α-β)+β,tan(α-β)=12, ∴tan2(α-β)=2tan α-β1-tan 2α-β=43. 从而tan(2α-β)=tan[2(α-β)+β]=tan2α-β+tan β1-tan2α-βtan β=43-171+43×17=25212521=1. 又∵tan α=tan[(α-β)+β]=tan α-β+tan β1-tan α-βtan β=13<1.且0<α<π,∴0<α<π4.∴0<2α<π2. 又tan β=-17<0,且β∈(0,π),∴π2<β<π,-π<-β<-π2. ∴-π<2α-β<0.∴2α-β=-3π4. 点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若α∈(0,π),则求cos α;若α∈(-π2,π2),则求sin α等.知能训练课本本节练习4.解答:4.(1)y =12sin4x .最小正周期为π2,递增区间为[-π8+k π2,π8+k π2](k ∈Z ),最大值为12; (2)y =cos x +2.最小正周期为2π,递增区间为[π+2k π,2π+2k π](k ∈Z ),最大值为3;(3)y =2sin(4x +π3).最小正周期为π2,递增区间为[-5π24+k π2,π24+k π2](k ∈Z ),最大值为2. 课堂小结本节课主要研究了通过三角恒等变形,把形如y =a sin x +b cos x 的函数转化为形如y =A sin(ωx +φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出“活”的数学.作业课本复习参考题A 组11、12.设计感想1.本节课主要是三角恒等变换的应用,通过三角恒等变形,把形如y =a sin x +b cos x 的函数转化为形如y =A sin(ωx +φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的.在教学中教师要强调:分析、研究三角函数的性质,是三角函数的重要内容.如果给出的三角函数的表达式较为复杂,我们必须先通过三角恒等变换,将三角函数的解析式变形化简,然后再根据化简后的三角函数,讨论其图象和性质.因此,三角恒等变换是求解三角函数问题的一个基本步骤.但需注意的是,在三角恒等变换过程中,由于消项、约分、合并等原因,函数的定义域往往会发生一些变化,从而导致变形化简后的三角函数与原三角函数不等价.因此,在对三角函数式进行三角恒等变换后,还要确定原三角函数的定义域,并在这个定义域内分析其性质.2.在三角恒等变化中,首先是掌握利用向量的数量积推导出两角差的余弦公式,并由此导出角和与差的正弦、余弦、正切公式,二倍角公式和积化差、和差化积及半角公式,以此作为基本训练.其次要搞清楚各公式之间的内在联系,自己画出知识结构图.第三就是在三角恒等变换中,要结合第一章的三角函数关系、诱导公式等基础知识,对三角知识有整体的把握.3.今后高考对三角变换的考查估计仍以考查求值为主.和、差、倍、半角的三角函数公式、同角关系的运用仍然是重点考查的地方,应该引起足够重视,特别是对角的范围的讨论,从而确定符号.另外,在三角形中的三角变换问题,以及平面向量为模型的三角变换问题将是高考的热点.对三角函数综合应用的考查,估计仍然以三角与数列、不等式、平面向量、解析几何、三角与解三角形的实际应用为主,题型主要是选择题、填空题,也可能以解答题形式出现,难度不会太大.应注意新情景立意下的三角综合应用也是考试的热点.备课资料一、三角函数的综合问题三角函数是中学学习的重要的基本初等函数之一,近年来,高考每年都要考查三角函数的图象和性质的基础知识.在综合题中,也常常会涉及三角函数的基础知识的应用.因此,对本单元的学习要落实在基础知识、基本技能和基本方法的前提下,还应注意与其他部分知识的综合运用.三角函数同其他函数一样,具有奇偶性、单调性、最值等问题,我们还要研究三角函数的周期性、图象及图象的变化,有关三角函数的求值、化简、证明等问题.应熟知三角函数的基本性质,并能以此为依据,研究解析式为三角式的函数的性质,掌握判断周期性,确定单调区间的方法,能准确认识三角函数的图象,会做简图、对图象进行变化.二、备用习题1.sin10°+sin20°cos10°+cos20°的值是( ) A .tan10°+tan20° B.33C .tan5°D .2-3 答案:D2.若α-β=π4,则sin αsin β的最大值是( ) A.2-24 B.2+24C.34D .1 答案:B3.若cos αsin x =12,则函数y =sin αcos x 的值域是( ) A .[-32,12] B .[-12,12]C .[-12,32] D .[-1,1] 答案:B4.log 2(1+tan19°)+log 2(1+tan26°)=________. 答案:15.已知函数f (x )=cos2x cos(π3-2x ),求f (x )的单调递减区间、最小正周期及最大值.答案:解:f (x )=12[cos π3+cos(4x -π3)]=12cos(4x -π3)+14,由2k π≤4x -π3≤2k π+π(k ∈Z ),得原函数的单调递减区间是[k π2+π12,k π2+π3](k ∈Z ),T =π2,最大值是34. 