(新)江苏专版2018年高考数学二轮复习6个解答题综合仿真练二
- 格式:doc
- 大小:106.00 KB
- 文档页数:7
6个解答题专项强化练(四) 数 列1、已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4、(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *)、解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q 、 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0、 又因为q >0,解得q =2、 所以b n =2n 、由b 3=a 4-2a 1,可得3d -a 1=8、① 由S 11=11b 4,可得a 1+5d =16、②由①②,解得a 1=1,d =3,由此可得a n =3n -2、所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n 、 (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1, 得a 2n b 2n -1=(3n -1)×4n ,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8、 故T n =3n -23×4n +1+83、所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83、2、已知数列{a n }满足:a 1=12,a n +1-a n =p ·3n -1-nq ,n ∈N *,p ,q ∈R 、(1)若q =0,且数列{a n }为等比数列,求p 的值;(2)若p =1,且a 4为数列{a n }的最小项,求q 的取值范围、 解:(1)∵q =0,a n +1-a n =p ·3n -1, ∴a 2=a 1+p =12+p ,a 3=a 2+3p =12+4p ,由数列{a n }为等比数列,得⎝⎛⎭⎫12+p 2=12⎝⎛⎭⎫12+4p ,解得p =0或p =1、 当p =0时,a n +1=a n ,∴a n =12,符合题意;当p =1时,a n +1-a n =3n -1,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)=12+1-3n -11-3=12·3n -1, ∴a n +1a n =3、符合题意、 ∴p 的值为0或1、(2)法一:若p =1,则a n +1-a n =3n -1-nq ,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12+(1+3+…+3n -2)-[1+2+…+(n-1)]q =12[3n -1-n (n -1)q ]、∵数列{a n }的最小项为a 4,∴对任意的n ∈N *,有12[3n -1-n (n -1)q ]≥a 4=12(27-12q )恒成立,即3n -1-27≥(n 2-n -12)q 对任意的n ∈N *恒成立、 当n =1时,有-26≥-12q ,∴q ≥136; 当n =2时,有-24≥-10q ,∴q ≥125; 当n =3时,有-18≥-6q ,∴q ≥3; 当n =4时,有0≥0,∴q ∈R ;当n ≥5时,n 2-n -12>0,所以有q ≤3n -1-27n 2-n -12恒成立,令c n =3n -1-27n 2-n -12(n ≥5,n ∈N *),则c n +1-c n =2(n 2-2n -12)3n -1+54n(n 2-16)(n 2-9)>0,即数列{c n }为递增数列,∴q ≤c 5=274、综上所述,q 的取值范围为⎣⎡⎦⎤3,274、 法二:∵p =1,∴a n +1-a n =3n -1-nq , 又a 4为数列{a n }的最小项,∴⎩⎪⎨⎪⎧ a 4-a 3≤0,a 5-a 4≥0,即⎩⎪⎨⎪⎧9-3q ≤0,27-4q ≥0,∴3≤q ≤274、 此时a 2-a 1=1-q <0,a 3-a 2=3-2q <0, ∴a 1>a 2>a 3≥a 4、当n ≥4时,令b n =a n +1-a n ,b n +1-b n =2·3n -1-q ≥2·34-1-274>0,∴b n +1>b n ,∴0≤b 4<b 5<b 6<…, 即a 4≤a 5<a 6<a 7<…、综上所述,当3≤q ≤274时,a 4为数列{a n }的最小项,即q 的取值范围为⎣⎡⎦⎤3,274、 3、数列{a n }的前n 项和为S n ,a 1=2,S n =a n ⎝⎛⎭⎫n 3+r (r ∈R,n ∈N *)、 (1)求r 的值及数列{a n }的通项公式; (2)设b n =na n(n ∈N *),记{b n }的前n 项和为T n 、①当n ∈N *时,λ<T 2n -T n 恒成立,求实数λ的取值范围;②求证:存在关于n 的整式g (n ),使得∑i =1n -1(T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立、解:(1)当n =1时,S 1=a 1⎝⎛⎭⎫13+r ,∴r =23,∴S n =a n ⎝⎛⎭⎫n 3+23、当n ≥2时,S n -1=a n -1⎝⎛⎭⎫n 3+13、 两式相减,得a n =n +23a n -n +13a n -1,∴a na n -1=n +1n -1(n ≥2)、 ∴a 2a 1·a 3a 2·…·a n a n -1=31×42×53×…×nn -2×n +1n -1, 即a n a 1=n (n +1)2、 ∴a n =n (n +1)(n ≥2), 又a 1=2适合上式、 ∴a n =n (n +1)、 (2)①∵a n =n (n +1),∴b n =1n +1,T n =12+13+…+1n +1、∴T 2n =12+13+…+12n +1,∴T 2n -T n =1n +2+1n +3+…+12n +1、令B n =T 2n -T n =1n +2+1n +3+…+12n +1、 则B n +1=1n +3+1n +4+…+12n +3、∴B n +1-B n =12n +2+12n +3-1n +2=3n +4(2n +2)(2n +3)(n +2)>0、∴B n +1>B n ,∴B n 单调递增, 故(B n )min =B 1=13,∴λ<13、∴实数λ的取值范围为⎝⎛⎭⎫-∞,13、 ②证明:∵T n =12+13+…+1n +1,∴当n ≥2时,T n -1=12+13+…+1n ,∴T n -T n -1=1n +1, 即(n +1)T n -nT n -1=T n -1+1、∴当n ≥2时,∑i =1n -1 (T n +1)=(3T 2-2T 1)+(4T 3-3T 2)+(5T 4-4T 3)+…+[(n +1)T n -nT n -1]=(n +1)T n -2T 1=(n +1)T n -1、∴存在关于n 的整式g (n )=n +1,使得∑i =1n -1 (T n +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立、4、已知数列{a n }满足a 1=12,对任意的正整数m ,p ,都有a m +p =a m ·a p 、(1)证明:数列{a n }是等比数列; (2)若数列{b n }满足a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n 2n +1,求数列{b n }的通项公式;(3)在(2)的条件下,设c n =2n +λb n ,则是否存在实数λ,使得数列{c n }是单调递增数列?若存在,求出实数λ的取值范围;若不存在,请说明理由、解:(1)证明:∵对任意的正整数m ,p ,都有a m +p =a m ·a p ,∴令m =n ,p =1,得a n +1=a 1·a n , 从而a n +1a n =a 1=12,∴数列{a n }是首项和公比都为12的等比数列、(2)由(1)可知,a n =12n 、由a n =b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n +1b n2n +1得,a n -1=b 12+1-b 222+1+b 323+1-b 424+1+…+(-1)n·b n -12n -1+1(n ≥2),故a n -a n -1=(-1)n +1b n2n +1(n ≥2),故b n =(-1)n ⎝⎛⎭⎫12n +1(n ≥2)、当n =1时,a 1=b 12+1,解得b 1=32,不符合上式、∴b n=⎩⎨⎧32,n =1,(-1)n⎝⎛⎭⎫12n+1,n ≥2,n ∈N *.(3)∵c n =2n +λb n ,∴当n ≥2时,c n =2n +(-1)n ⎝⎛⎭⎫12n +1λ, 当n ≥3时,c n -1=2n -1+(-1)n -1⎝ ⎛⎭⎪⎫12n -1+1λ, 根据题意,当n ≥3时,c n -c n -1=2n -1+(-1)n λ·⎝⎛⎭⎫2+32n >0,即(-1)n λ>-2n -132n+2、 ①当n 为大于等于4的偶数时,有λ>-2n -132n+2恒成立,又2n -132n +2随着n 的增大而增大,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =12835,即λ>-12835, 故λ的取值范围为⎝⎛⎭⎫-12835,+∞、 ②当n 为大于等于3的奇数时,有λ<2n -132n+2恒成立,此时⎝ ⎛⎭⎪⎪⎫2n -132n +2min =3219,即λ<3219、 故λ的取值范围为⎝⎛⎭⎫-∞,3219; ③当n =2时,由c 2-c 1=⎝⎛⎭⎫22+54λ-⎝⎛⎭⎫2+32λ>0,得λ<8、综上可得,实数λ的取值范围为⎝⎛⎭⎫-12835,3219、 5、已知各项不为零的数列{a n }的前n 项和为S n ,且a 1=1,S n =pa n a n +1(n ∈N *),p ∈R 、 (1)若a 1,a 2,a 3成等比数列,求实数p 的值; (2)若a 1,a 2,a 3成等差数列, ①求数列{a n }的通项公式;②在a n 与a n +1间插入n 个正数,共同组成公比为q n 的等比数列,若不等式(q n )(n+1)(n +a )≤e(e 为自然对数的底数)对任意的n ∈N *恒成立,求实数a 的最大值、 解:(1)当n =1时,a 1=pa 1a 2,a 2=1p ;当n =2时,a 1+a 2=pa 2a 3,a 3=a 1+a 2pa 2=1+1p 、由a 22=a 1a 3,得1p 2=1+1p ,即p 2+p -1=0, 解得p =-1±52、(2)①因为a 1,a 2,a 3成等差数列,所以2a 2=a 1+a 3,得p =12,故a 2=2,a 3=3,所以S n =12a n a n +1、当n ≥2时,a n =S n -S n -1=12a n a n +1-12a n -1a n ,因为a n ≠0,所以a n +1-a n -1=2、故数列{a n }的所有奇数项组成以1为首项,2为公差的等差数列,其通项公式a n =1+⎝ ⎛⎭⎪⎫n +12-1×2=n ,同理,数列{a n }的所有偶数项组成以2为首项,2为公差的等差数列, 其通项公式是a n =2+⎝⎛⎭⎫n 2-1×2=n , 所以数列{a n }的通项公式是a n =n 、②由①知,a n =n ,在n 与n +1间插入n 个正数,组成公比为q n 的等比数列,故有n +1=nq n +1n, 即q n =⎝ ⎛⎭⎪⎫n +1n 1n +1,所以(q n )(n +1)(n +a )≤e,即⎝ ⎛⎭⎪⎫n +1n n +a ≤e,两边取对数得(n +a )ln ⎝ ⎛⎭⎪⎫n +1n ≤1,分离参数得a ≤1ln ⎝ ⎛⎭⎪⎫n +1n -n 恒成立 、 令n +1n =x ,x ∈(1,2],则a ≤1ln x -1x -1,x ∈(1,2],令f (x )=1ln x -1x -1,x ∈(1,2],则f ′(x )=(ln x )2-(x -1)2x(ln x )2(x -1)2,下证ln x ≤x -1x,x ∈(1,2], 令g (x )=x -1x -2ln x ,x ∈[1,+∞), 则g ′(x )=(x -1)2x 2>0,所以g (x )>g (1)=0,即2ln x <x -1x ,用x 替代x 可得ln x <x -1x,x ∈(1,2],所以f ′(x )=(ln x )2-(x -1)2x(ln x )2(x -1)2<0,所以f (x )在(1,2]上递减, 所以a ≤f (2)=1ln 2-1、所以实数a 的最大值为1ln 2-1、6、设三个各项均为正整数的无穷数列{a n },{b n },{c n }、记数列{b n },{c n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有a n =b n +c n ,且S n >T n ,则称数列{a n }为可拆分数列、(1)若a n =4n ,且数列{b n },{c n }均是公比不为1的等比数列,求证:数列{a n }为可拆分数列; (2)若a n =5n ,且数列{b n },{c n }均是公差不为0的等差数列,求所有满足条件的数列{b n },{c n }的通项公式;(3)若数列{a n },{b n },{c n }均是公比不为1的等比数列,且a 1≥3,求证:数列{a n }为可拆分数列、解:(1)证明:由a n =4n =4·4n -1=3·4n -1+4n -1,令b n =3·4n -1,c n =4n -1、则{b n }是以3为首项,4为公比的等比数列,{c n }是以1为首项,4为公比的等比数列, 故S n =4n-1,T n =4n -13、所以对任意的n ∈N *,都有a n =b n +c n ,且S n >T n 、 所以数列{a n }为可拆分数列、(2)设数列{b n },{c n }的公差分别为d 1,d 2、 由a n =5n ,得b 1+(n -1)d 1+c 1+(n -1)d 2=(d 1+d 2)n +b 1+c 1-d 1-d 2=5n 对任意的n ∈N *都成立、所以⎩⎪⎨⎪⎧ d 1+d 2=5,b 1+c 1-d 1-d 2=0,即⎩⎪⎨⎪⎧d 1+d 2=5,b 1+c 1=5,①由S n >T n ,得nb 1+n (n -1)2d 1>nc 1+n (n -1)2d 2,则⎝⎛⎭⎫d 12-d 22n 2+⎝⎛⎭⎫b 1-c 1-d 12+d 22n >0、 由n ≥1,得⎝⎛⎭⎫d 12-d 22n +⎝⎛⎭⎫b 1-c 1-d 12+d 22>0对任意的n ∈N *成立、 则d 12-d 22≥0且⎝⎛⎭⎫d 12-d 22+⎝⎛⎭⎫b 1-c 1-d 12+d 22>0即d 1≥d 2且b 1>c 1、 ② 由数列{b n },{c n }各项均为正整数,则b 1,c 1,d 1,d 2均为正整数,当d 1=d 2时,由d 1+d 2=5,得d 1=d 2=52∉N *,不符合题意,所以d 1>d 2、 ③联立①②③,可得⎩⎪⎨⎪⎧ d 1=4,d 2=1,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=4,d 2=1,b 1=3,c 1=2或⎩⎪⎨⎪⎧ d 1=3,d 2=2,b 1=4,c 1=1或⎩⎪⎨⎪⎧d 1=3,d 2=2,b 1=3,c 1=2.所以⎩⎪⎨⎪⎧ b n =4n ,c n =n 或⎩⎪⎨⎪⎧ b n =4n -1,c n =n +1或⎩⎪⎨⎪⎧b n =3n +1,c n =2n -1或⎩⎪⎨⎪⎧b n =3n ,c n =2n .(3)证明:设a n =a 1q n -1,a 1∈N *,q >0,q ≠1,则q ≥2、 当q 为无理数时,a 2=a 1q 为无理数,与a n ∈N *矛盾、故q 为有理数,设q =ba (a ,b 为正整数,且a ,b 互质)、此时a n =a 1·b n -1a n -1、则对任意的n ∈N *,a n -1均为a 1的约数,则a n -1=1,即a =1, 故q =ba =b ∈N *,所以q ∈N *,q ≥2、所以a n =a 1q n -1=(a 1-1)q n -1+q n -1, 令b n =(a 1-1)·q n -1,c n =q n -1、则{b n },{c n }各项均为正整数、因为a 1≥3, 所以a 1-1≥2>1,则S n >T n , 所以数列{a n }为可拆分数列、。
