人教版九年级下册数学《位似》相似(第2平面直角坐标系中的位似)精品PPT教学课件
- 格式:pptx
- 大小:453.64 KB
- 文档页数:18
27.3 位似第1课时位似图形的概念及画法1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的相关知识;(重点)2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.(难点)一、情境导入生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.观察图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?二、合作探究探究点:位似图形【类型一】判定是否是位似图形下列3个图形中是位似图形的有()A.0个B.1个C.2个D.3个解析:根据位似图形的定义可知两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形是第一个和第三个.故选C.方法总结:判断两个图形是不是位似图形,首先要看它们是不是相似图形,再看它们对应顶点的连线是否交于一点.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】确定位似中心找出下列图形的位似中心.解析:(1)连接对应点AE、BF,并延长的交点就是位似中心;(2)连接对应点AN、BM,并延长的交点就是位似中心;(3)连接AA′,BB′,它们的交点就是位似中心.解:(1)连接对应点AE、BF,分别延长AE、BF,使AE、BF交于点O,点O就是位似中心;(2)连接对应点AN、BM,延长AN、BM,使AN、BM的延长线交于点O,点O就是位似中心;(3)连接AA′、BB′,AA′、BB′的交点就是位似中心O.方法总结:确定位似图形的位似中心时,要找准对应顶点,再经过每组对应顶点作直线,交点即为位似中心.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】画位似图形按要求画位似图形:(1)图①中,以O为位似中心,把△ABC放大到原来的2倍;(2)图②中,以O为位似中心,把△ABC缩小为原来的1 3.解析:(1)连接OA、OB、OC并延长使AD=OA,BE=BO,CF=CO,顺次连接D、E、F就得出图形;(2)连接OA、OB、OC,作射线CP,在CP上取点M、N、Q使MN=NQ=CQ,连接OM,作NF∥OM交OC于F,再依次作EF∥BC,DE∥AB,连接DF,就可以求出结论.解:(1)如图①,画图步骤:①连接OA、OB、OC;②分别延长OA至D,OB至E,OC 至F,使AD=OA,BE=BO,CF=CO;③顺次连接D、E、F,∴△DEF是所求作的三角形;(2)如图②,画图步骤:①连接OA、OB、OC,②作射线CP,在CP上取点M、N、Q 使MN=NQ=CQ,③连接OM,④作NF∥OM交OC于F,⑤再依次作EF∥BC交OB于E,DE∥AB交OA于D,⑥连接DF,∴△DEF是所求作的三角形.方法总结:画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型四】位似图形的实际应用在放映电影时,我们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,点P 为放映机的光源,△ABC 是胶片上面的画面,△A ′B ′C ′为银幕上看到的画面.若胶片上图片的规格是2.5cm ×2.5cm ,放映的银幕规格是2m ×2m ,光源P 与胶片的距离是20cm ,则银幕应距离光源P 多远时,放映的图象正好布满整个银幕?解析:由题中条件可知△A ′B ′C ′是△ABC 的位似图形,所以其对应边成比例,进而即可求解.解:图中△A ′B ′C ′是△ABC 的位似图形,设银幕距离光源P 为x m 时,放映的图象正好布满整个银幕,则位似比为x 0.2=22.5×10-2,解得x =16.即银幕距离光源P 16m 时,放映的图象正好布满整个银幕.方法总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.【类型五】 利用位似的性质进行证明或计算如图,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF ,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB =2,CD =3,求EF 的长.解析:(1)利用相似三角形的判定方法以及位似图形的性质得出答案;(2)利用比例的性质以及相似三角形的性质求出BE BC =EF DC =25,求出EF 即可. 解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴AB DC =BE EC =23,∴BE BC =EF DC =25,解得EF =65. 方法总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计位似图形的概念及画法1.位似图形的概念;2.位似图形的性质及画法.在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.