6.已知sin A =-35,cos B =-941,A ∈(3π2,2π),B ∈(π,3π2),求sin(2A -B 2)的值,并判定2A -B 2所在的象限. 答案:解:cos A =45,sin2A =-2425,cos2A =1-2sin 2A =725, ∵B ∈(π,3π2), ∴B 2∈(π2,3π4). ∴sin B 2=541,cos B 2=-441.∴sin(2A -B 2)=sin2A cos B 2-cos2A sin B 2=61411 025. 又cos(2A -B 2)=cos2A cos B 2+sin2A sin B 2<0, ∴2A -B2是第二象限角. 7.已知f (0)=a ,f (π2)=b ,解函数方程:f (x +y )+f (x -y )=2f (x )·cos y .答案:解:分别取⎩⎪⎨⎪⎧ x =0,y =t ,⎩⎪⎨⎪⎧ x =π2+t ,y =π2,⎩⎪⎨⎪⎧ x =π2,y =π2+t ,代入方程,得错误! ①+②-③,得2f (t )=2f (0)cos t +2f (π2)sin t . ∵f (0)=a ,f (π2)=b , ∴f (x )=a cos x +b sin x .。
简单的三角恒等变换教学设计(第1课时)一、教学内容与学情分析本节课教学内容是《普通高中课程标准实验教科书·数学(4)》(人教A版)中第三章的第二节“简单三角恒等变换”(第一课时).本节课主要研究如何让利用已有的三角函数公式进行简单的恒等变换,以及三角恒等变换在数学中的应用,引导学生对变换对象和变换目标进行对比、分析,促使学生形成对解题过程中如何让选择共识,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学方法的认识,从而加深理解变换思想,提高学生的推理能力。
二、教学目标1.知识和技能目标(1)掌握运用和(差)角公式、倍角公式进行三角变换的方法和思路;(2)弄清代数变换与三角变换的不同点2.过程和方法目标(1)能够利用换元、逆用公式等方法对三角函数式进行恒等变换,化简三角函数式,提高学生的推理能力;(2)弄清代数变换与三角变换的不同点,认真体会三角变换的特点,提高推理、运算能力;(3)由特殊到一般,由具体到抽象,不断提升学生的探究能力和数学思维能力,培养学生学数学地思考问题、解决问题。
3.情感和价值目标(1)认识事物之间的的区别和联系,体会事物的变化是有规律的唯物主义思想.(2)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.三、教学重难点1.教学重点:(1)半角公式、积化和差、和差化积公式的推导训练(2)三角变换的内容、思路和方法,在与代数变换相比较中体会三角变换的特点2.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力四、教法选择1.观察学习是重要的学习方法.这节课采用的第一个方法就是“观察、比较法”;2.根据新课标的教学理念,教学中要培养学生合作共事的团队精神,这节课还采用了“合作、讨论法”,让学生共同探讨、合作学习、取长补短、形成共识.五、学法指导对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.六、教学过程设计本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈建构”四个环节进行组织.(一)、创设情境,铺垫导入1、复习回顾(1)三角函数的和(差)角公式(2)三角函数的倍角公式2、问题引入问题1:α与2α有什么关系? 问题2:化简:(1) = _______ (2)1 -= _________(3)= _________(二)合作学习,探索新知例题1.试cos 表示、、教师活动:引导学生联想关于余弦的二倍角公式,将公式中的 替换成 。
高中数学必修4 第3章 三角恒等变换 3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单使用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础. 二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不但有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,使用已学知识和方法的水平问题,等等. 三、教学设想: (一)导入:问题1: 我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家能够猜测,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜测是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-= (二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也能够用角α的余弦线来表示。