6个解答题综合仿真练(四)1.如图,四棱锥P ABCD 中, 底面ABCD 为菱形,且PA ⊥底面ABCD ,PA =AC ,E 是PA 的中点,F 是PC 的中点.(1)求证:PC ∥平面BDE ;(2)求证:AF ⊥平面BDE .证明:(1)连结OE ,因为O 为菱形ABCD 对角线的交点,所以O 为AC 的中点.又因为E 为PA 的中点,所以OE ∥PC .又因为OE ⊂平面BDE ,PC ⊄平面BDE ,所以PC ∥平面BDE .(2)因为PA =AC ,△PAC 是等腰三角形,又F 是PC 的中点,所以AF ⊥PC .又OE ∥PC ,所以AF ⊥OE .又因为PA ⊥底面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD .又因为AC ,BD 是菱形ABCD 的对角线,所以AC ⊥BD .因为PA ∩AC =A ,所以BD ⊥平面PAC ,因为AF ⊂平面PAC ,所以AF ⊥BD .因为OE ∩BD =O ,所以AF ⊥平面BDE .2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+c 2+2ac =b 2,sin A =1010. (1)求sin C 的值;(2)若a =2,求△ABC 的面积.解:(1)由a 2+c 2+2ac =b 2, 得cos B =a 2+c 2-b 22ac =-22, 又B ∈(0,π),所以B =3π4. 因为sin A =1010,且B 为钝角,所以cos A =31010, 所以sin C =sin ⎝⎛⎭⎪⎫A +3π4=1010×⎝ ⎛⎭⎪⎫-22+31010×22=55.(2)由正弦定理得a sin A =csin C, 所以c =a sin C sin A =2×551010=22, 所以△ABC 的面积S △ABC =12ac sin B =12×2×22×22=2. 3.已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,一个焦点为F (-1,0),点F 到相应准线的距离为3.经过点F 的直线l 与椭圆M 交于C ,D 两点.(1)求椭圆M 的方程;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值.解:(1)由焦点F (-1,0)知c =1,又a 2c-c =3, 所以a 2=4,从而b 2=a 2-c 2=3.所以椭圆M 的方程为x 24+y 23=1. (2)若直线l 的斜率不存在,则直线l 的方程为x =-1,此时S 1=S 2,|S 1-S 2|=0; 若直线l 的斜率存在,可设直线l 的方程为y =k (x +1),k ≠0,C (x 1,y 1),D (x 2,y 2). 联立⎩⎪⎨⎪⎧ y =k x +,x 24+y 23=1,消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, 所以x 1+x 2=-8k 23+4k 2. 此时|S 1-S 2|=12·AB ·||y 1|-|y 2||=2|y 1+y 2| =2|k (x 1+1)+k (x 2+1)|=2|k ||(x 1+x 2)+2|=2|k |⎪⎪⎪⎪⎪⎪-8k23+4k 2+2=2|k |⎪⎪⎪⎪⎪⎪63+4k 2=12|k |3+4k 2. 因为k ≠0,所以|S 1-S 2|=123|k |+4|k |≤1223|k |·4|k |=1243=3, 当且仅当3|k |=4|k |,即k =±32时取等号. 所以|S 1-S2|的最大值为 3.4.如图,矩形ABCD 是一个历史文物展览厅的俯视图,点E 在AB 上,在梯形BCDE 区域内部展示文物,DE 是玻璃幕墙,游客只能在△ADE 区域内参观.在AE 上点P 处安装一可旋转的监控摄像头,∠MPN 为监控角,其中M ,N 在线段DE (含端点)上,且点M在点N 的右下方.经测量得知:AD =6米,AE =6米,AP =2米,∠MPN =π4.记∠EPM =θ(弧度),监控摄像头的可视区域△PMN 的面积为S 平方米.(1)求S 关于θ的函数关系式,并写出θ的取值范围;⎝⎛⎭⎪⎫参考数据:tan 54≈3 (2)求S 的最小值.解:(1)法一:在△PME 中,∠EPM =θ,PE =AE -AP =4米,∠PEM =π4,∠PME =3π4-θ,由正弦定理得PM sin ∠PEM =PE sin ∠PME, 所以PM =PE ·sin∠PEM sin ∠PME =22sin ⎝ ⎛⎭⎪⎫3π4-θ=4sin θ+cos θ, 在△PNE 中,由正弦定理得PN sin ∠PEN =PE sin ∠PNE, 所以PN =PE ·sin∠PEN sin ∠PNE =22sin ⎝ ⎛⎭⎪⎫π2-θ=22cos θ, 所以△PMN 的面积S =12PM ·PN ·sin ∠MPN =4cos 2θ+sin θcos θ=41+cos 2θ2+12sin 2θ =8sin 2θ+cos 2θ+1=82sin ⎝ ⎛⎭⎪⎫2θ+π4+1,当M 与E 重合时,θ=0;当N 与D 重合时,tan ∠APD =3,即∠APD =54,θ=3π4-54,所以0≤θ≤3π4-54. 综上可得,S =82sin ⎝ ⎛⎭⎪⎫2θ+π4+1,θ∈⎣⎢⎡⎦⎥⎤0,3π4-54. 法二:在△PME 中,∠EPM =θ,PE =AE -AP =4米,∠PEM =π4,∠PME =3π4-θ,由正弦定理得ME sin θ=PE sin ∠PME, 所以ME =PE ·sin θsin ∠PME =4sin θsin ⎝ ⎛⎭⎪⎫3π4-θ=42sin θsin θ+cos θ, 在△PNE 中,由正弦定理得NE sin ∠EPN =PE sin ∠PNE, 所以NE =PE ·sin ⎝⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫π2-θ=4sin ⎝ ⎛⎭⎪⎫θ+π4cos θ =22θ+cos θcos θ, 所以MN =NE -ME =22cos 2θ+sin θcos θ, 又点P 到DE 的距离为d =4sin π4=22, 所以△PMN 的面积S =12MN ·d =4cos 2θ+sin θcos θ=41+cos 2θ2+12sin 2θ =8sin 2θ+cos 2θ+1=82sin ⎝ ⎛⎭⎪⎫2θ+π4+1,当M 与E 重合时,θ=0;当N 与D 重合时,tan ∠APD =3,即∠APD =54,θ=3π4-54, 所以0≤θ≤3π4-54. 综上可得,S =82sin ⎝ ⎛⎭⎪⎫2θ+π4+1,θ∈⎣⎢⎡⎦⎥⎤0,3π4-54. (2)当2θ+π4=π2,即θ=π8∈⎣⎢⎡⎦⎥⎤0,3π4-54时,S 取得最小值为82+1=8(2-1). 所以可视区域△PMN 面积的最小值为8(2-1)平方米.5.设a >0且a ≠1,函数f (x )=a x +x 2-x ln a -a .(1)当a =e 时,求函数f (x )的单调区间;(2)求函数f (x )的最小值;(3)指出函数f (x )的零点个数,并说明理由.解:(1)当a =e 时,f (x )=e x +x 2-x -e ,f ′(x )=e x+2x -1.设g (x )=e x +2x -1,则g (0)=0,且g ′(x )=e x +2>0.所以g (x )在(-∞,+∞)上单调递增,当x >0时,g (x )>g (0)=0;当x <0时,g (x )<g (0)=0.即当x >0时,f ′(x )>0;当x <0时,f ′(x )<0.综上,函数f (x )的单调递增区间是(0,+∞),单调递减区间是(-∞,0).(2)f ′(x )=a x ln a +2x -ln a =(a x -1)ln a +2x ,①当a >1时,若x >0,则a x >1,ln a >0,所以f ′(x )>0,若x <0,则a x <1,ln a >0,所以f ′(x )<0.②当0<a <1时,若x >0,则a x <1,ln a <0,所以f ′(x )>0,若x <0,则a x >1,ln a <0,所以f ′(x )<0,所以f (x )在(-∞,0)上单调递减,(0,+∞)上单调递增.所以f (x )min =f (0)=1-a .(3)由(2)得,a >0,a ≠1,f (x )min =1-a .①若1-a >0,即0<a <1时,f (x )min =1-a >0,函数f (x )不存在零点.②若1-a <0,即a >1时,f (x )min =1-a <0. f (x )的图象在定义域内是不间断的曲线,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.f (a )=a a +a 2-a ln a -a >a 2-a ln a -a =a (a -ln a -1).令t (a )=a -ln a -1(a >1),t ′(a )=1-1a>0,所以t (a )在(1,+∞)上单调递增; 所以t (a )>t (1)=0.所以f (a )>0.故f (x )在(0,a )上有一个零点.又f (-a )=a -a +a 2+a ln a -a >a 2-a =a (a -1)>0,故f (x )在(-a,0)上有一个零点.所以f (x )在(-∞,0)上和(0,+∞)上各有一个零点,即f (x )有2个零点.综上,当0<a <1时,函数f (x )不存在零点;当a >1时,函数f (x )有2个零点.6.已知数列{a n }的通项公式a n =2n -(-1)n ,n ∈N *.设an 1,an 2,…,an i (其中n 1<n 2<…<n i ,i ∈N *)成等差数列.(1)若i =3.①当n 1,n 2,n 3为连续正整数时,求n 1的值;②当n1=1时,求证:n3-n2为定值;(2)求i的最大值.解:(1)①依题意,an1,an1+1,an1+2成等差数列,即2an1+1=an1+an1+2,从而2[2n1+1-(-1)n1+1]=2n1-(-1)n1+2n1+2-(-1)n1+2,当n1为奇数时,解得2n1=-4,不存在这样的正整数n1;当n1为偶数时,解得2n1=4,所以n1=2.②证明:依题意,a1,an2,an3成等差数列,即2an2=a1+an3,从而2[2n2-(-1)n2]=3+2n3-(-1)n3,当n2,n3均为奇数时,2n2-2n3-1=1,左边为偶数,故矛盾;当n2,n3均为偶数时,2n2-1-2n3-2=1,左边为偶数,故矛盾;当n2为偶数,n3奇数时,2n2-2n3-1=3,左边为偶数,故矛盾;当n2为奇数,n3偶数时,2n2+1-2n3=0,即n3-n2=1.(2)设a s,a r,a t(s<r<t)成等差数列,则2a r=a s+a t,即2[2r-(-1)r]=2s-(-1)s+2t-(-1)t,整理得,2s+2t-2r+1=(-1)s+(-1)t-2(-1)r,若t=r+1,则2s=(-1)s-3(-1)r,因为2s≥2,所以(-1)s-3(-1)r只能为2或4,所以s只能为1或2;若t≥r+2,则2s+2t-2r+1≥2s+2r+2-2r+1≥2+24-23=10,(-1)s+(-1)t-2(-1)r≤4,故矛盾,综上,只能a1,a r,a r+1成等差数列或a2,a r,a r+1成等差数列,其中r为奇数,从而i的最大值为3.。
江苏 新高考高考对本专题内容的考查一般是“一小一大”,小题主要考查体积和表面积的计算问题,而大题主要证明线线、线面、面面的平行与垂直问题,其考查形式单一,难度一般.第1课时立体几何中的计算(基础课) [常考题型突破]空间几何体的几组常用公式(1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).(2)柱体、锥体、台体的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 台=13(S +SS ′+S ′)h (不要求记忆).(3)球的表面积和体积公式: ①S 球=4πR 2(R 为球的半径); ②V 球=43πR 3(R 为球的半径).[题组练透]1.现有一个底面半径为3 cm ,母线长为5 cm 的圆锥状实心铁器,将其高温熔化后铸成一个实心铁球(不计损耗),则该铁球的半径为________cm.解析:因为圆锥底面半径为3 cm ,母线长为5 cm ,所以圆锥的高为52-32=4 cm ,其体积为13π×32×4=12π cm 3,设铁球的半径为r ,则43πr 3=12π,所以该铁球的半径是39cm.答案:392.(2017·苏锡常镇二模)已知直四棱柱底面是边长为2的菱形,侧面对角线的长为23,则该直四棱柱的侧面积为________.解析:由题意得,直四棱柱的侧棱长为(23)2-22=22,所以该直四棱柱的侧面积为S =cl =4×2×22=16 2.答案:16 23.(2017·南通、泰州一调)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1-A 1BD 的体积为_______cm 3.解析:三棱锥D 1-A 1BD 的体积等于三棱锥B -A 1D 1D 的体积,因为三棱锥B -A 1D 1D 的高等于AB ,△A 1D 1D 的面积为矩形AA 1D 1D 的面积的12,所以三棱锥B -A 1D 1D 的体积是正四棱柱ABCD -A 1B 1C 1D 1的体积的16,所以三棱锥D 1-A 1BD 的体积等于16×32×1=32.答案:324.如图所示是一个直三棱柱(以A 1B 1C 1为底面)被一个平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=1,∠A 1B 1C 1=90°,A 1A =4,B 1B =2,C 1C =3,则此几何体的体积为________.解析:在A 1A 上取点A 2,在C 1C 上取点C 2,使A 1A 2=C 1C 2=BB 1,连结A 2B ,BC 2,A 2C 2,∴V =VA B C A BC 11122-+VB A ACC 22-=12×1×1×2+13×(1+2)2×2×22=32. 答案:325.设甲,乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等且V 1V 2=32,则S 1S 2的值是________.解析:设甲,乙两个圆柱的底面半径分别为r 1,r 2,高分别为h 1,h 2,则有2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,又V 1V 2=πr 21h 1πr 22h 2,∴V 1V 2=r 1r 2,∴r 1r 2=32,则S 1S 2=⎝⎛⎭⎫r 1r 22=94.答案:94[方法归纳]解决球与其他几何体的切、接问题(1)解题的关键:仔细观察、分析,弄清相关元素的位置关系和数量关系.(2)选准最佳角度作出截面:要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系,达到空间问题平面化的目的.(3)认识球与正方体组合的3种特殊截面:(4)熟记2个结论:①设小圆O 1半径为r ,OO 1=d ,则d 2+r 2=R 2;②若A ,B 是圆O 1上两点,则AB =2r sin ∠AO 1B 2=2R sin ∠AOB 2.[题组练透]1.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.答案:322.(2017·全国卷Ⅲ改编)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________.解析:设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以圆柱的体积V =34×π×1=3π4.答案:3π43.已知矩形ABCD的顶点都在半径为2的球O的球面上,且AB=3,BC=3,过点D作DE垂直于平面ABCD,交球O于E,则棱锥E-ABCD的体积为________.解析:如图所示,BE过球心O,∴DE=42-32-(3)2=2,∴V E -ABCD=13×3×3×2=2 3.答案:2 34.(2017·南京、盐城一模)将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC =2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O-EFG 体积的最大值是________.解析:因为将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,所以三棱锥O-EFG的高为圆柱的高,即高为AB,所以当三棱锥O-EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,(S△EFG)max=12×4×2=4,所以三棱锥O-EFG体积的最大值(V O-EFG)max=13×(S△EFG)max×AB=13×4×3=4.答案:4[方法归纳]多面体与球的切接问题的解题技巧[必备知识]将平面图形沿其中一条或几条线段折起,使其成为空间图形,把这类问题称为平面图形的翻折问题.平面图形经过翻折成为空间图形后,原有的性质有的发生了变化,有的没有发生变化,弄清它们是解决问题的关键.