第2课时 平面直角坐标系中的位似1.学会用图形坐标的变化来表示图形的位似变换;(重点)2.掌握把一个图形按一定大小比例放大或缩小后,对应点的坐标变化的规律.(难点)一、情境导入观察如图所示的坐标系.试着发现坐标系中几个图形间的联系,然后自己作出一个类似的图形.二、合作探究探究点一:平面直角坐标系中的位似 【类型一】 利用位似求点的坐标如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1)解析:∵线段AB 的两个端点坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,∴端点C 的横坐标和纵坐标都变为A 点的一半,∴端点C 的坐标为(3,3).故选A.方法总结:关于原点成位似的两个图形,若位似比是k ,则原图形上的点(x ,y )经过位似变化得到的对应点的坐标是(kx ,ky )或(-kx ,-ky ).变式训练:见《学练优》本课时练习“课堂达标训练” 第3题【类型二】 在坐标系中画位似图形在13×13的网格图中,已知△ABC 和点M (1,2).(1)以点M 为位似中心,位似比为2,画出△ABC 的位似图形△A ′B ′C ′;(2)写出△A ′B ′C ′的各顶点坐标.解析:(1)利用位似图形的性质及位似比为2,可得出各对应点的位置;(2)利用所画图形得出对应点坐标即可.解:(1)如图所示,△A ′B ′C ′即为所求;(2)△A ′B ′C ′的各顶点坐标分别为A ′(3,6),B ′(5,2),C ′(11,4).方法总结:画一个图形的位似图形时,位似中心的选择是任意的,这个点可以在图形的内部或外部或在图形上,对于具体问题要考虑画图方便且符合要求.变式训练:见《学练优》本课时练习“课堂达标训练” 第7题【类型三】 在坐标系中确定位似比△ABC 三个顶点A (3,6)、B (6,2)、C (2,-1),以原点为位似中心,得到的位似图形△A ′B ′C ′三个顶点分别为A ′(1,2),B ′(2,23),C ′(23,-13),则△A ′B ′C ′与△ABC 的位似比是________.解析:∵△ABC 三个顶点A (3,6)、B (6,2)、C (2,-1),以原点为位似中心,得到的位似图形△A ′B ′C ′三个顶点分别为A ′(1,2),B ′(2,23),C ′(23,-13),∴△A ′B ′C ′与△ABC 的位似比是1∶3.方法总结:以原点为位似中心的位似图形的位似比是对应点的对应坐标的比.变式训练:见《学练优》本课时练习“课后巩固提升”第3题探究点二:位似在坐标系中的简单应用【类型一】 确定图形的面积如图,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是32,则△A ′B ′C ′的面积是________.解析:∵点A (1,0)与点A ′(-2,0)是对应点,原点O 是位似中心,∴△ABC 和△A ′B ′C ′的位似比是1∶2,∴△ABC 和△A ′B ′C ′的面积比是1∶4,又∵△ABC 的面积是32,∴△A ′B ′C ′的面积是6.方法总结:位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型二】 位似变换与平移、旋转、轴对称的综合如图,点A 的坐标为(3,4),点O 的坐标为(0,0),点B 的坐标为(4,0).(1)将△AOB 沿x 轴向左平移1个单位后得△A 1O 1B 1,则点A 1的坐标为(________),△A 1O 1B 1的面积为________;(2)将△AOB 绕原点旋转180°后得△A 2O 2B 2,则点A 2的坐标为(________);(3)将△AOB 沿x 轴翻折后得△A 3O 3B 3,则点A 3的坐标为(________);(4)以O 为位似中心,按比例尺1∶2将△AOB 放大后得△A 4O 4B 4,若点B 4在x 轴的负半轴上,则点A 4的坐标为(________),△A 4O 4B 4的面积为________.解析:(1)将△AOB 沿x 轴向左平移1个单位后得△A 1O 1B 1,则点A 1的坐标为(2,4),△A 1O 1B 1的面积为12×4×4=8;(2)将△AOB 绕原点旋转180°后得△A 2O 2B 2,则点A 2的坐标为(-3,-4);(3)将△AOB 沿x 轴翻折后得△A 3O 3B 3,则点A 3的坐标为(3,-4);(4)以O 为位似中心,按比例尺1∶2将△AOB 放大后得△A 4O 4B 4,若点B 4在x 轴的负半轴上,则点A 4的坐标为(-6,-8),△A 4O 4B 4的面积为12×8×8=32.故答案为(1)2,4;8;(2)-3,-4;(3)3,-4;(4)-6,-8;32.方法总结:此题主要考查了图形的旋转以及平移和位似变换、三角形面积求法等知识,得出对应点坐标是解题关键.三、板书设计位似变换的坐标特征:关于原点成位似的两个图形,若位似比是k ,则原图形上的点(x ,y )经过位似变化得到的对应点的坐标是(kx ,ky )或(-kx ,-ky ).这节课主要是让学生感受在平面直角坐标系中的位似图形根据坐标的变化而变化,教学过程中要提高学生学习积极性、使心情愉悦、思维活跃,这样才能真正激发学生学习数学的兴趣,提高课堂学习效率.。