思考?.1角函数线来探求公式怎样联系单位圆上的三(1) 怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)?)2(的余弦线和余弦线的正弦线怎样作出角βαβα-,、、思考2:怎样联系向量的数量积探求公式?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?(2)怎样利用向量的数量积的概念的计算公式得到探索结果? 两角差的余弦公式:βαβαβαsin sin cos cos )cos(⋅+⋅=-(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值. 解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 30222=+=-=⨯=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活使用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.思考:此题中没有),2ππα⎝⎛∈,呢? (四)练习:不查表计算以下各式的值:︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(解: ︒︒+︒︒20sin 80sin 20cos 80cos 1)( 2160cos )2080cos(=︒=︒-︒= (五)小结:两角差的余弦公式,首先要理解公式结构的特征,理解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活使用.(1)牢记公式.S S C C C ⋅+⋅=-)(βα(2)在“给值求值”题型中灵活处理已、未知关系. (六)作业3.1.2两角和与差的正弦、余弦、正切公式一、教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。
数学必修4教学案:3.2 简单的三角恒等变换(教学案)数学必修4教学案:3.2简单的三角恒等变换(教、学案)3.2简单三角恒等式变换【教学目标】能够用所学公式简化、评估和证明三角函数公式,引导学生推导半角公式、和差公式和和差积公式(公式不需要记忆),使学生进一步提高运用变换、变换、方程等数学思想解决问题的能力。
【教学重点、难点】教学重点:引导学生学习三角变换的内容、思想和方法,了解三角变换的特点,在现有公式的基础上提高其推理和计算能力,并以半角公式、和差公式和和差积公式的推导为基础训练。
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。
【教学过程】回顾介绍:回顾角度倍增公式s2?、c2、t2?首先,让学生写下三倍角度的公式,注意等号两侧角度之间的关系,并特别注意C2?。
既然我们可以用单角度来表示双角度,我们可以用双角度来表示单角度吗?半角公式的推导和理解:例1、试以cos?表示sin2?2,cos2?2,tan22?2.分析:我们可以通过双角度cos??2cos角度公式?第二代?,21和cos??1?2sin2?2来做此题.(二倍(一代人?)22解决方案:cos??1.因为什么??2cos2?2.你能得到sin2吗?2.1.余弦?;2.2.1.你能得到Cos2吗?2.1.因为?。
2.你能用两个公式除以Tan 2吗?2.2.1.因为?。
?1.余弦?cos22sin2?Sin评论:⑴ 上述结果也可以表示为:21cos21cos2cos2tan21cos1cos并称之为半角公式(不要求记忆),符号由2角的象限决定。
⑵ 在三角函数公式的简化、求值和证明中,广泛使用了降幂和增幂公式以及降幂和增幂公式。
⑶ 代数变换通常侧重于公式的子结构形式的变换。
三角恒等式变换通常首先寻找公式中包含的角度之间的联系,并在此基础上选择合适的公式来联系它们,这是三角恒等式变换的一个重要特征。
2019-2020年高中数学第三章《三角恒等变换》教学设计新人教A版必修4【教学目标】进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:新授课阶段1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、±β代替β、α=β等换元法可以推导出其它公式.你能根据下图回顾推导过程吗?2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围.4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等.5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cos α= cos βcos (α-β)- sin βsin (α-β),1= sin 2α+cos 2α,==tan (450+300)等.例1 知),2(,61)4sin()4sin(ππ∈α=α-πα+π,求sin4α的值. 