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.解决这类问题就是要据此研究翻折以后的空间图形中的线面关系和几何量的度量值,这是化解翻折问题难点的主要方法.[题组练透]1.(2017·南通三模)已知圆锥的侧面展开图是半径为3,圆心角为2π3的扇形,则这个圆锥的高为________.解析:因为圆锥的侧面展开图是半径为3,圆心角为2π3的扇形,所以圆锥的母线长l =3,设圆锥的底面半径为r ,则底面周长2πr =3×2π3,所以r =1,所以圆锥的高为32-12=2 2. 答案:2 22.(2017·南京考前模拟)如图,正△ABC 的边长为2,CD 是AB 边上的高,E ,F 分别为边AC 与BC 的中点,现将△ABC 沿CD 翻折,使平面ADC ⊥平面DCB ,则棱锥E -DFC 的体积为________.解析:S △DFC =14S △ABC =14×⎝⎛⎭⎫34×22=34,E 到平面DFC 的距离h 等于12AD =12. V E -DFC =13×S △DFC×h =324. 答案:3243.(2017·全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时, 设△ABC 的边长为a (a >0)cm , 则△ABC 的面积为34a 2,△DBC 的高为5-36a , 则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0, ∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312× 25a 4-533a 5. 令t =25a 4-533a 5,则t ′=100a 3-2533a 4, 由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG=36BC , 设OG =x ,则BC =23x ,DG =5-x ,S △ABC =12×23x ×3x =33x 2,故所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52, 则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2, 则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80, ∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415. 答案:415 [方法归纳][A 组——抓牢中档小题]1.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E 是棱B 1B 的中点,则三棱锥B 1-ADE 的体积为________.解析:VB 1-ADE =VD -AEB 1=13S △AEB 1·DA =13×12×12×1×1=112.答案:1122.若两球表面积之比是4∶9,则其体积之比为________.解析:设两球半径分别为r 1,r 2,因为4πr 21∶4πr 22=4∶9,所以r 1∶r 2=2∶3,所以两球体积之比为43πr 31∶43πr 32=⎝⎛⎭⎫r 1r 23=⎝⎛⎭⎫233=8∶27.答案:8∶273.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:设正方体的棱长为a ,则6a 2=18,得a =3,设该正方体外接球的半径为R ,则2R =3a =3,得R =32,所以该球的体积为43πR 3=4π3×278=92π.答案:92π4.已知圆锥的母线长为10 cm ,侧面积为60π cm 2,则此圆锥的体积为________cm 3. 解析:设圆锥底面圆的半径为r ,母线长为l ,则侧面积为πrl =10πr =60π,解得r =6,则圆锥的高h =l 2-r 2=8,则此圆锥的体积为13πr 2h =13π×36×8=96π.答案:96π5.(2017·扬州期末)若正四棱锥的底面边长为2(单位:cm),侧面积为8(单位:cm 2),则它的体积为________(单位:cm 3).解析:因为正四棱锥的底面边长为2,侧面积为8,所以底面周长c =8,12ch ′=8,所以斜高h ′=2,正四棱锥的高为h =3,所以正四棱锥的体积为13×22×3=433.答案:4336.设棱长为a 的正方体的体积和表面积分别为V 1,S 1,底面半径和高均为r 的圆锥的体积和侧面积分别为V 2,S 2,若V 1V 2=3π,则S 1S 2的值为________. 解析:由题意知,V 1=a 3,S 1=6a 2,V 2=13πr 3,S 2=2πr 2,由V 1V 2=3π得,a 313πr 3=3π,得a=r ,从而S 1S 2=62π=32π.答案:32π7.(2017·苏北三市三模)如图,在正三棱柱ABC -A1B 1C 1中,已知AB =AA 1=3,点P 在棱CC 1上,则三棱锥P -ABA 1的体积为________.解析:三棱锥的底面积S △ABA 1=12×3×3=92,点P 到底面的距离为△ABC 的高h =32-⎝⎛⎭⎫322=332,故三棱锥的体积VP -ABA 1=13S △ABA 1×h =934. 答案:9348.(2017·无锡期末)已知圆锥的侧面展开图为一个圆心角为2π3,且面积为3π的扇形,则该圆锥的体积等于________.解析:设圆锥的母线为l ,底面半径为r , 因为3π=13πl 2,所以l =3,所以πr ×3=3π,所以r =1,所以圆锥的高是32-12=22,所以圆锥的体积是13×π×12×22=22π3.答案:22π39.(2017·徐州古邳中学摸底)表面积为24π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为________.解析:设圆柱的高为h ,底面半径为r , 则圆柱的表面积S =2πr 2+2πrh =24π, 即r 2+rh =12,得rh =12-r 2, ∴V =πr 2h =πr (12-r 2)=π(12r -r 3), 令V ′=π(12-3r 2)=0,得r =2,∴函数V =πr 2h 在区间(0,2]上单调递增,在区间[2,+∞)上单调递减,∴r =2时,V 最大,此时2h =12-4=8,即h =4,r h =12.答案:1210.三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA =3,则该三棱锥外接球的表面积为________.解析:把三棱锥P -ABC 看作由平面截一个长、宽、高分别为1、1、3的长方体所得的一部分(如图).易知该三棱锥的外接球就是对应长方体的外接球.又长方体的体对角线长为12+12+(3)2=5,故外接球半径为52,表面积为4π×⎝⎛⎭⎫522=5π. 答案:5π11.已知正三棱锥P -ABC 的体积为223,底面边长为2,则侧棱PA 的长为________.解析:设底面正三角形ABC 的中心为O ,又底面边长为2,故OA =233,由V P -ABC =13PO ·S △ABC ,得223=13PO ×34×22,PO =263,所以PA =PO 2+AO 2=2. 答案:212.(2017·苏州期末)一个长方体的三条棱长分别为3,8,9,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为________.解析:圆柱两底面积等于圆柱的侧面积.孔的打法有三种,所以有三种情况:①孔高为3,则2πr 2=2πr ×3,解得r =3;②孔高为8,则r =8;③孔高为9,则r =9.而实际情况是,当r =8,r =9时,因为长方体有个棱长为3,所以受限制不能打,所以只有①符合.答案:313.如图所示,在体积为9的长方体ABCD -A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1交于点E ,则四棱锥E -A 1B 1C 1D 1的体积V =________.解析:连结B 1D 1交A 1C 1于点F ,连结BD ,BF ,则平面A 1BC 1∩平面BDD 1B 1=BF ,因为E ∈平面A 1BC 1,E ∈平面BDD 1B 1,所以E ∈BF .因为F 是A 1C 1的中点,所以BF 是中线,又B 1F 綊12BD ,所以FE EB =12,故点E 到平面A 1B 1C 1D 1的距离是BB 1的13,所以四棱锥E -A 1B 1C 1D 1的体积V =13×S 四边形A 1B 1C 1D 1×13BB 1=19V 长方体ABCD -A 1B 1C 1D 1=1.答案:114.半径为2的球O 中有一内接正四棱柱(底面是正方形,侧棱垂直底面).当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是________.解析:依题意,设球的内接正四棱柱的底面边长为a 、高为h ,则有16=2a 2+h 2≥22ah ,即4ah ≤162,该正四棱柱的侧面积S =4ah ≤162,当且仅当h =2a =22时取等号.因此,当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是4π×22-162=16(π-2).答案:16(π-2)[B 组——力争难度小题]1.已知三棱锥S -ABC 所在顶点都在球O 的球面上,且SC ⊥平面ABC ,若SC =AB =AC =1,∠BAC =120°,则球O 的表面积为________.解析:∵AB =AC =1,∠BAC =120°, ∴BC =12+12-2×1×1×⎝⎛⎭⎫-12=3, ∴三角形ABC 的外接圆直径2r =3sin 120°=2,∴r =1.∵SC ⊥平面ABC ,SC =1, ∴该三棱锥的外接球半径R =r 2+⎝⎛⎭⎫SC 22=52,∴球O 的表面积S =4πR 2=5π. 答案:5π2.(2017·南京三模)如图,在直三棱柱ABC -A1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥D -ABC 1的体积为________.解析:在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,所以BB 1⊥AB ,又因为∠ABC =90°,即BC ⊥AB ,又BC ∩BB 1=B ,所以AB ⊥平面BB 1C 1C, 因为AB =1,BC =2,点D 为侧棱BB 1上的动点,所以侧面展开,当AD +DC 1最小时,BD =1,所以S △BDC 1=12×BD ×B 1C 1=1,所以三棱锥D -ABC 1的体积为13×S △BDC 1×AB =13.答案:133.设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是________.解析:如图所示,AB =2,CD =a ,设点E 为AB 的中点,则ED ⊥AB,EC⊥AB,则ED=AD2-AE2=22,同理EC=22.由构成三角形的条件知0<a<ED+EC=2,所以0<a< 2.答案:(0,2)4.如图,已知AB为圆O的直径,C为圆上一动点,PA⊥圆O所在的平面,且PA=AB=2,过点A作平面α⊥PB,分别交PB,PC于E,F,当三棱锥P-AEF的体积最大时,tan∠BAC=________.解析:∵PB⊥平面AEF,∴AF⊥PB.又AC⊥BC,AP⊥BC,∴BC⊥平面PAC,∴AF⊥BC,∴AF⊥平面PBC,∴∠AFE=90°.设∠BAC=θ,在Rt△PAC中,AF=AP·ACPC=2×2cos θ21+cos2θ=2cos θ1+cos2θ,在Rt△PAB中,AE=PE=2,∴EF=AE2-AF2,∴V P-AEF=16AF·EF·PE=16AF·2-AF2·2=26·2AF2-AF4=26·-(AF2-1)2+1≤26,∴当AF=1时,V P-AEF取得最大值26,此时AF=2cos θ1+cos2θ=1,∴cos θ=13,sin θ=23,∴tan θ= 2.答案: 2第2课时平行与垂直(能力课) [常考题型突破][例1](2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD ,所以EF ∥AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD ,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC .[方法归纳]1.(2017·苏锡常镇一模)如图,在斜三棱柱ABC -A1B 1C 1中,侧面AA 1C 1C是菱形,AC 1与A 1C 交于点O ,E 是棱AB 上一点,且OE ∥平面BCC 1B 1.(1)求证:E 是AB 的中点;(2)若AC 1⊥A 1B ,求证:AC 1⊥BC .证明:(1)连结BC1,因为OE ∥平面BCC 1B 1,OE ⊂平面ABC 1,平面BCC 1B 1∩平面ABC 1=BC 1,所以OE ∥BC 1 .因为侧面AA 1C 1C 是菱形,AC 1∩A 1C =O ,所以O 是AC 1中点,所以AE EB =AO OC 1=1,E 是AB 的中点. (2)因为侧面AA 1C 1C 是菱形,所以AC 1⊥A 1C,又AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.2.(2017·苏州模拟)在如图所示的空间几何体ABCDPE中,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=AD=4,EB=2.(1)若点Q是PD的中点,求证:AQ⊥平面PCD;(2)证明:BD∥平面PEC.证明:(1)因为PA=AD,Q是PD的中点,所以AQ⊥PD.又PA⊥平面ABCD,所以CD⊥PA.又CD⊥DA,PA∩DA=A,所以CD⊥平面ADP.又因为AQ⊂平面ADP,所以CD⊥AQ,又PD∩CD=D,所以AQ⊥平面PCD.(2)取PC的中点M,连结AC交BD于点N,连结MN,ME,在△PAC中,易知MN=12PA,MN∥PA,又PA∥EB,EB=12PA,所以MN=EB,MN∥EB,所以四边形BEMN是平行四边形,所以EM∥BN.又EM⊂平面PEC,BN⊄平面PEC,所以BN∥平面PEC,即BD∥平面PEC.[例2]ABC内接于圆O,且AB为圆O的直径,M为线段PB的中点,N为线段BC的中点.求证:(1)平面MON∥平面PAC;(2)平面PBC⊥平面MON.[证明](1)因为M,O,N分别是PB,AB,BC的中点,所以MO∥PA,NO∥AC,又MO∩NO=O,PA∩AC=A,所以平面MON∥平面PAC.(2)因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC.由(1)知,MO∥PA,所以MO⊥BC.连结OC,则OC=OB,因为N为BC的中点,所以ON⊥BC.又MO∩ON=O,MO⊂平面MON,ON⊂平面MON,所以BC⊥平面MON.又BC⊂平面PBC,所以平面PBC⊥平面MON.[方法归纳]1.(2017·无锡期末)在四棱锥P-ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.求证:(1)平面PAD⊥平面ABCD;(2)EF∥平面PAD.证明:(1)因为AP⊥平面PCD,CD⊂平面PCD,所以AP⊥CD,因为四边形ABCD为矩形,所以AD⊥CD,又因为AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以CD⊥平面PAD,因为CD⊂平面ABCD,所以平面PAD⊥平面ABCD.(2)连结AC,BD交于点O,连结OE,OF,因为四边形ABCD为矩形,所以O点为AC的中点,因为E为PC的中点,所以OE∥PA,因为OE⊄平面PAD,PA⊂平面PAD,所以OE∥平面PAD,同理可得:OF∥平面PAD,又因为OE∩OF=O,所以平面OEF∥平面PAD,因为EF⊂平面OEF,所以EF∥平面PAD.2.(2016·江苏高考)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D ⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.[例3]圆O上,且AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直.(1)求证:平面AFC⊥平面CBF.(2)在线段CF上是否存在一点M,使得OM∥平面ADF?并说明理由.[解](1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF.∵AF ⊂平面ABEF ,∴AF ⊥CB .又AB 为圆O 的直径,∴AF ⊥BF .又BF ∩CB =B ,∴AF ⊥平面CBF .