解:∵61)4sin()4sin(=α-πα+π ∴31)4cos()4sin(2=α+πα+π∴ ∴cos2α = 又∵ ∴2α∈ (π, 2π)∴sin2α = 322)31(12cos 122-=--=α-- ∴sin4α = 2sin2αcos2α =例2 已知θ是三角形中的一个最小的内角,且12sin 2cos 2sin 2cos 2222+=θ-θ-θ+θa a a ,求a 的取值范围. 解:原式变形:1)2sin 2(cos )2sin 2(cos 2222+=θ-θ-θ-θa a即,显然 (若,则 0 = 2) ∴ 又∵,∴ 即: 解之得:例3 求证:)6(sin )3cos(cos sin 22α-π-α+πα+α的值是与α无关的定值. 证:)3cos(cos )]23cos(1[21)2cos 1(21α+πα+α-π--α-=原式)sin 3sin cos 3(cos cos ]2cos )23[cos(21απ-απα+α-α-π=211(cos cos 2sin sin 2cos 2)cos sin 23322ππαααααα=+-+-1111cos 22cos 2(1cos 2)24244ααααα=+-++-= ∴)6(sin )3cos(cos sin 22α-π-α+πα+α的值与α无关 例4 已知331cos 2sin 2cos(), , 45221tan πππααααα-++=≤<-求的值.解:由得解方程组223sin 225sin cos 1αααα-=⎪⎨⎪+=⎩得sin 10cos 10αα⎧=-⎪⎪⎨⎪=-⎪⎩或sin 10cos 10αα⎧=⎪⎪⎨⎪=⎪⎩sin 310cos 0 22cos 10αππααα⎧=-⎪⎪≤<∴≤∴⎨⎪=-⎪⎩ 21cos 2sin22sin 2sin cos 1tan 1tan ααααααα-++∴=--22(2(281010101775⨯+⨯==--例5 求值:02210sin 21)140cos 1140sin 3(⋅-.解:原式=0020*******sin 21140cos 140sin 140sin 140cos 3⋅- 16160sin 200sin 1680cos 80sin 200sin 810sin 2180sin 41200sin 80sin 410sin 21)40cos 40sin ()140sin 140cos 3)(140sin 140cos 3(0000002000200000=-=-=⋅⋅-=⋅-+-=例6 .已知函数1)4()cos x f x xπ-=. (Ⅰ)求的定义域;(Ⅱ)设的第四象限的角,且,求的值. 解:(Ⅰ)由 得,故在定义域为(Ⅱ)因为,且是第四象限的角, 所以故1)4()cos f πααα-=12(sin 22)22cos ααα--=.例7 已知sin (-x )=,0<x <,求的值.分析:角之间的关系:(-x )+(+x )=及-2x =2(-x ),利用余角间的三角函数的关系便可求之.解:∵(-x )+(+x )=,∴cos(+x )=sin (-x ).又cos2x =sin (-2x )=sin2(-x )=2sin (-x )cos (-x ), ∴=2cos(-x )=2×=.例8 求证:(sin cos 1)(sin cos 1)tan sin 22x x x x x x +--+=解:原式=22(sin 12sin 1)(sin 12sin 1)22sin 2x xx x x+---++ =22(2sin cos 2sin )(2sin cos 2sin )2222224sin cos cos 22x x x x x x x xx-+ =(cos sin )(cos sin )sin 22222cos cos 2x x x x x x x-+⋅ =x x x x x cos 2cos 2sin 2sin 2cos 22⋅-)(=x x x x cos 2cos 2sincos ⋅⋅=tan.例9 已知,,都是锐角,求 的值. 解:由得3sin 2α=1-2sin 2β=cos2β.由得sin2β=sin2α.∴cos(α+2β)=cos αcos2β-sin αsin2β =3cos αsin 2α-sin α·sin2α=0.∵α、β∈(0,),∴α+2β∈(0,). ∴α+2β=. 课堂小结三角恒等式的证明方法有:从等式一边推导变形到另一边,一般是化繁为简. 等式两边同时变形成同一个式子.将式子变形后再证明. 作业 见同步练习 拓展提升 1.若,则等于 (A ) (B ) (C ) (D )2.函数y=sin2x+sinx,x 的值域是( ) (A)[-,] (B) [] (C) [-,] (D)[]3.已知x ∈(-,0),cos x =,则tan2x 等于 ( ) A.B.-C.D.-4.已知tan=,则的值为( ) A .B .-C .D .-5..,则 . 6.已知,若,则. 若 , 则.7.若,则的值为_______.8.已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A 求 的值.9. ()41,cos ,tan , cos .53αβααββ=-=-已知、为锐角求的值10.设函数()cos 2cos ()f x x x x x R =+∈的最大值为M ,最小正周期为T . (1) 求M ,T ;(2) 若有10个互不相等的正数满足M ,且(i=1,2,…10), 求…的值.参考答案 1.C2.B 提示:用二倍角公式及两角和与差的正弦或余弦公式3.D 4.A 提示:222sin 2sin cos1cos sin 222tan 1cos sin 22cos 2sin cos 222θθθθθθθθθθθ+-+==+++ 5.. 提示:由已知得,22sin 2cos 22sin cos cos sin αααααα+=+-2222222sin cos cos sin 2tan 1tan 7sin cos tan 15ααααααααα+-+-===-++ 6. 提示:2(sin cos )12sin cos θθθθ-=-= 当0,sin cos 4πθθθ⎛⎫∈< ⎪⎝⎭时,当,sin cos 42ππθθθ⎛⎫∈> ⎪⎝⎭时, 7. 提示:去分母后两边平方可得 8 解:,51)sin(,53)sin(=-=+B A B A .2tan tan 51sin cos ,52cos sin .51sin cos cos sin ,53sin cos cos sin =⇔⎪⎪⎩⎪⎪⎨⎧==⇔⎪⎪⎩⎪⎪⎨⎧=-=+∴B A B A B A B A B A B A B A 9 解:43,cos , sin .55ααα=∴=是锐角.,22 π<β-α<π-∴βα为锐角、又 ()可求出,31tan -=-βα ()(),1010sin ,10103cos -=-=-βαβα()cos cos βααβ∴=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-10 解:(1)()cos 222sin(2)6f x x x x π=+=+(2):,22,62i x k k Z πππ+=+∈故即 ,又是互不相等的正数且(i=1,2,…10), 故 0,1,…9.所以…。
高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。
2、能够运用三角恒等式进行简单的三角恒等变换。
3、培养学生的逻辑推理能力和数学运算能力。
教学重点1、三角恒等式的理解和记忆。
2、三角恒等变换的方法和步骤。
教学难点三角恒等式的灵活运用和复杂三角表达式的化简。
教学准备1、多媒体课件,包含三角恒等式、例题和练习题。
2、黑板和粉笔。
教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。
提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。
2、通过实例演示如何使用三角恒等式进行三角恒等变换。
3、引导学生总结三角恒等变换的.一般方法和步骤。
三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。
教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。
四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。
鼓励学生相互讨论,分享解题思路和方法。
五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。
布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。
教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。
但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。
在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。
同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。
高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。
能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。
3.2 简单的三角恒等变换[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 139~P 142的内容,回答下列问题. (1)α与α2是什么关系?提示:倍角关系. (2)如何用cos α表示sin 2α2,cos2α2和tan2α2?提示:sin2α2=1-cos α2,cos2α2=1+cos α2,tan2α2=1-cos α1+cos α. 2.归纳总结,核心必记 (1)半角公式(2)三角恒等变换的特点三角恒等变换常常寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式.[问题思考](1)能用不含根号的形式用sin α,cos α表示tan α2吗?提示:tan_α2=sin α1+cos α=1-cos αsin α.(2)如何用tan α2表示sin α,cos α及tan α?