∵AF ⊂平面AFC ,∴平面AFC ⊥平面CBF .(2)当M 为CF 的中点时,OM ∥平面ADF .证明如下:取CF 中点M ,设DF 的中点为N ,连结AN ,MN ,则MN 綊12CD ,又AO 綊12CD ,则MN 綊AO , ∴四边形MNAO 为平行四边形,∴OM ∥AN ,又AN ⊂平面DAF ,OM ⊄平面DAF ,∴OM ∥平面DAF .[方法归纳]与平行、垂直有关的存在性问题的解题步骤[变式训练]1.如图,四边形ABCD 是矩形,平面ABCD ⊥平面BCE ,BE ⊥EC .(1)求证:平面AEC ⊥平面ABE ;(2)点F 在BE 上,若DE ∥平面ACF ,求BF BE的值. 解:(1)证明:∵四边形ABCD 为矩形,∴AB ⊥BC ,∵平面ABCD ⊥平面BCE ,∴AB ⊥平面BCE ,∴CE ⊥AB .又∵CE ⊥BE ,AB ∩BE =B ,∴CE ⊥平面ABE ,又∵CE ⊂平面AEC ,∴平面AEC ⊥平面ABE .(2)连结BD 交AC 于点O ,连结OF .∵DE ∥平面ACF ,DE ⊂平面BDE ,平面ACF ∩平面BDE =OF .∴DE ∥OF ,又在矩形ABCD 中,O 为BD 中点,∴F 为BE 中点,即BF BE =12. 2.如图,在矩形ABCD 中,E ,F 分别为BC ,DA 的中点.将矩形ABCD 沿线段EF 折起,使得∠DFA =60°.设G 为AF 上的点.(1)试确定点G 的位置,使得CF ∥平面BDG ;(2)在(1)的条件下,证明:DG ⊥AE .解:(1)当点G 为AF 的中点时,CF ∥平面BDG .证明如下:因为E ,F 分别为BC ,DA 的中点,所以EF ∥AB ∥CD .连结AC 交BD 于点O ,连结OG ,则AO =CO .又G 为AF 的中点,所以CF ∥OG .因为CF ⊄平面BDG ,OG ⊂平面BDG .所以CF ∥平面BDG .(2)因为E ,F 分别为BC ,DA 的中点,所以EF ⊥FD ,EF ⊥FA .又FD ∩FA =F ,所以EF ⊥平面ADF ,因为DG ⊂平面ADF ,所以EF ⊥DG .因为FD =FA ,∠DFA =60°,所以△ADF 是等边三角形,DG ⊥AF ,又AF ∩EF =F ,所以DG ⊥平面ABEF .因为AE ⊂平面ABEF ,所以DG ⊥AE .[课时达标训练]1.如图,在三棱锥V -ABC 中,O ,M 分别为AB ,VA 的中点,平面VAB ⊥平面ABC ,△VAB 是边长为2的等边三角形,AC ⊥BC 且AC =BC .(1)求证:VB ∥平面MOC ;(2)求线段VC的长.解:(1)证明:因为点O,M分别为AB,VA的中点,所以MO∥VB.又MO⊂平面MOC,VB⊄平面MOC,所以VB∥平面MOC.(2)因为AC=BC,O为AB的中点,AC⊥BC,AB=2,所以OC⊥AB,且CO=1.连结VO,因为△VAB是边长为2的等边三角形,所以VO= 3.又平面VAB⊥平面ABC,OC⊥AB,平面VAB∩平面ABC=AB,OC⊂平面ABC,所以OC⊥平面VAB,所以OC⊥VO,所以VC=OC2+VO2=2.B1C1中,AC⊥BC,A1B2.(2017·南通二调)如图,在直三棱柱ABC-A与AB1交于点D,A1C与AC1交于点E.求证:(1)DE∥平面B1BCC1;(2)平面A1BC⊥平面A1ACC1.证明:(1)在直三棱柱ABC-A1B1C1中,四边形A1ACC1为平行四边形.又E为A1C与AC1的交点,所以E为A1C的中点.同理,D为A1B的中点,所以DE∥BC.又BC⊂平面B1BCC1,DE⊄平面B1BCC1,所以DE∥平面B1BCC1.(2)在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,又BC⊂平面ABC,所以AA1⊥BC.又AC⊥BC,AC∩AA1=A,AC⊂平面A1ACC1,AA1⊂平面A1ACC1,所以BC⊥平面A1ACC1.因为BC⊂平面A1BC,所以平面A1BC⊥平面A1ACC1.3.(2017·南京三模)如图,在三棱锥A-BCD中,E,F分别为棱BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平面ABD;(2)若BD⊥CD,AE⊥平面BCD,求证:平面AEF⊥平面ACD.证明:(1)因为BD∥平面AEF,BD⊂平面BCD,平面AEF∩平面BCD=EF,所以BD∥EF.因为BD⊂平面ABD,EF⊄平面ABD,所以EF∥平面ABD.(2)因为AE⊥平面BCD,CD⊂平面BCD,所以AE⊥CD.因为BD⊥CD,BD∥EF,所以CD⊥EF,又AE∩EF=E,AE⊂平面AEF,EF⊂平面AEF,所以CD⊥平面AEF.又CD⊂平面ACD,所以平面AEF⊥平面ACD.4.在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,AB=BC=1,DC=2,点E在PB上.(1)求证:平面AEC⊥平面PAD;(2)当PD∥平面AEC时,求PE∶EB的值.解:(1)证明:在平面ABCD中,过A作AF⊥DC于F,则CF=DF=AF=1,∴∠DAC=∠DAF+∠FAC=45°+45°=90°,即AC⊥DA.又PA⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PA.∵PA⊂平面PAD,AD⊂平面PAD,且PA∩AD=A,∴AC⊥平面PAD.又AC⊂平面AEC,∴平面AEC⊥平面PAD.(2)连结BD交AC于O,连结EO.∵PD∥平面AEC,PD⊂平面PBD,平面PBD∩平面AEC=EO,∴PD∥EO,则PE∶EB=DO∶OB.又△DOC∽△BOA,∴DO∶OB=DC∶AB=2∶1,∴PE∶EB的值为2.5.(2017·扬州考前调研)如图,在四棱锥P-ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD,AC交BD于O,锐角△PAD所在平面⊥底面ABCD,PA⊥BD,点Q在侧棱PC上,且PQ=2QC.求证:(1)PA∥平面QBD;(2)BD⊥AD.证明:(1)连结OQ,因为AB∥CD,AB=2CD,所以AO =2OC ,又PQ =2QC ,所以PA ∥OQ ,因为OQ ⊂平面QBD ,PA ⊄平面QBD ,所以PA ∥平面QBD .(2)在平面PAD 内过P 作PH ⊥AD 于H ,因为侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD , 所以PH ⊥平面ABCD ,又BD ⊂平面ABCD ,所以PH ⊥BD .又PA ⊥BD ,且PA ∩PH =P ,PA ⊂平面PAD ,PH ⊂平面PAD ,所以BD ⊥平面PAD ,又AD ⊂平面PAD ,所以BD ⊥AD .6.如图,在多面体ABCDFE 中,四边形ABCD 是矩形,四边形ABEF为等腰梯形,且AB ∥EF ,AF =2,EF =2AB =42,平面ABCD ⊥平面ABEF .(1)求证:BE ⊥DF ;(2)若P 为BD 的中点,试问:在线段AE 上是否存在点Q ,使得PQ ∥平面BCE ?若存在,找出点Q 的位置;若不存在,请说明理由.解:(1)证明:如图,取EF 的中点G ,连结AG ,因为EF =2AB ,所以AB =EG ,又AB ∥EG ,所以四边形ABEG 为平行四边形,所以AG ∥BE ,且AG =BE =AF =2.在△AGF 中,GF =12EF =22,AG =AF =2, 所以AG 2+AF 2=GF 2,所以AG ⊥AF .因为四边形ABCD 为矩形,所以AD ⊥AB ,又平面ABCD ⊥平面ABEF ,且平面ABCD ∩平面ABEF =AB ,AD ⊂平面ABCD , 所以AD ⊥平面ABEF ,又AG ⊂平面ABEF ,所以AD ⊥AG .因为AD ∩AF =A ,所以AG ⊥平面ADF .因为AG ∥BE ,所以BE ⊥平面ADF .因为DF ⊂平面ADF ,所以BE ⊥DF .(2)存在点Q ,且点Q 为AE 的中点,使得PQ ∥平面BCE .证明如下:连结AC ,因为四边形ABCD 为矩形,所以P 为AC 的中点.在△ACE中,因为点P,Q分别为AC,AE的中点,所以PQ∥CE.又PQ⊄平面BCE,CE⊂平面BCE,所以PQ∥平面BCE.。
2018年江苏省高考数学二模试卷一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知集合A={x||x|<2},B={﹣1,0,1,2,3},则集合A∩B中元素的个数为.2.已知复数z满足(2﹣3i)z=3+2i(i是虚数单位),则z的模为.3.已知一组数据8,10,9,12,11,那么这组数据的方差为.4.运行如图所示的伪代码,其输出的结果S为.5.袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为.6.已知,那么tanβ的值为.7.已知正六棱锥的底面边长为2,侧棱长为,则该正六棱锥的表面积为.8.在三角形ABC中,,则的最小值为.9.已知数列{a n}的首项为1,等比数列{b n}满足,且b1018=1,则a2018的值为.10.已知正数a,b满足2ab+b2=b+1,则a+5b的最小值为.11.已知函数,若方程f(x)=﹣x有且仅有一解,则实数a的取值范围为.12.在平面直角坐标系xOy中,点A(3,0),动点P满足PA=2PO,动点Q(3a,4a+5)(a ∈R),则线段PQ长度的最小值为.13.已知椭圆的离心率为,长轴AB上2018个等分点从左到右依次为点M1,M2,…,M2018,过M1点作斜率为k(k≠0)的直线,交椭圆C于P1,P2两点,P1点在x轴上方;过M2点作斜率为k(k≠0)的直线,交椭圆C于P3,P4两点,P3点在x 轴上方;以此类推,过M2018点作斜率为k(k≠0)的直线,交椭圆C于P4189,P4180两点,P4189点在x轴上方,则4180条直线AP1,AP2,…,AP4180的斜率乘积为.14.已知函数f(x)=x|x﹣a|,若对任意x1∈[2,3],x2∈[2,3],x1≠x2恒有,则实数a的取值范围为.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.在△ABC中,角A、B、C分别是边a、b、c的对角,且3a=2b.(Ⅰ)若B=60°,求sinC的值;(Ⅱ)若,求sin(A﹣B)的值.16.如图,平行四边形ABCD⊥平面CDE,AD⊥DE.(I)求证:DE⊥平面ABCD;(Ⅱ)若M为线段BE中点,N为线段CE的一个三等分点,求证:MN不可能与平面ABCD 平行.17.已知椭圆的离心率为e,直线l:y=ex+a与x,y轴分别交于A、B点.(Ⅰ)求证:直线l与椭圆C有且仅有一个交点;(Ⅱ)设T为直线l与椭圆C的交点,若AT=eAB,求椭圆C的离心率;(Ⅲ)求证:直线l:y=ex+a上的点到椭圆C两焦点距离和的最小值为2a.18.如图,,点O处为一雷达站,测控范围为一个圆形区域(含边界),雷达开机时测控半径r随时间t变化函数为r=3t km,且半径增大到81km 时不再变化.一架无人侦察机从C点处开始沿CD方向飞行,其飞行速度为15km/min.(Ⅰ)当无人侦察机在CD上飞行t分钟至点E时,试用t和θ表示无人侦察机到O点的距离OE;(Ⅱ)若无人侦察机在C点处雷达就开始开机,且θ=,则雷达是否能测控到无人侦察机?请说明理由.19.已知数列{a n }满足.数列{a n }前n 项和为S n .(Ⅰ) 求数列{a n }的通项公式;(Ⅱ)若a m a m +1=a m +2,求正整数m 的值; (Ⅲ)是否存在正整数m ,使得恰好为数列{a n }中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由.20.已知函数f (x )=xlnx ﹣ax 2+a (a ∈R ),其导函数为f ′(x ). (Ⅰ)求函数g (x )=f ′(x )+(2a ﹣1)x 的极值;(Ⅱ)当x >1时,关于x 的不等式f (x )<0恒成立,求a 的取值范围.三.附加题部分【选做题】(本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.)A .[选修4-1几何证明选讲](本小题满分10分) 21.若AB 为定圆O 一条弦(非直径),AB=4,点N 在线段AB 上移动,∠ONF=90°,NF 与圆O 相交于点F ,求NF 的最大值.B .[选修4-2:矩阵与变换](本小题满分10分) 22.已知矩阵,若矩阵A 属于特征值6的一个特征向量为=,属于特征值1的一个特征向量为=.求A 的逆矩阵.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.过点P (﹣3,0)且倾斜角为30°的直线和曲线ρ2cos2θ=4相交于A 、B 两点.求线段AB 的长.D .[选修4-5:不等式选讲](本小题满分0分) 24.设 x ,y ,z ∈R +,且x +y +z=1,求证:.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.一个袋中有若干个红球与白球,一次试验为从中摸出一个球并放回袋中,摸出红球概率为p ,摸出白球概率为q ,摸出红球加1分,摸出白球减1分,现记“n 次试验总得分为S n ”. (Ⅰ)当时,记ξ=|S 3|,求ξ的分布列及数学期望;(Ⅱ)当时,求S 8=2且S i ≥0(i=1,2,3,4)的概率.26.数列{a n }各项均为正数,,且对任意的n ∈N *,有.(Ⅰ)求证:;(Ⅱ)若,是否存在n∈N*,使得a n>1,若存在,试求出n的最小值,若不存在,请说明理由.2018年江苏省高考数学二模试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知集合A={x||x|<2},B={﹣1,0,1,2,3},则集合A∩B中元素的个数为3.【考点】交集及其运算.【分析】求出A中不等式的解集确定出A,找出A与B的交集,即可作出判断.【解答】解:由A中不等式解得:﹣2<x<2,即A=(﹣2,2),∵B={﹣1,0,1,2,3},∴A∩B={﹣1,0,1},则集合A∩B中元素的个数为3,故答案为:32.已知复数z满足(2﹣3i)z=3+2i(i是虚数单位),则z的模为1.【考点】复数代数形式的乘除运算.【分析】根据向量的复数运算和向量的模即可求出.【解答】解:(2﹣3i)z=3+2i,∴z====i,∴|z|=1,故答案为:1.3.已知一组数据8,10,9,12,11,那么这组数据的方差为2.【考点】极差、方差与标准差.【分析】先求出这组数据的平均数,由此能求出这组数据的方差.【解答】解:∵一组数据8,10,9,12,11,∴这组数据的平均数=(8+10+9+12+11)=10,这组数据的方差为S2= [(8﹣10)2+(10﹣10)2+(9﹣10)2+(12﹣10)2+(11﹣10)2]=2.故答案为:2.4.运行如图所示的伪代码,其输出的结果S为15.【考点】程序框图.【分析】由已知中的程序代码可得:程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【解答】解:当l=1时,满足进行循环的条件,S=3,l=4;当l=4时,满足进行循环的条件,S=9,l=7;当l=7时,满足进行循环的条件,S=15,l=10;当l=10时,不满足进行循环的条件,故输出的S值为15.故答案为:155.袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,若从中随机一次摸出2只球,则这2只球颜色不同的概率为.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出这2只球颜色不同包含的基本事件个数,由此能求出这2只球颜色不同的概率.【解答】解:∵袋中有形状、大小都相同的四只球,其中有1只红球,3只白球,从中随机一次摸出2只球,∴基本事件总数n==6,这2只球颜色不同包含的基本事件个数m==3,∴这2只球颜色不同的概率为p==.故答案为:.6.已知,那么tanβ的值为3.【考点】两角和与差的正切函数.【分析】由已知,利用同角三角函数基本关系式可求cosα,tanα的值,利用两角和的正切函数公式即可化简求值.【解答】解:∵,∴cosα=﹣=﹣,tanα==﹣2,∴tan(α+β)===,整理可得:tanβ=3.故答案为:3.7.已知正六棱锥的底面边长为2,侧棱长为,则该正六棱锥的表面积为+12.【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】利用勾股定理可得侧面三角形的斜高h,利用等腰三角形与等边三角形的面积计算公式即可得出.【解答】解:侧面三角形的斜高h==2,∴该正六棱锥的表面积S=+6×=+12,故答案为: +12.8.在三角形ABC中,,则的最小值为.【考点】平面向量数量积的运算.