提示:sin_α=2sin α2·cosα2=2sinα2·cosα2sin2α2+cos2α2=2tanα21+tan2α2._cos_α=cos2_α2-sin2_α2=cos2α2-sin2α2cos2α2+sin2α2=1-tan2α21+tan2α2.tan_α=sin αcos α=2tanα21-tan2α2.[课前反思](1)半角公式的有理形式:;(2)半角公式的无理形式:.讲一讲1.已知sin α=-45,π<α<3π2,求sinα2,cosα2,tanα2的值.[尝试解答] ∵π<α<3π2,sin α=-45,∴cos α=-35,且π2<α2<3π4,∴sinα2=1-cos α2=255,cosα2=-1+cos α2=-55,tanα2=sinα2cosα2=-2.解决给值求值问题的思路方法已知三角函数式的值,求其他三角函数式的值,一般思路为:(1)先化简已知或所求式子;(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手);(3)将已知条件代入所求式子,化简求值. 练一练1.已知sin α2-cos α2=-15,450°<α<540°,求tan α2的值.解:由题意得⎝⎛⎭⎪⎫sin α2-cos α22=15,即1-sin α=15,得sin α=45.∵450°<α<540°, ∴cos α=-35,∴tan α2=1-cos αsin α=1-⎝ ⎛⎭⎪⎫-3545=2.讲一讲2.化简:(1+sin α+cos α)⎝⎛⎭⎪⎫sin α2-cos α22+2cos α(180°<α<360°).[尝试解答] 原式=⎝⎛⎭⎪⎫2cos 2 α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α22·2cos 2α2=2cos α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cos α2(-cos α)⎪⎪⎪⎪⎪⎪cos α2.又∵180°<α<360°, ∴90°<α2<180°,∴cos α2<0,∴原式=cos α2·(-cos α)-cosα2=cos α.化简问题中的“三变”(1)变角:三角变换时通常先寻找式子中各角之间的联系,通过拆、凑等手段消除角之间的差异,合理选择联系它们的公式.(2)变名:观察三角函数种类的差异,尽量统一函数的名称,如统一为弦或统一为切. (3)变式:观察式子的结构形式的差异,选择适当的变形途径.如升幂、降幂、配方、开方等.练一练 2.化简:(1)1+sin θ-1-sin θ⎝⎛⎭⎪⎫3π2<θ<2π;(2)sin (2α+β)sin α-2cos(α+β).解:(1)原式=⎪⎪⎪⎪⎪⎪sin θ2+cos θ2-⎪⎪⎪⎪⎪⎪sin θ2-cos θ2,∵3π2<θ<2π,∴3π4<θ2<π, ∴0<sin θ2<22,-1<cos θ2<-22,从而sin θ2+cos θ2<0,sin θ2-cos θ2>0. ∴原式=-⎝⎛⎭⎪⎫sin θ2+cos θ2-⎝ ⎛⎭⎪⎫sin θ2-cos θ2=-2sin θ2. (2)∵2α+β=α+(α+β),∴原式=sin[(α+β)+α]-2cos (α+β)sin αsin α=sin (α+β)cos α-cos (α+β)sin αsin α=sin[(α+β)-α]sin α=sin βsin α.讲一讲3.(1)若π<α<3π2,证明:1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α=-2cos α2;(2)已知sin α=A sin(α+β),|A |>1,求证:tan(α+β)=sin βcos β-A .[尝试解答] (1)左边=sin 2α2+cos 2α2+2sin α2cosα21+⎝ ⎛⎭⎪⎫2cos 2α2-1-1-⎝⎛⎭⎪⎫1-2sin 2α2+sin 2α2+cos 2α2-2sin α2cos α21+⎝ ⎛⎭⎪⎫2cos 2α2-1+1-⎝⎛⎭⎪⎫1-2sin 2α2=⎝ ⎛⎭⎪⎫sin α2+cos α222⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪cos α2-⎪⎪⎪⎪⎪⎪sin α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪cos α2+⎪⎪⎪⎪⎪⎪sin α2因为π<α<3π2,所以π2<α2<3π4,所以sin α2>0>cos α2. 所以左边=⎝ ⎛⎭⎪⎫sin α2+cos α222⎝⎛⎭⎪⎫-cos α2-sin α2+⎝⎛⎭⎪⎫sin α2-cos α222⎝⎛⎭⎪⎫-cos α2+sin α2=-12⎝ ⎛⎭⎪⎫sin α2+cos α2+12⎝⎛⎭⎪⎫sin α2-cos α2=-2cos α2=右边.所以原等式成立.(2)因为sin α=sin[(α+β)-β] =sin(α+β)cos β-cos(α+β)sin β,所以sin α=A sin(α+β)化为sin(α+β)cos β-cos(α+β)·sin β=A sin(α+β),所以sin(α+β)(cos β-A )=cos(α+β)sin β, 所以tan(α+β)=sin βcos β-A.三角恒等式证明的常用方法(1)执因索果法:证明的形式一般化繁为简; (2)左右归一法:证明左右两边都等于同一个式子;(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同;(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”;(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.练一练3.求证:2sin x cos x (sin x +cos x -1)(sin x -cos x +1)=1+cos xsin x .证明:左边 =2sin x cos x ⎝⎛⎭⎪⎫2sin x 2cos x 2-2sin 2 x 2⎝ ⎛⎭⎪⎫2sin x 2cos x 2+2sin 2 x 2=2sin x cos x4sin 2x 2⎝ ⎛⎭⎪⎫cos 2x2-sin 2x 2=sin x2sin 2x 2=cosx2sinx 2=2cos 2x22sin x 2cosx 2=1+cos xsin x =右边. ∴原等式成立.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是半角公式,难点是半角公式的应用. 2.要掌握三角恒等变换的三个应用 (1)求值问题,见讲1;(2)化简问题,见讲2; (3)三角恒等式的证明,见讲3. 3.对半角公式的四点认识(1)半角公式的正弦、余弦公式实际上是由二倍角公式变形得到的.(2)半角公式给出了求α2的正弦、余弦、正切的另一种方式,即只需知道cos α的值及相应α的条件,便可求出sin α2,cos α2,tan α2.(3)由于tan α2=sin α1+cos α及tan α2=1-cos αsin α不含被开方数,且不涉及符号问题,所以求解关于tan α2的题目时,使用相对方便,但需要注意该公式成立的条件. (4)涉及函数的升降幂及角的二倍关系的题目,常用sin 2α2=1-cos α2,cos 2α2=1+cos α2求解.课下能力提升(二十五) [学业水平达标练]题组1 求值问题1.设5π<θ<6π,cos θ2=a ,则sin θ4=( )A. 1+a2B. 1-a2 C .-1+a2D .- 1-a2解析:选D ∵θ4∈⎝ ⎛⎭⎪⎫5π4,6π4, ∴sin θ4=-1-cosθ22=-1-a2.2.若f (x )=2tan x -2sin 2x2-1sin x 2cos x 2,则f ⎝ ⎛⎭⎪⎫π12的值是( ) A .-433B .8C .4 3D .-4 3解析:选B f (x )=2tan x -2sin 2x2-sin 2x2-cos 2x212sin x=2tan x +cos x 12sin x =2(tan x +1tan x ). 又tan π12=sinπ61+cosπ6=13+2,∴原式=2⎝⎛⎭⎪⎫13+2+3+2=8.3.已知cos θ=-35,且180°<θ<270°,求tan θ2.解:法一:∵180°<θ<270°,∴90°<θ2<135°,∴tanθ2<0,∴tanθ2=-1-cos θ1+cos θ=-1-⎝ ⎛⎭⎪⎫-351+⎝ ⎛⎭⎪⎫-35=-2. 法二:∵180°<θ<270°,∴sin θ<0, ∴sin θ=-1-cos 2θ=-1-925=-45, ∴tan θ2=sin θ1+cos θ=-451+⎝ ⎛⎭⎪⎫-35=-2. 题组2 三角函数式的化简4.化简2+cos 2-sin 21的结果是( ) A .-cos 1 B .cos 1 C.3cos 1 D .-3cos 1解析:选 C 原式=2+1-2sin 21-sin 21=3-3sin 21=3(1-sin 21)=3cos 21=3cos 1.5.化简⎝ ⎛⎭⎪⎫sin α2+cos α22+2sin 2⎝ ⎛⎭⎪⎫π4-α2得( )A .2+sin αB .2+2sin ⎝ ⎛⎭⎪⎫α-π4C .2D .2+2sin ⎝⎛⎭⎪⎫α+π4 解析:选C 原式=1+2sin α2cos α2+1-cos[2(π4-α2)]=2+sin α-cos ⎝ ⎛⎭⎪⎫π2-α=2+sin α-sin α=2.题组3 三角恒等式的证明6.求证:sin 2x 2cos x ⎝ ⎛⎭⎪⎫1+tan x ·tan x 2=tan x . 证明:∵左边=2sin x ·cos x 2cos x ⎝ ⎛⎭⎪⎫1+sin x cos x ·1-cos x sin x=sin x ·⎝⎛⎭⎪⎫1+1-cos x cos x =sin x cos x =tan x =右边,∴原式成立.7.求证:2sin 4x +34sin 22x +5cos 4x -12(cos 4x +cos 2x )=2(1+cos 2x ).