【分析】可根据条件得到,而由可得到,两边平方并进行数量积的运算便可得到,这样根据不等式a2+b2≥2ab即可得出的范围,从而得出的范围,即得出的最小值.【解答】解:根据条件,=;∴;由得,;∴;∴==,当且仅当即时取“=”;∴;∴的最小值为.故答案为:.9.已知数列{a n}的首项为1,等比数列{b n}满足,且b1018=1,则a2018的值为1.【考点】等比数列的通项公式.【分析】由已知结合,得到a2018=b1b2…b2018=(b1b2018)•(b2b2018)…(b1018b1018)•b1018,结合b1018=1,以及等比数列的性质求得答案.【解答】解:,且a1=1,得b1=,b2=,∴a3=a2b2=b1b2,b3=,∴a4=a3b3=b1b2b3,…a n=b1b2…b n.﹣1∴a2018=b1b2…b2018=(b1b2018)•(b2b2018)…(b1018b1018)•b1018,∵b1018=1,∴b1b2018=b2b2018=…=b1018b1018=(b1018)2=1,∴a2018=1,故答案为:1.10.已知正数a,b满足2ab+b2=b+1,则a+5b的最小值为.【考点】基本不等式.【分析】正数a,b满足2ab+b2=b+1,可得:a=>0.则a+5b=+5b=+,利用基本不等式的性质即可得出.【解答】解:∵正数a,b满足2ab+b2=b+1,∴a=>0.则a+5b=+5b=+≥+=,当且仅当b=,a=2时取等号.故答案为:.11.已知函数,若方程f(x)=﹣x有且仅有一解,则实数a的取值范围为a≥﹣1或a=﹣2..【考点】根的存在性及根的个数判断.【分析】根据指数函数的图象,结合图象的平移可知当a≥﹣1时,2x+a在x≤0时,与y=﹣x 有一交点,而x++a在x>0无交点,符合题意;再考虑当a<﹣1时的情况,结合图象的平移和二次函数的知识求出a的取值.【解答】解:根据指数函数的图象易知:当a≥﹣1时,y=2x+a在x≤0时,与y=﹣x有一交点,y=x++a在x>0与y=﹣x无交点,符合题意;当a<﹣1时,只需x++a=﹣x有且仅有一根,△=a2﹣8=0,解得a=﹣2.故答案为a≥﹣1或a=﹣2.12.在平面直角坐标系xOy中,点A(3,0),动点P满足PA=2PO,动点Q(3a,4a+5)(a ∈R),则线段PQ长度的最小值为0.【考点】两点间距离公式的应用.【分析】求出圆的方程并化为标准形式,由条件求得点Q(3a,4a+5)到圆心(﹣1,0)的距离d的最小值,将d的最小值减去圆的半径,即为所求.【解答】解:∵点A(3,0),动点P满足PA=2PO,设P(x,y),则有(x﹣3)2+y2=4x2+4y2,∴(x+1)2+y2=4,表示以(﹣1,0)为圆心、半径等于2的圆.点Q(3a,4a+5)到圆心(﹣1,0)的距离d==≥,故距离d可以是2,此时PQ=0,故线段PQ长度的最小值为0.13.已知椭圆的离心率为,长轴AB上2018个等分点从左到右依次为点M1,M2,…,M2018,过M1点作斜率为k(k≠0)的直线,交椭圆C于P1,P2两点,P1点在x轴上方;过M2点作斜率为k(k≠0)的直线,交椭圆C于P3,P4两点,P3点在x 轴上方;以此类推,过M2018点作斜率为k(k≠0)的直线,交椭圆C于P4189,P4180两点,P4189点在x轴上方,则4180条直线AP1,AP2,…,AP4180的斜率乘积为﹣2﹣2018.【考点】椭圆的简单性质.【分析】运用椭圆的离心率公式,可得a2=2b2=2c2,设M n的坐标为(t,0),直线方程为y=k (x﹣t),代入椭圆方程,运用韦达定理,再由直线的斜率公式,化简整理,可得•=,再由等分点,设出t的坐标,化简整理,计算即可得到所求值.【解答】解:由题意可得e==,可得a2=2b2=2c2,设M n的坐标为(t,0),直线方程为y=k(x﹣t),代入椭圆方程x2+2y2=2b2,可得(1+2k2)x2﹣4tk2x+2k2t2﹣2b2=0,即有x1+x2=,x1x2=,•=•======,可令t=﹣,﹣,…,﹣,﹣,0,,,…,,,即有AP1,AP2,…,AP4180的斜率乘积为•(•…•)••(•…•)=﹣.故答案为:﹣2﹣2018.14.已知函数f(x)=x|x﹣a|,若对任意x1∈[2,3],x2∈[2,3],x1≠x2恒有,则实数a的取值范围为[3,+∞).【考点】分段函数的应用.【分析】根据凸函数和凹函数的定义,作出函数f(x)的图象,利用数形结合进行求解即可.【解答】解:满足条件有的函数为凸函数,f(x)=,作出函数f(x)的图象,由图象知当x≤a时,函数f(x)为凸函数,当x≥a时,函数f(x)为凹函数,若对任意x1∈[2,3],x2∈[2,3],x1≠x2恒有,则a≥3即可,故实数a的取值范围是[3,+∞),故答案为:[3,+∞)二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.在△ABC中,角A、B、C分别是边a、b、c的对角,且3a=2b.(Ⅰ)若B=60°,求sinC的值;(Ⅱ)若,求sin(A﹣B)的值.【考点】两角和与差的正弦函数;正弦定理;余弦定理.【分析】(Ⅰ)利用正弦定理化简已知可得3sinA=2sinB,由已知可求sinA,利用大边对大角可得A为锐角,可求cosA,利用三角形内角和定理,两角和的正弦函数公式即可求sinC的值.(Ⅱ)由已知及正弦定理可求a=,余弦定理可求c=,利用余弦定理可得cosB=0,从而可求sinB=1,sinA=,利用大边对大角及同角三角函数基本关系式可求cosA,利用两角差的正弦函数公式即可计算得解.【解答】(本题满分为14分)解:(Ⅰ)在△ABC中,∵3a=2b,∴3sinA=2sinB又∵B=60°,代入得3sinA=2sin60°,解得sinA=.∵a:b=2:3,∴A<B,即cosA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB=.…(Ⅱ)∵3a=2b,可得:a=,,∴==,解得:c2=,c=,∴cosB===0,可得:sinB=1,∵3sinA=2sinB=2,可得:sinA=,A为锐角,可得cosA==.∴sin(A﹣B)=sinAcosB﹣cosAsinB=﹣cosA=﹣.…16.如图,平行四边形ABCD⊥平面CDE,AD⊥DE.(I)求证:DE⊥平面ABCD;(Ⅱ)若M为线段BE中点,N为线段CE的一个三等分点,求证:MN不可能与平面ABCD 平行.【考点】直线与平面垂直的判定;直线与平面平行的性质.【分析】(1)在平面ABCD内过A作CD的垂线AP,则AP⊥平面CDE,于是AP⊥DE,结合AD⊥DE,得出DE⊥平面ABCD;(2)使用反证法证明,假设MN∥平面ABCD,由线面平行的性质得MN∥BC,与已知矛盾.【解答】证明:(1)过A作AP⊥CD,垂足为P,∵平面ABCD⊥平面CDE,平面ABCD∩平面CDE=CD,AP⊂平面ABCD,AP⊥CD,∴AP⊥平面CDE,∵DE⊂平面CDE,∴AP⊥DE,又∵DE⊥AD,AD⊂平面ABCD,AP⊂平面ABCD,AD∩AP=A,∴DE⊥平面ABCD.(2)假设MN∥平面ABCD,∵MN⊂平面BCE,平面BCE∩平面ABCD=BC,∴MN∥BC,∴,与M是BE的中点,N是CE的三等分点相矛盾.∴MN不可能与平面ABCD平行.17.已知椭圆的离心率为e,直线l:y=ex+a与x,y轴分别交于A、B点.(Ⅰ)求证:直线l与椭圆C有且仅有一个交点;(Ⅱ)设T为直线l与椭圆C的交点,若AT=eAB,求椭圆C的离心率;(Ⅲ)求证:直线l:y=ex+a上的点到椭圆C两焦点距离和的最小值为2a.【考点】椭圆的简单性质.【分析】(Ⅰ)将直线l:y=ex+a代入椭圆方程,运用判别式,结合离心率公式,化简整理即可得证;(Ⅱ)由直线l:y=ex+a,可得A(﹣,0),B(0,a),运用向量共线的坐标表示,解方程可得离心率;(Ⅲ)设F2(c,0)关于直线y=ex+a的对称点为F'(m,n),运用两直线垂直的条件:斜率之积为﹣1和中点坐标公式,求得F'的坐标,计算|F'F1|,即可得到所求最小值.【解答】解:(Ⅰ)证明:直线l:y=ex+a代入椭圆,可得(b2+a2e2)x2+2ea3+a4﹣a2b2=0,可得判别式为4a2e6﹣4(b2+a2e2)(a4﹣a2b2)=﹣4(a4b2﹣a2b4﹣a4e2b2)=﹣4[a2b2(a2﹣b2)﹣a2c2b2]=0,即有直线l与椭圆C有且仅有一个交点;(Ⅱ)由直线l:y=ex+a,可得A(﹣,0),B(0,a),由(Ⅰ)可得x T=﹣=﹣=﹣ea,由=e,可得﹣ea+=e(0+),即e2+e﹣1=0,解得e=(负的舍去):(Ⅲ)证明:设F2(c,0)关于直线y=ex+a的对称点为F'(m,n),即有=﹣,=+a,结合e=,b2+c2=a2,解得m=﹣c,n=2a,即为F'(﹣c,2a),则|F'F1|=2a.故直线l:y=ex+a上的点到椭圆C两焦点距离和的最小值为2a.18.如图,,点O处为一雷达站,测控范围为一个圆形区域(含边界),雷达开机时测控半径r随时间t变化函数为r=3t km,且半径增大到81km 时不再变化.一架无人侦察机从C点处开始沿CD方向飞行,其飞行速度为15km/min.(Ⅰ) 当无人侦察机在CD 上飞行t 分钟至点E 时,试用t 和θ表示无人侦察机到O 点的距离OE ;(Ⅱ)若无人侦察机在C 点处雷达就开始开机,且θ=,则雷达是否能测控到无人侦察机?请说明理由.【考点】解三角形的实际应用. 【分析】(I )在△OCE 中,CE=15t ,使用余弦定理表示出OE ;(II )令f (t )=OE 2﹣r 2,通过导数判断f (t )的单调性计算f (t )的最小值,判断OE 与测控半径r 的大小关系. 【解答】解:(I )在△OCE 中,CE=15t ,OC=90,由余弦定理得OE 2=OC 2+CE 2﹣2OC •CEcos θ=8100+225t 2﹣2700tcos θ. ∴OE=.(II )令f (t )=OE 2﹣r 2=225t 2﹣1350t +8100﹣9t 3,令r=3t =81,解得t=9.∴0≤t ≤9 ∴f ′(t )=﹣27t 2+450t ﹣1350=﹣27(t ﹣)2+1875﹣1350<0.∴f (t )在[0,9]上是减函数.f (9)=225×92﹣1350×9+8100﹣9×93>0. ∴当0≤t ≤9时,f (t )>0,即OE >r . ∴雷达不能测控到无人侦察机.19.已知数列{a n }满足.数列{a n }前n 项和为S n .(Ⅰ) 求数列{a n }的通项公式;(Ⅱ)若a m a m +1=a m +2,求正整数m 的值; (Ⅲ)是否存在正整数m ,使得恰好为数列{a n }中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由. 【考点】数列的求和;数列递推式.【分析】(Ⅰ)化简可得数列{a n }的奇数项构成以1为首项,2为公差的等差数列,数列{a n }的偶数项构成以2为首项,3为公比的等比数列,从而写出通项公式;(Ⅱ)分类讨论即方程的解;=3m﹣1﹣1+m2,从而可得(Ⅲ)化简S2m=1+2+3+6+…+2m﹣1+2•3m﹣1=3m﹣1+m2,S2m﹣1=1+,从而讨论求值.【解答】解:(Ⅰ)∵,∴数列{a n}的奇数项构成以1为首项,2为公差的等差数列,数列{a n}的偶数项构成以2为首项,3为公比的等比数列,故a n=;=m•2•m﹣1=m+2,(Ⅱ)若m为奇数,则a m a m+1无解;=(m+1)2•m﹣2=2•m,若m为偶数,则a m a m+1即=2,解得,m=2;综上所述,m=2;(Ⅲ)由题意知,S2m=1+2+3+6+…+2m﹣1+2•3m﹣1=(1+3+5+…+2m﹣1)+(2+6+18+…+2•3m﹣1)=•m+=3m﹣1+m2,=1+2+3+6+…+2m﹣1S2m﹣1=(1+3+5+…+2m﹣1)+(2+6+18+…+2•3m﹣2)=•m+﹣2•3m﹣1=3m﹣1﹣1+m2,故==1+,若m=1,则=3=a3,若=1时,即m=2时,=2=a2,所有满足条件的m值为1,2.20.已知函数f(x)=xlnx﹣ax2+a(a∈R),其导函数为f′(x).(Ⅰ)求函数g(x)=f′(x)+(2a﹣1)x的极值;(Ⅱ)当x>1时,关于x的不等式f(x)<0恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出满足条件的a的范围即可.【解答】解:(Ⅰ)由题知x>0,f'(x)=lnx﹣2ax+1,则g(x)=f'(x)+2a(x﹣1)=lnx﹣x+1,,当0<x<1时,,g(x)为增函数;当x>1时,,g(x)为减函数.所以当x=1时,g(x)有极大值g(1)=0,g(x)无极小值.(Ⅱ)由题意,f'(x)=lnx﹣2ax+1,(ⅰ)当a≤0时,f'(x)=lnx﹣2ax+1>0在x>1时恒成立,则f(x)在(1,+∞)上单调递增,所以f(x)>f(1)=0在(1,+∞)上恒成立,与已知矛盾,故a≤0不符合题意.(ⅱ)当a>0时,令φ(x)=f'(x)=lnx﹣2ax+1,则,且.①当2a≥1,即时,,于是φ(x)在x∈(1,+∞)上单调递减,所以φ(x)<φ(1)=1﹣2a≤0,即f'(x)<0在x∈(1,+∞)上成立.则f(x)在x∈(1,+∞)上单调递减,所以f(x)<f(1)=0在x∈(1,+∞)上成立,符合题意.②当0<2a<1,即时,>1,,若,则φ'(x)>0,φ(x)在上单调递增;若,则φ'(x)<0,φ(x)在上单调递减.又φ(1)=1﹣2a>0,所以φ(x)>0在上恒成立,即f'(x)>0在上恒成立,所以f(x)在上单调递增,则f(x)>f(1)=0在上恒成立,所以不符合题意.综上所述,a的取值范围.三.附加题部分【选做题】(本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.)A.[选修4-1几何证明选讲](本小题满分10分)21.若AB为定圆O一条弦(非直径),AB=4,点N在线段AB上移动,∠ONF=90°,NF与圆O相交于点F,求NF的最大值.【考点】与圆有关的比例线段.【分析】由NF=,线段OF的长为定值,得到需求解线段ON长度的最小值,由此能求出结果.【解答】解:∵ON⊥NF,∴NF=,∵线段OF的长为定值,即需求解线段ON长度的最小值,弦中点到圆心的距离最短,此时N为BE的中点,点F与点B或E重合,∴|NF|max=|BE|=2.B.[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵,若矩阵A属于特征值6的一个特征向量为=,属于特征值1的一个特征向量为=.求A的逆矩阵.【考点】特征向量的意义.【分析】根据矩阵特征值和特征向量的性质代入列方程组,求得a、b、c和d的值,求得矩阵A,丨A丨及A*,由A﹣1=×A*,即可求得A﹣1.【解答】解:矩阵A属于特征值6的一个特征向量为=,∴=6,即=,属于特征值1的一个特征向量为=.∴=,=,∴,解得:,矩阵A=,丨A丨==6,A*=,A﹣1=×A*=,∴A﹣1=.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.过点P(﹣3,0)且倾斜角为30°的直线和曲线ρ2cos2θ=4相交于A、B两点.求线段AB 的长.【考点】简单曲线的极坐标方程.【分析】过点P(﹣3,0)且倾斜角为30°的直线的参数方程为:(t为参数).曲线ρ2cos2θ=4即ρ2(cos2α﹣sin2α)=4,把y=ρsinθ,x=ρcosθ代入化为直角坐标方程.把直线参数方程代入可得:t2﹣6t+10=0,利用|AB|=|t1﹣t2|=即可得出.【解答】解:过点P(﹣3,0)且倾斜角为30°的直线的参数方程为:(t为参数),曲线ρ2cos2θ=4即ρ2(cos2α﹣sin2α)=4化为x2﹣y2=4,把直线参数方程代入可得:t2﹣6t+10=0,∴t1+t2=6,t1t2=10.∴|AB|=|t1﹣t2|===.D.[选修4-5:不等式选讲](本小题满分0分)24.设x,y,z∈R+,且x+y+z=1,求证:.【考点】不等式的证明.【分析】由x,y,z∈R+,且x+y+z=1,可得+≥2=2x,同理可得+≥2y, +≥2z,累加即可得证.【解答】证明:由x,y,z∈R+,且x+y+z=1,可得+≥2=2x,同理可得+≥2y,+≥2z,三式相加,可得+++x+y+z≥2(x+y+z),即为++≥x+y+z,则++≥1成立.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.一个袋中有若干个红球与白球,一次试验为从中摸出一个球并放回袋中,摸出红球概率为p,摸出白球概率为q,摸出红球加1分,摸出白球减1分,现记“n次试验总得分为S n”.(Ⅰ)当时,记ξ=|S3|,求ξ的分布列及数学期望;(Ⅱ)当时,求S8=2且S i≥0(i=1,2,3,4)的概率.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)当时,ξ=|S3|的可能取值为1,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.(Ⅱ)由题意前8次试验5次摸到红球,3次摸到白球,并且满足下列条件:若第一次和第三次摸到红球,其余六次可任意有3次摸到红球,另3次摸到白球;若第一次和第二次摸到红球,第二次摸到白球,则后五次可任意三次摸到红球,另两次摸到白球.由此能求出S8=2且S i≥0(i=1,2,3,4)的概率.【解答】解:(Ⅰ)当时,ξ=|S3|的可能取值为1,3,P(ξ=1)=+=,P(ξ=3)==,∴ξ的分布列为:ξ 1 3PEξ==.(Ⅱ)∵,S8=2且S i≥0(i=1,2,3,4),∴前8次试验5次摸到红球,3次摸到白球,并且满足下列条件:若第一次和第三次摸到红球,其余六次可任意有3次摸到红球,另3次摸到白球,若第一次和第二次摸到红球,第二次摸到白球,则后五次可任意三次摸到红球,另两次摸到白球,∴S8=2且S i≥0(i=1,2,3,4)的概率:p=()•()5•()3=.26.数列{a n}各项均为正数,,且对任意的n∈N*,有.(Ⅰ)求证:;(Ⅱ)若,是否存在n∈N*,使得a n>1,若存在,试求出n的最小值,若不存在,请说明理由.【考点】数列递推式.【分析】(1)把已知数列递推式取倒数,可得,然后利用累加法证得答案;=a n+a n2>a n,然后利用放缩法得a1<a2<…a2018(2)把代入已知递推式,得a n+1<1<a2018<a2019<…,从而说明存在n∈N*,使得a n>1,且n的最小值为2018.【解答】(1)证明:由,得,即,∴,,…,累加得:,即,∵a n>0,∴;∴数列a n单调递增,=a n+a n2>a n,(2)解:当时,a n+1得,=a n+a n2,得由a n+1,∴,∵a i>0(i=1,2,…,2018),∴,则a2018<1;又,∴×2018=1.即a2018>1.即数列{a n}满足a1<a2<…a2018<1<a2018<a2019<…,综上所述,存在n∈N*,使得a n>1,且n的最小值为2018.2018年10月17日。