证明:左边=2⎝ ⎛⎭⎪⎫1-cos 2x 22+34sin 22x +5⎝ ⎛⎭⎪⎫1+cos 2x 22-12(cos 4x +cos 2x ) =2×1-2cos 2x +cos 22x 4+34sin 22x +5×1+2cos 2x +cos 22x 4-12(2cos 22x -1+cos2x )=(2×14+54+12)+[2×(-2cos 2x 4)+5×2cos 2x 4-12cos 2x ]+(2×cos 22x 4+5×cos 22x4-12×2cos 22x )+34sin 22x =94+cos 2x +34cos 22x +34sin 22x =94+cos 2x +34=3+cos 2x =3+(2cos 2x -1) =2(1+cos 2x )=右边. ∴原式成立.[能力提升综合练]1.函数f (x )=cos 2⎝ ⎛⎭⎪⎫x +π4,x ∈R ,则f (x )( ) A .是奇函数 B .是偶函数C .既是奇函数,也是偶函数D .既不是奇函数,也不是偶函数解析:选D 由cos 2x =2cos 2x -1,得f (x )=cos 2(x +π4)=1+cos ⎝ ⎛⎭⎪⎫2x +π22=12+12cos ⎝ ⎛⎭⎪⎫2x +π2=12-sin 2x 2,所以该函数既不是奇函数,也不是偶函数.2.设a =12cos 6°-32sin 6°,b =2tan 13°1+tan 213°,c =1-cos 50°2,则有( ) A .a >b >c B .a <b <c C .a <c <b D .b <c <a解析:选C a =sin 30°cos 6°-cos 30°sin 6°=sin 24°,b =sin 26°,c =sin 25°,∴a <c <b .3.已知关于x 的方程x 2+x cos A cos B -2sin 2C2=0的两根之和等于两根之积的一半,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形解析:选C 由一元二次方程根与系数的关系得-cos A cos B =12⎝ ⎛⎭⎪⎫-2sin 2 C 2,即cos A cos B =sin 2C2=sin2π-(A +B )2=cos 2A +B 2=12[1+cos(A +B )].得cos(A -B )=1.∴A =B .4.若cos 2θ+cos θ=0,则sin 2θ+sin θ=________. 解析:由cos 2θ+cos θ=0得2cos 2θ-1+cos θ=0, 所以cos θ=-1或12.当cos θ=-1时,有sin θ=0; 当cos θ=12时,有sin θ=±32.于是sin 2θ+sin θ=sin θ(2cos θ+1)=0或3或- 3.答案:0或± 35.设α为第四象限角,且sin 3αsin α=135,则tan 2α=________. 解析:sin 3αsin α=sin (2α+α)sin α=(1-2sin 2α)sin α+2cos 2αsin αsin α=2cos 2α+1=135, 所以cos 2α=45, 又α是第四象限角,所以sin 2α=-35,tan 2α=-34. 答案:-346.化简: (1)2sin 8+1+2cos 8+2; (2) 12+12 12+12cos 2α⎝ ⎛⎭⎪⎫3π2<α<2π. 解:(1)原式=2sin 24+cos 24+2sin 4cos 4+2(2cos 24-1)+2=2(sin 4+cos 4)2+4cos 24=2|sin 4+cos 4|+2|cos 4|,由于π<4<3π2, ∴sin 4<0,cos 4<0,sin 4+cos 4<0,∴原式=-2(sin 4+cos 4)-2cos 4=-2sin 4-4cos 4.(2)∵3π2<α<2π,∴3π4<α2<π. 原式= 12+12 1+cos 2α2= 12+12|cos α|= 12+12cos α = 1+cos α2= cos 2 α2=-cos α2. 7.设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称.其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1. (1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )的值域. 解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ =-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎪⎫2ωx -π6+λ . 由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎪⎫2ωπ-π6=±1. 所以2ωπ-π6=k π+π2(k ∈Z ), 即ω=k 2+13(k ∈Z ). 又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56. 所以f (x )的最小正周期是6π5. (2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0, 即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6-2, 函数f (x )的值域为[-2-2,2- 2 ].。