江苏新高考“在考查基础知识的同时,侧重考查能力”是高考的重要意向,而应用能力的考查又是近二十年来的能力考查重点.江苏卷一直在坚持以建模为主.所以如何由实际问题转化为数学问题的建模过程的探索应是复习的关键.应用题的载体很多,前几年主要考函数建模,以三角、导数、不等式知识解决问题年应用考题()是解不等式模型,年应用考题()可以理解为一次函数模型,也可以理解为条件不等式模型,这样在建模上增添新意,还是有趣的,、年应用考题()都先构造函数,再利用导数求解、年应用考题是立体几何模型,年应用考题需利用空间中的垂直关系和解三角形的知识求解.[常考题型突破][例](·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥-,下部的形状是正四棱柱-(如图所示),并要求正四棱柱的高是正四棱锥的高的倍.()若= ,= ,则仓库的容积是多少?()若正四棱锥的侧棱长为 ,则当为多少时,仓库的容积最大? [解]()由=知==. 因为==,所以正四棱锥-的体积锥=··=××=();正四棱柱-的体积柱=·=×=().所以仓库的容积=锥+柱=+=(). ()设= ,= , 则<<,=.连结. 因为在△中, +=,所以+=,即=(-).于是仓库的容积=柱+锥=·+·==(-),<<,从而′=(-)=(-).令′=,得=或=-(舍去).当<<时,′>,是单调增函数;当<<时,′<,是单调减函数.故当=时,取得极大值,也是最大值.因此,当=时,仓库的容积最大.[方法归纳]解函数应用题的四步骤[变式训练].(·苏锡常镇二模)某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:=-,且投入的肥料费用不超过百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为元千克(即百元百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为()(单位:百元).()求利润函数()的函数关系式,并写出定义域;()当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?解:()()=--=--(≤≤).()法一:()=--=-≤-=.当且仅当=(+)时,即=时取等号.故()=.答:当投入的肥料费用为元时,种植水蜜桃树获得的最大利润是元.法二:′()=-,由′()=,得=.故当∈()时,′()>,()在()上单调递增;当∈()时,′()<,()在()上单调递减.所以当=时,()取得极大值,也是最大值,故()=()=.。
2018年江苏省高考数学模拟试卷(2)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分 .1. 若集合2{|11},{|20}M x x N x x x =-≤≤=-≤,则M N = ▲ .2. 已知复数(2)z i i =--,其中i 是虚数单位,则复数z 在复平面上对应的点位于第 ▲ 象限. 3. 某高中共有1200人,其中高一、高二、高三年级的人数依次成等差数列.现用分层抽样的方法从中抽取48人,那么高二年级被抽取的人数为 ▲ .4. 双曲线22132x y -=的离心率为 ▲ .5. 执行右边的伪代码后,输出的结果是 ▲ .6. 从2个黄球,2个红球,一个白球中随机取出两个球,则两球颜色不同的概率是 ▲ .7. 若一个圆锥的母线长为2,侧面积是底面积的2倍,则该圆锥的体积为 ▲ .8. 在等比数列{}n a 中,已知3754,2320a a a =--=,则7a = ▲ . 9. 若函数)(x f 为定义在R 上的奇函数,当0>x 时,x x x f ln )(=,则不等式e xf -<)(的解集为 ▲ .10. 已知实数,x y 满足40210440x y x y x y +-⎧⎪-+⎨⎪+-⎩≤≥≥,则3z x y =+-的取值范围是 ▲ .11.设函数π()π)3f x x =+和π()sin(π)6g x x =-的图象在y 轴左、右两侧靠近y 轴的交点 分别为M 、N ,已知O 为原点,则OM ON ⋅=u u u r u u u r▲ .12.若斜率互为相反数且相交于点(1,1)P 的两条直线被圆O :224x y +=所截得的弦长之比,则这两条直线的斜率之积为 ▲ . 13. 设实数1m ≥,不等式||2x x m m -≥-对[1,3]x ∀∈恒成立,则实数m 的取值范围是 ▲ . 14.在斜三角形ABC 中,若114tan tan tan A B C+=,则sinC 的最大值为 ▲ .二、解答题:本大题共6小题,共90分.15.(本小题满分14分)己知向量(1,2sin ),(sin(),1)3a b πθθ==+ ,R θ∈.(1)若a b ⊥,求tan θ的值:(2)若//a b ,且(0,)2πθ∈,求以| |a 、| |b 为边,夹角为θ的三角形的面积.16.(本小题满分14分)如图,在三棱锥P - ABC 中,已知平面PBC ⊥平面ABC . (1)若AB ⊥BC ,CP ⊥PB ,求证:CP ⊥PA :(2)若过点A 作直线l ⊥平面ABC ,求证:l //平面PBC .17.(本小题满分14分)如图,ABCD 是一块边长为100米的正方形地皮,其中ATPS 是一半径为90米的底面为扇形 小山(P 为圆弧TS 上的点),其余部分为平地.今有开发商想在平地上建一个两边落在BC 及 CD 上的长方形停车场PQCR ..(1)设PAB θ∠=,试将矩形PQCR 面积表示为θ的函数; (2)求停车场PQCR 面积的最大值及最小值. .18.(本小题满分14分)如图,点A (1,3)为椭圆1222=+ny x 上一定点,过点A 引两直线与 椭圆分别交于B 、C 两点.(1)求椭圆方程;(2)若直线AB 、AC 与x 轴围成以点A 为顶点的等腰三角形.()i 求直线BC 的斜率;()ii 求△ABC 的面积最大值,并求出此时直线BC 的方程.19.(本小题满分16分)已知数列{n a }中,121,a a a ==,且12()n n n a k a a ++=+对任意正整数n都成立,数列{n a }的前n 项和为Sn.(1)若12k =,且20172017S =,求a ; (2)是否存在实数k ,使数列{n a }是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列,若存在,求出所有k 的值;若不存在,请说明理由; (3)若1,2n k S =-求.20.(本小题满分16分)已知函数'()ln ,()f x x a x f x =+为()f x 的导数,()f x 有两个零点1212,,()x x x x < ,且1202x x x +=.(1)当3a =-时,求 ()f x 的单调区间; (2)证明:'0()0f x > ;(3)证明:02(,),t x x ∃∈使得'020()()f x f t x x =--.第II 卷(附加题,共40分)21.【选做题】本题包括A, B,C,D 四小题,每小题10分,请选定其中两小题,并在相应的答题区域.........内作答.... A ,(选修4-1;几何证明选讲)如图,AB 为圆O 的切线,A 为切点,C 为线段AB 的 中点,过C 作圆O 的割线CED (E 在C ,D 之间).求证:∠CBE =∠BDE .B .(选修4-2:矩阵与变换) 已知矩阵 ⎥⎦⎤⎢⎣⎡=a A 203,A 的逆矩阵⎥⎥⎦⎤⎢⎢⎣⎡=-10311b A (1)求a,b 的值;(2)求A 的特征值.C .(选修4-4:坐标系与参数方程) 己知在平面直角坐标系xOy 中,圆M 的参数方程为2cos 72sin 2x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩(θ为参数),以Ox 轴为极轴,O 为极点建立极坐标系,在该极坐标系下, 圆N 是以点3π⎫⎪⎭为圆心,且过点2,2(π的圆.(1)求圆M 及圆N 在平面直角坐标系xOy 下的直角坐标方程; (2)求圆M 上任一点P 与圆N 上任一点Q 之间距离的最小值.D .(选修4-5:不等式选讲)已知x,y,z 都是正数且xyz =8,求证:(2+x )(2+y )(2+z )≥64【选做题】第22题、23题,每题10分,共计20分.22.甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E (ξ).23.对于给定的大于1的正整数n ,设2012nnx a a n a n a n =++++ ,其中i a ∈{0,1,2,,1n - }, 1,2,,0,,1i n n =- ,且0n a ≠,记满足条件的所有x 的和为A n .(1)求A 2(2)设n A =(1)()2n n n f n -,求f (n ).2018年江苏省高考数学模拟试卷(2)参考答案一、填空题1.[]0,1 2.四 3.16 43 5.286. 4/5. 1—(2222C C +)/25C =4/5 .7.圆锥母线长2,可求底面半径为1,故高. 8. 64. 先得公比q 2=4,知7a =64 .9. (,-∞-e). 11()ln 1,(0,),(,),().f x x f e e e e'=++∞=为减区间为增区间 由于)(x f 是奇函数,结合函数图像得,不等式的解集是(,-∞-e) . 10. [1,7].根据可行域知,目标函数化为z=x-y+3(去掉绝对值是关键) 11. -8/9.令f(x)-g(x)=0,化简得2sin()0,,,66x x k k Z πππππ+=+=∈则15((66M N -,故OM ON ⋅=u u u r u u u r 158((669-⋅12. -9或-1/9.设斜率为k,-k,则两条直线方程为kx-y+1-k=0,kx+y-1-k=0,两条弦心距为12d d ==弦长12l l ==代入弦长之比 得231030k k -+=,求出k=3,或k=-1/3,故结果为-9或-1/9.13. 7(1,2][,)2+∞ .(1)当12m ≤≤时,不等式显然成立;(2)当3m ≥时,由1(1)32(2)3m m m m -≥-⎧⎨-≥-⎩得72m ≥;(3)当23m <<时,由02m ≥-得m<2, 矛盾, 综上,7[1,2][,)2m ∈+∞ ..切化弦得22232()c a b =+,222221cos 263a b c a b C ab ab +-+==≥,于是知sinC . 二、解答题15.(1)因为⊥ a b ,所以=0⋅ a b ,所以π2sin sin 03θθ⎛⎫++= ⎪⎝⎭,即5sin 02θθ=.因为cos 0θ≠,所以tan 5θ=.(2)由 a ∥ b ,得π2sin sin 13θθ⎛⎫+= ⎪⎝⎭,即2ππ2sin cos2sin cos sin 133θθθ+=,即()11cos 2212θθ-=, 整理得,π1sin 262θ⎛⎫-= ⎪⎝⎭ 又π0,2θ⎛⎫∈ ⎪⎝⎭,所以ππ5π2,666θ⎛⎫-∈- ⎪⎝⎭, 所以ππ266θ-=,即π6θ=. 所以三角形的面积1sin 302=16.(1)因为平面PBC ⊥平面ABC ,平面PBC 平面ABC BC =,AB ⊂平面ABC ,AB ⊥BC ,所以AB ⊥平面PBC . 因为CP ⊂平面PBC ,所以CP ⊥AB .又因为CP ⊥PB ,且PB AB B = ,,AB PB ⊂平面PAB , 所以CP ⊥平面PAB ,又因为PA ⊂平面PAB , 所以CP ⊥PA .(2)在平面PBC 内过点P 作PD ⊥BC ,垂足为D .因为平面PBC ⊥平面ABC ,又平面PBC ∩平面ABC =BC ,PD ⊂平面PBC ,所以PD ⊥平面ABC .又l ⊥平面ABC ,所以l //PD . 又l ⊄平面PBC ,PD ⊂平面PBC , 所以l //平面PBC .17.(1)S P Q C R =f (θ)=(100-90cos θ)(100-90sin θ)=8100sin θcos θ-9000(sin θ+cos θ)+10000 , θ∈[0,2π]. (2)由(1)知S P Q C R =f (θ)=8100sin θcos θ-900(sin θ+cos θ)+10000 ,θ∈[0,2π] . 令sin θ+cos θ=t ,则t =2sin (θ+4π)∈[1, 2].∴S P Q CR =28100t 2-9000t +10000-28100当t =910时,S P Q CD 最小值为950(m 2)当t =2时,S P Q CD 最大值为14050-90002 (m 2).答:停车场面积的最大值和最小值分别为 14050-90002 (m 2)和950(m 2).APC BD18. (1)把点A (1,3)代入1222=+n y x 得n =6,故椭圆方程为22126x y +=. (2)(i )显然题中等腰三角形腰所在的直线不可能与x 轴垂直,因此其斜率必存在,设两腰的斜率分别为1k 、2k ,由⎪⎩⎪⎨⎧=+-=-162)1(3221y x x k y得点B 的横坐标为33261211++-=k k x (1=x 为点A 的横坐标),∴点B 的纵坐标为3632321121++-=k k k y ,即)36323,33261(21121211++-++-k k k k k B . 同理可得点C 的坐标为)36323,33261(22222222++-++-k k k k k C ∵ 021=+k k ,∴ 直线BC 的斜率为3=BC k .(ii)设直线BC 的方程为m x y +=3,代入方程16222=+y x 得0632622=-++m mx x , ∴ 212332||m BC -=又点A 到直线BC 的距离为2||m d =∴ 36)6(63)12(63||212222+--=-=⋅=m m m d BC S ∴ 当62=m ,即6=m 或6-=m 时,△ABC 面积取得最大值为3. 此时,直线BC 的方程为63±=x y .19.⑴12k =时,121()2n n n a a a ++=+,211n n n n a a a a +++-=-,所以数列{}n a 是等差数列, 此时首项11a =,公差211d a a a =-=-,数列{}n a 的前n 项和是1(1)(1)2n S n n n a =+--,故12017201720172016(1)2a a =+⨯⨯-,得1a =;⑵设数列{}n a 是等比数列,则它的公比21a q a a ==,所以1m m a a -=,1m m a a +=,12m m a a ++=,①若1m a +为等差中项,则122m m m a a a ++=+,即112mm m a aa -+=+,解得1a =,不合题意;②若m a 为等差中项,则122m m m a a a ++=+,即112m m m aa a -+=+,化简得:220a a +-=,解得2a =-,1a =(舍去);11122215m m m m m m a a a k a a a a a +-++====-+++;③若2m a +为等差中项,则212m m m a a a ++=+,即112m m m aa a +-=+,化简得:2210a a --=,解得12a =-;11122215m m m m m m a a a k a a a a a +-++====-+++; 综上可得,满足要求的实数k 有且仅有一个,25k =-; ⑶12k =-则121()2n n n a a a ++=-+, 211()n n n n a a a a ++++=-+,32211()n n n n n n a a a a a a ++++++=-+=+,当n 是偶数时,12341n n n S a a a a a a -=++++++ 12341()()()n n a a a a a a -=++++++ 12()(1)22n na a a =+=+, 当n 是奇数时,12341n n n S a a a a a a -=++++++ 123451()()()n n a a a a a a a -=+++++++1231()2n a a a -=++1121[()]2n a a a -=+-+11(1)2n a -=-+,1n =也适合上式, 综上可得,n S ⎧=⎨⎩11(1),2(1),2n a n a --++n n 是奇数是偶数.20.(1) '3()3ln ,()x f x x x f x x-=-=,可得f (x)的单调减区间为(0,3),单调增区间为(3,+∞). (2) 设2(1)()ln (1)1x x x x x ϕ-=->+,可证此函数在(1,+∞)是增函数,且(1)0ϕ>,令211x x x =>,代入得到211221ln ln 2x x x x x x -+<-,D而由21112221ln ,ln ln ln x x x a x x a x a x x -=-=-⇒=-->122x x +-,故有12''12012122(22()()1102x x x x af x f x x x x +-+==+>+=++. (3)令2200()ln()x G x x x x x =--,'2020(,),()ln 0,xx x x G x x ∈=>G(x)是增函数, 令201x t x =>,则有0022()[ln (1)]01()[ln (1)]0G x x t t G x x t t =--<⎧⎪⎨=-->⎪⎩(用到lnx<x-1), 由零点定理知,存在02(,),()0t x x G t ∈=, 即20202020ln ln ln ln 111x x x x aatx x t x x --=⇔+=+-- 即'020()()f x f t x x =--.第II 卷(附加题,共40分)21.A .因为CA 为圆O 的切线,所以2CA CE CD =⋅, 又CA CB =,所以2CB CE CD =⋅, 即CB CDCE CB=, 又BCD BCD ∠=∠, 所以BCE D ∽DCB D , 所以∠CBE =∠BDE .B .(1)因为A A -1=⎣⎡⎦⎤302a ⎣⎢⎢⎡⎦⎥⎥⎤13 0 b 1=⎣⎢⎢⎡⎦⎥⎥⎤1023+ab a=⎣⎡⎦⎤1001. 所以⎩⎪⎨⎪⎧a =1,23+ab =0.解得a =1,b =-23. (2)由(1)得A =⎣⎡⎦⎤3021,则A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-30-2 λ-1=(λ-3)( λ-1).令f (λ)=0,解得A 的特征值λ1=1,λ2=3.C .(1)⊙M :227(()422x y -+-=,)3π对应直角坐系下的点为3()22,(2,)2π对应直角坐系下的点为(0,2),∴⊙N :223(()122x y -+-=(2)PQ =MN -3=431-=.D .因为x 为正数,所以2+x同理 2+y2+z .(5分)所以(2+x )( 2+y )( 2+z )≥= 因为xyz =8, 所以(2+x )( 2+y )( 2+z )≥64.22.( 1)比赛结束后甲的进球数比乙的进球数多1个,有以下几种情况: 甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 比赛结束后甲的进球数比乙的进球数多1个的概率:p=++=.(2)由已知得ξ的可能取值为0,1,2,3, P (ξ=0)=+++==,P (ξ=1)=+++=,P (ξ=3)==,P (ξ=2)=1﹣P (ξ=0)﹣P (ξ=1)﹣P (ξ=3)=1﹣=,ξEξ==1.23.⑴当2n =时,01224x a a a =++,0{0,1}a ∈,1{0,1}a ∈,21a =, 故满足条件的x 共有4个,分别为004x =++,024x =++,104x =++,124x =++, 它们的和是22. ⑵由题意得,0121,,,,n a a a a - 各有n 种取法;n a 有1n -种取法, 由分步计数原理可得0121,,,,n a a a a - ,n a 的不同取法共有(1)(1)n n n n n n n ⋅⋅⋅-=- ,即满足条件的x 共有(1)nn n -个,当0a 分别取0,1,2,,1n - 时,121,,,n a a a - 各有n 种取法,n a 有1n -种取法,故n A 中所有含0a 项的和为21(1)(0121)(1)2n n n n n n n --++++--= ;同理,n A 中所有含1a 项的和为21(1)(0121)(1)2n n n n n n n n n --++++--⋅=⋅ ; n A 中所有含2a 项的和为2122(1)(0121)(1)2n n n n n n n n n --++++--⋅=⋅ ; n A 中所有含1n a -项的和为2111(1)(0121)(1)2n n n n n n n n n nn ----++++--⋅=⋅ ;当n a 分别取1,2,,1i n =- 时,0121,,,,n a a a a - 各有n 种取法,故n A 中所有含n a 项的和为1(1)(121)2n nnnn n n n n n +-+++-⋅=⋅ ; 所以n A =2121(1)(1)(1)22n n n n n n n n n n n n +---+++++⋅ ; 21(1)1(1)212n n n n n n n n n n n +---=⋅+⋅-1(1)(1)2n n nn n n n +-=+-故1()1n n f n n n +=+-.。
6个解答题综合仿真练(六)1.如图,在四棱锥E -ABCD 中,平面EAB ⊥平面ABCD ,四边形ABCD为矩形,EA ⊥EB ,点M ,N 分别是AE ,CD 的中点.求证:(1)MN ∥平面EBC ; (2)EA ⊥平面EBC .证明:(1)取BE 中点F ,连结CF ,MF ,又M 是AE 的中点, 所以MF 綊12AB .又N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形,所以MN ∥CF . 又MN ⊄平面EBC ,CF ⊂平面EBC , 所以MN ∥平面EBC .(2)在矩形ABCD 中,BC ⊥AB ,又平面EAB ⊥平面ABCD ,平面ABCD ∩平面EAB =AB ,BC ⊂平面ABCD , 所以BC ⊥平面EAB .又EA ⊂平面EAB ,所以BC ⊥EA .又EA ⊥EB ,BC ∩EB =B ,EB ⊂平面EBC ,BC ⊂平面EBC ,所以EA ⊥平面EBC . 2.△ABC 中,AB ―→·AC ―→=27S △ABC (S △ABC 表示△ABC 的面积).(1)若BC =2,求△ABC 外接圆的半径; (2)若B -C =π4,求sin B 的值.解:(1)因为AB ―→·AC ―→=27S △ABC ,所以AB ·AC ·cos A =27·12AB ·AC ·sin A ,即cos A =17sin A ,又因为cos 2A +sin 2A =1,A ∈(0,π), 解得sin A =7210,cos A =210. 设△ABC 外接圆的半径为R , 则2R =BC sin A =27210=1027,所以R =527,即△ABC 外接圆的半径为527. (2)因为A +B +C =π,所以sin(B +C )=sin(π-A )=sin A =7210, cos(B +C )=cos(π-A )=-cos A =-210, 则cos 2B =cos[(B +C )+(B -C )] =cos ⎣⎡⎦⎤(B +C )+π4 =cos(B +C )cos π4-sin(B +C )sin π4=-210×22-7210×22=-45. 又cos 2B =1-2sin 2B ,所以sin 2B =1-cos 2B2=1+452=910,又因为B ∈(0,π), 所以sin B >0,所以sin B =31010. 3.如图是一座桥的截面图,桥的路面由三段曲线构成,曲线AB 和曲线DE 分别是顶点在路面A ,E 的抛物线的一部分,曲线BCD 是圆弧,已知它们在接点B ,D 处的切线相同,若桥的最高点C 到水平面的距离H =6米,圆弧的弓高h =1米,圆弧所对的弦长BD =10米.(1)求BCD 所在圆的半径; (2)求桥底AE 的长.解:(1)设BCD 所在圆的半径为r (r >0), 由题意得r 2=52+(r -1)2,∴r =13. 答:BCD 所在圆的半径为13米.(2)以线段AE 所在直线为x 轴,线段AE 的中垂线为y 轴,建立如图所示的平面直角坐标系.∵H =6米,BD =10米,弓高h =1米,∴B (-5,5),D (5,5),C (0,6),设BCD 所在圆的方程为x 2+(y -b )2=r 2(r >0),则⎩⎪⎨⎪⎧ (6-b )2=r 2,52+(5-b )2=r 2,∴⎩⎪⎨⎪⎧b =-7,r =13.∴BCD 的方程为x 2+(y +7)2=169(5≤y ≤6). 设曲线AB 所在抛物线的方程为y =a (x -m )2, ∵点B (-5,5)在曲线AB 上, ∴5=a (5+m )2,①又BCD 与曲线段AB 在接点B 处的切线相同,且BCD 在点B 处的切线的斜率为512,由y =a (x -m )2,得y ′=2a (x -m ), ∴2a (-5-m )=512, ∴2a (5+m )=-512,② 由①②得m =-29, ∴A (-29,0),E (29,0).∴桥底AE =29-(-29)=58米. 答:桥底AE 的长58米.4.如图,已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左顶点A (-2,0),且点⎝⎛⎭⎫-1,32在椭圆上,F 1,F 2分别是椭圆的左、右焦点.过点A 作斜率为k (k >0)的直线交椭圆E 于另一点B ,直线BF 2交椭圆E 于点C .(1)求椭圆E 的标准方程;(2)若△CF 1F 2为等腰三角形,求点B 的坐标; (3)若F 1C ⊥AB ,求k 的值. 解:(1)由题意得⎩⎪⎨⎪⎧a =2,a 2=b 2+c 2,14+94b 2=1,解得⎩⎪⎨⎪⎧a =2,b =3,c =1.∴椭圆E 的标准方程为x 24+y 23=1.(2)∵△CF 1F 2为等腰三角形,且k >0, ∴点C 在x 轴下方,若F 1C =F 2C ,则C (0,-3);若F 1F 2=CF 2,则CF 2=2,∴C (0,-3);若F 1C =F 1F 2,则CF 1=2,∴C (0,-3), ∴C (0,-3).∴直线BC 的方程y =3(x -1),由⎩⎪⎨⎪⎧y =3(x -1),x 24+y 23=1,得⎩⎨⎧x =0,y =-3或⎩⎨⎧x =85,y =335.∴B ⎝⎛⎭⎫85,335. (3)设直线AB 的方程为y =k (x +2),由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 23=1消去y ,得(3+4k 2)x 2+16k 2x +16k 2-12=0, ∴x A ·x B =-2x B =16k 2-123+4k 2,∴x B =-8k 2+63+4k 2,∴y B =k (x B +2)=12k3+4k 2,∴B ⎝ ⎛⎭⎪⎫-8k 2+63+4k 2,12k 3+4k 2. 若k =12,则B ⎝⎛⎭⎫1,32, ∴C ⎝⎛⎭⎫1,-32, ∵F 1(-1,0),∴kCF 1=-34,∴F 1C 与AB 不垂直; ∴k ≠12,∵F 2(1,0),kBF 2=4k 1-4k2,kCF 1=-1k , ∴直线BF 2的方程为y =4k1-4k 2(x -1), 直线CF 1的方程为y =-1k (x +1),由⎩⎨⎧y =4k1-4k 2(x -1),y =-1k (x +1),解得⎩⎪⎨⎪⎧x =8k 2-1,y =-8k .∴C (8k 2-1,-8k ).由点C 在椭圆上,得(8k 2-1)24+(-8k )23=1,即(24k 2-1)(8k 2+9)=0,即k 2=124,∵k >0,∴k =612. 5.数列{a n }的前n 项和为S n ,且满足S n =4-a n . (1)求证:数列{a n }为等比数列,并求通项公式a n ; (2)是否存在自然数c 和k ,使得a k +1S k -c>1成立?若存在,请求出c 和k 的值; 若不存在,请说明理由.解:(1)证明:当n =1时,S 1+a 1=4,得a 1=2, 由S n =4-a n ,① 得S n +1=4-a n +1,②②-①得,S n +1-S n =a n -a n +1,即a n +1=12a n,所以a n +1a n =12,且a 1=2,所以数列{a n }是首项为2,公比为12的等比数列,且a n =12n -2.(2)法一:因为a n =12n -2,所以a k +1=12k -1,S k =4⎝⎛⎭⎫1-12k , 要使a k +1S k -c =24(2k -1)-c ·2k >1成立,只要使(c -4)2k +6(c -4)2k +4<0(*)成立,当c ≥4时,不等式(*)不成立;(也可以根据S k =4⎝⎛⎭⎫1-12k >c ,且2≤S k <4,所以c 的可能取值为0,1,2,3) 当c =0时,1<2k <32,不存在自然数k 使(*)成立;当c =1时,43<2k <2,不存在自然数k 使(*)成立;当c =2时,2<2k <3,不存在自然数k 使(*)成立; 当c =3时,4<2k <6,不存在自然数k 使(*)成立. 综上所述,不存在自然数c ,k ,使a k +1S k -c>1成立.法二:要使a k +1S k -c >1,只要S k +1-cS k -c>2,即只要c -⎝⎛⎭⎫32S k -2c -S k<0,因为S k =4⎝⎛⎭⎫1-12k <4, 所以S k -⎝⎛⎭⎫32S k -2=2-12S k >0, 故只要32S k -2<c <S k .①因为S k +1>S k , 所以32S k -2≥32S 1-2=1.又S k <4,故要使①成立,c 只能取2或3.当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不成立. 当k ≥2时,因为32S 2-2=52>c ,由S k <S k +1,得32S k -2<32S k +1-2,故当k ≥2时,32S k -2>c ,从而①不成立.当c =3时,因为S 1=2,S 2=3,所以当k =1,k =2时,c <S k 不成立,从而①不成立. 因为32S 3-2=134>c ,又32S k -2<32S k +1-2,所以当k ≥3时,32S k -2>c ,从而①不成立.综上所述,不存在自然数c ,k ,使a k +1S k -c>1成立. 6.已知二次函数f (x )=ax 2+bx +1,g (x )=a 2x 2+bx +1. (1)若f (x )≥g (x )对任意实数x 恒成立,求实数a 的取值范围;(2)若函数f (x )有两个不同零点x 1,x 2,函数g (x )有两个不同零点x 3,x 4. ①若x 3<x 1<x 4,试比较x 2,x 3,x 4的大小关系; ②若x 1=x 3<x 2,m ,n ,p ∈(-∞,x 1),f ′(m )g (n )=f ′(n )g (p )=f ′(p )g (m ),求证:m =n =p . 解:(1)因为f (x )≥g (x )对任意实数x 恒成立, 所以ax 2≥a 2x 2对任意实数x 恒成立, 所以a 2-a ≤0,解得0≤a ≤1.又由题意可得a ≠0,所以实数a 的取值范围为(0,1].(2)①因为函数g (x )的图象开口向上,且其零点为x 3,x 4, 故g (x )<0,得x 3<x <x 4.因为x 1,x 2是f (x )的两个不同零点, 故f (x 1)=f (x 2)=0.因为x 3<x 1<x 4,故g (x 1)<0=f (x 1), 于是(a 2-a )x 21<0.注意到x 1≠0,故a 2-a <0. 因为g (x 2)-f (x 2)=(a 2-a )x 22<0, 故g (x 2)<f (x 2)=0,从而x 3<x 2<x 4, 于是x 3<x 2<x 4.②证明:记x 1=x 3=t ,故f (t )=at 2+bt +1=0,g (t )=a 2t 2+bt +1=0,于是(a -a 2)t 2=0. 因为a ≠0,且t ≠0,故a =1. 所以f (x )=g (x )且函数图象开口向上.所以当x ∈(-∞,x 1)时,f (x )单调递减,f ′(x )单调递增且f ′(x )<0,g (x )单调递减且g (x )>0.若m >n ,则f ′(n )<f ′(m )<0,于是1g (n )>1g (p )>0,从而g (p )>g (n )>0,故n >p .同上,当n >p 时,可推得p >m .所以p >m >n >p ,矛盾.所以m >n 不成立. 同理,n >m 亦不成立. 所以m =n .同理,n =p . 所以m =n =p .。
2018年高考数学仿真试题(二)答案一、1.B 2.B 3.D 4.A 5.A 6.C 7.B 8.A 9.C 10.D 11.C 12.B 二、13. 2 14. -40 15.[21,2] 16.①②④ 三、17.(1)三台机床都能正常工作的概率为P 1=0.9×0.8×0.85=0.612. 6分 (2)三台机床至少有一台能正常工作的概率是 P 2=1-(1-0.9)(1-0.8)(1-0.85)=0.997. 12分 18.(1)AC =(cos α-3,sin α),BC =(cos α,sin α-3),∴由·=-1,得(cos α-3)cos α+sin α(sin α-3)=-1, 2分 ∴cos α+sin α=32, 4分 两边平方,得1+sin2α=94,∴sin2α=-95. 6分(2)OC OA +=(3+cos α,sin α), ∴(3+cos α)2+sin 2α=13, 8分∴cos α=21,∵α∈(0,π), ∴α=3π,sin α=23, 9分 ∴233),23,21(=⋅OC OB C , 设OB 与OC 的夹角为θ,则cos θ233233||||==OC OB , 11分∴θ=6π即为所求. 12分19.(1)取PD 的中点F ,连结AF 、EF , 则EF21CD ,又BA 21CD ,∴EF BA , 2分∴四边形ABEF 为平行四边形,∴EB ∥F A , 又∵EB ⊄平面P AD ,F A ⊂平面P AD , ∴EB ∥平面P AD . 4分(2)∵P A ⊥平面ABCD ,P A ⊂平面P AD , ∴平面P AD ⊥平面ABCD , 又∵CD ⊥AD ,∴CD ⊥平面P AD ,又CD ⊂平面PCD , ∴平面PCD ⊥平面P AD , ∵P A =AD ,F 为PD 的中点, ∴AF ⊥PD ,∴AF ⊥平面PCD ,又∵BE ∥AF ,∴BE ⊥平面PCD , 连结DE ,则∠BDE 为直线BD 与平面PCD 所成的角, 6分在Rt △PCD 中,264221212122=+=+==CD PD PC DE , ∴在Rt △ABD 中,222=+=AB AD BD ,∴在Rt △BDE 中,cos BDE =23226==BD DE , ∴∠BDE =30°,即直线BD 与平面PCD 所成的角为30°. 8分(3)过F 作FG ⊥PC 于G ,连结AG ,由三垂线定理得,AG ⊥PC , ∴∠FGA 为二面角A —PC —D 的平面角, 10分 ∵Rt △PFG ∽Rt △PCD , ∴PCPFCD FG =, ∴316222=⨯=⋅=PCPFCD FG , 在Rt △AFG 中,tan FGA =263122==FG AF , ∴∠FGA =arctan26,即二面角A —PC —D 的大小为arctan26. 12分20.(1)S n =q q a n --1)1(1,而{n a 1}是以11a 为首项,q 1为公比的等比数列,∴121111)1(111])1(1[1--=--=--=n n n n n n q a S q q a q qq a T , 2分 ∴nn T S =a 12q n -1. 4分(2)由已知得:-3a 12,a 12q 2,a 12q 4成等差数列, ∴2a 12q 2=-3a 12+a 12q 4, 6分 ∵a 1≠0,∴q 4-2q 2-3=0, ∵q 2>0,∴q 2=3,q =±3.8分(3)∵a 1=1,q 2=3,∴a 2n -1=a 1q 2n -2=(q 2)n -1=3n -1, ∴123333211-++++=n nn R ,,33332313132n n n R ++++= 两式相减,得nn n nn n n n n n R 33123233311)31(1331313113212-⋅-=---=-++++=- 11分∴49323314949<⋅-⋅-=n n nn R . 12分 21.(1)右准线为x =c a 2,由对称性不妨设渐近线l 为y =abx ,则P (cab c a ,2),又F (c ,0),∴b a c c a c ab k PF-=--=20,2分又∵a bk l=,∴k PF ·k l =-ab b a ⋅=-1, ∴PF ⊥l . 4分(2)∵|PF |的长即F (c ,0)到l :bx -ay =0的距离, ∴22||ba bc +=3,即b =3, 6分又45==a c e , ∴1625222=+ab a ,∴a =4,故双曲线方程为91622y x -=1. 8分 (3)PF 的方程为:y =-ba(x -c ), 由⎪⎪⎩⎪⎪⎨⎧-=--=,),(2c a x c x b a y 得))(,(222bc c a a c a M +-, 9分∵M 是PN 的中点∴))3(,3(222bcc a a c a N +-,10分∵N 在双曲线上,∴1)3(922222222=+-b c a c a c a , 即1)13(1922222=-+-e e e e , 令t =e 2,则t 2-10t +25=0,∴t =5,即e =5.12分22.(1)f ′(x )=3x 2-x +b ,f (x )的图象上有与x 轴平行的切线,则f ′(x )=0有实数解, 2分即方程3x 2-x +b =0有实数解, 由Δ=1-12b ≥0, 4分 得b ≤121. 6分 (2)由题意,x =1是方程3x 2-x +b =0的一个根,设另一根为x 0,则⎪⎪⎩⎪⎪⎨⎧=⨯=+,31,31100b x x ∴⎪⎩⎪⎨⎧-=-=,2,320b x 8分 ∴f (x )=x 3-21x 2-2x +c ,f ′(x )=3x 2-x -2, 10分当x ∈(-1,-32)时,f ′(x )>0; 当x ∈(-32,1)时,f ′(x )<0; x ∈(1,2)时,f ′(x )>0, ∴当x =-32时,f (x )有极大值2722+c ,又f (-1)=21+c ,f (2)=2+c ,即当x ∈[-1,2]时,f (x )的最大值为f (2)=2+c ,∵对x ∈[-1,2]时,f (x )<c 2恒成立, ∴c 2>2+c , 12分 解得c <-1或c >2,故c 的取值范围为(-∞,-1)∪(2,+∞). 14分。
6个解答题综合仿真练(二)1.已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝ ⎛⎭⎪⎫0,π2.(1)若a -b =⎝ ⎛⎭⎪⎫25,0,求t 的值;(2)若t =1,且a·b =1,求tan ⎝⎛⎭⎪⎫2α+π4的值. 解:(1)因为向量a =(2cos α,sin 2α),b =(2sin α,t ), 且a -b =⎝ ⎛⎭⎪⎫25,0,所以cos α-sin α=15,t =sin 2α.由cos α-sin α=15,得(cos α-sin α)2=125,即1-2sin αcos α=125,从而2sin αcos α=2425.所以(cos α+sin α)2=1+2sin αcos α=4925.因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α+sin α=75.所以sin α=α+sin α-α-sin α2=35, 从而t =sin 2α=925.(2)因为t =1,且a·b =1,所以4sin αcos α+sin 2α=1,即4sin αcos α=cos 2α. 因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α≠0,从而tan α=14.所以tan 2α=2tan α1-tan 2α=815. 从而tan ⎝⎛⎭⎪⎫2α+π4=tan 2α+tanπ41-tan 2α·tan π4=815+11-815=237.2.如图,四棱锥P ABCD 中,PD =PC ,底面ABCD 是直角梯形,AB ⊥BC ,AB ∥CD ,CD =2AB ,点M 是CD 的中点.求证:(1)AM ∥平面PBC ; (2)CD ⊥PA .证明:(1)在直角梯形ABCD 中,AB ∥CD ,CD =2AB ,点M 是CD 的中点,故AB ∥CM ,且AB =CM ,所以四边形ABCM 是平行四边形,所以AM ∥BC.又BC ⊂平面PBC ,AM ⊄平面PBC , 所以AM ∥平面PBC .(2)连结PM ,因为PD =PC ,点M 是CD 的中点, 所以CD ⊥PM , 又AB ⊥BC ,所以平行四边形ABCM 是矩形,所以CD ⊥AM , 又PM ⊂平面PAM ,AM ⊂平面PAM ,PM ∩MA =M ,所以CD ⊥平面PAM .又PA ⊂平面PAM ,所以CD ⊥PA .3.在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2,离心率为22,椭圆的右顶点为A . (1)求椭圆的标准方程;(2)过点D (2,-2)作直线PQ 交椭圆于两个不同点P ,Q ,求证:直线AP ,AQ 的斜率之和为定值.解:(1)由已知得c =1,又e =c a =22, 则a =2,b 2=a 2-c 2=1, 所以椭圆的标准方程为x 22+y 2=1.(2)证明:设直线PQ 的方程为y =k (x -2)-2,P (x 1,y 1),Q (x 2,y 2),由⎩⎨⎧y =k x -2-2,x 22+y 2=1,消去y ,整理得(2k 2+1)x 2-(42k 2+42k )x +4k 2+8k +2=0,所以x 1+x 2=42k 2+42k 2k 2+1,x 1x 2=4k 2+8k +22k 2+1, 所以y 1+y 2=k (x 1+x 2)-22k -22=-22-22k2k 2+1, 又A (2,0),所以k AP +k AQ =y 1x 1-2+y 2x 2-2=y 1x 2+y 2x 1-2y 1+y 2x 1x 2-2x 1+x 2+2,由y 1x 2+y 2x 1=[k (x 1-2)- 2 ]x 2+[k (x 2-2)- 2 ]x 1=2kx 1x 2-(2k +2)(x 1+x 2)=-4k2k 2+1,故k AP +k AQ =y 1x 2+y 2x 1-2y 1+y 2x 1x 2-2x 1+x 2+2=-4k 2k 2+1-2×-22-22k 2k 2+14k 2+8k +22k 2+1-2×42k 2+42k2k 2+1+2=1, 所以直线AP ,AQ 的斜率之和为定值1.4.如图所示,某公路AB 一侧有一块空地△OAB ,其中OA =3 km ,OB =3 3 km ,∠AOB =90°.当地政府拟在中间开挖一个人工湖△OMN ,其中M ,N 都在边AB 上(M ,N 不与A ,B 重合,M 在A ,N 之间),且∠MON =30°.(1)若M 在距离A 点2 km 处,求点M ,N 之间的距离;(2)为节省投入资金,人工湖△OMN 的面积要尽可能小.试确定M 的位置,使△OMN 的面积最小,并求出最小面积.解:(1)在△OAB 中,因为OA =3,OB =33,∠AOB =90°,所以∠OAB =60°. 在△OAM 中,由余弦定理得OM 2=AO 2+AM 2-2AO ·AM ·cos A =7, 所以OM =7,所以cos ∠AOM =OA 2+OM 2-AM 22OA ·OM =277,在△OAN 中,sin ∠ONA =sin(∠A +∠AON )=sin(∠AOM +90°)=cos ∠AOM =277.在△OMN 中,由MN sin 30°=OM sin ∠ONA ,得MN =7277×12=74.(2)法一:设AM =x,0<x <3.在△OAM 中,由余弦定理得OM 2=AO 2+AM 2-2AO ·AM ·cos A =x 2-3x +9, 所以OM =x 2-3x +9,所以cos ∠AOM =OA 2+OM 2-AM 22OA ·OM =6-x2x 2-3x +9, 在△OAN 中,sin ∠ONA =sin(∠A +∠AON )=sin(∠AOM +90°)=cos ∠AOM =6-x2x 2-3x +9. 由ON sin ∠OAB =OAsin ∠ONA ,得ON =36-x2x 2-3x +9·32=3 3 x 2-3x +96-x. 所以S △OMN =12OM ·ON ·sin∠MON=12·x 2-3x +9·3 3 x 2-3x +96-x ·12 =33x 2-3x +-x,0<x <3.令6-x =t ,则x =6-t,3<t <6, 则S △OMN=33t 2-9t +4t=334⎝ ⎛⎭⎪⎫t -9+27t ≥334·⎝⎛⎭⎪⎫2t ·27t -9=-3 4.当且仅当t =27t,即t =33,x =6-33时等号成立,S △OMN 的最小值为-3 4.所以M 的位置为距离A 点6-3 3 km 处,可使△OMN 的面积最小,最小面积是-3 4km 2.法二:设∠AOM =θ,0<θ<π3,在△OAM 中,由OM sin ∠OAB =OAsin ∠OMA ,得OM =332sin ()θ+60°.在△OAN 中,由ON sin ∠OAB =OAsin ∠ONA ,得ON =332sin ()θ+90°=332cos θ.所以S △OMN =12OM ·ON ·sin∠MON=12·332sin ()θ+60°·332cos θ·12 =2716sin ()θ+60°cos θ=278sin θcos θ+83cos 2θ=274sin 2θ+43cos 2θ+43=278sin ()2θ+60°+43,0<θ<π3.当2θ+60°=90°,即θ=15°时,S △OMN 的最小值为-34.所以应设计∠AOM =15°,可使△OMN 的面积最小,最小面积是-3 4km 2.5.已知数列{a i }共有m (m ≥3)项,该数列前i 项和为S i ,记r i =2S i -S m (i ≤m ,i ∈N *). (1)当m =10时,若数列{a i }的通项公式为a i =2i +1,求数列{r i }的通项公式; (2)若数列{r i }的通项公式为r i =2i(i ≤m ,i ∈N *), ①求数列{a i }的通项公式;②数列{a i }中是否存在不同的三项按一定次序排列构成等差数列,若存在求出所有的项,若不存在请说明理由.解:(1)因为S i =3+i +2·i =i 2+2i,所以由题意得r i =2S i -S 10=2i 2+4i -120(i ≤10,i ∈N *). (2)①因为r i =2S i -S m =2i,r i +1=2S i +1-S m =2i +1,两式相减得a i +1=2i -1,所以数列{a i }从第2项开始是以1为首项,2为公比的等比数列,即a i =2i -2(2≤i ≤m ,i ∈N *).又2a 1=2+S m ,即a 1=2+(a 2+a 3+…+a m )=2+1-2m -11-2=2m -1+1.所以数列{a i }的通项公式为a i ={ 2m -1+1,i =1,i -2,2≤i ≤m ,i ∈N *.②数列{a i }中任意三项都不能构成等差数列,理由如下:因为数列{a i }从第2项开始是以2为公比的等比数列,所以若存在三项构成等差数列,不妨设为a p ,a q ,a r (2≤p <q <r ≤m ,p ,q ,r ∈N *),则有2a q =a p +a r ,即2·2q -2=2p -2+2r -2,2q -p +1=1+2r -p.因为q -p +1∈N *,r -p ∈N *,所以上式左边为偶数,右边为奇数,此时无解. 所以数列{a i }从第2项至第m 项中不可能存在三项构成等差数列,所以若数列{a i }中存在三项构成等差数列,则只能是a 1和第2项至第m 项中的两项,不妨设为a p ,a q (2≤p <q ≤m ,p ∈N *,q ∈N *).因为0<a p <a q ≤a m <a 1.所以a p ,a q ,a 1若构成等差数列,只能是a q 为等差中项, 故有2·2q -2=2p -2+(2m -1+1),因为左边=2q -1≤2m -1,右边>2m -1,所以该情况下也无解.因此,数列{a i }中任意三项都不能构成等差数列.6.设函数f (x )=2a ln x +(1-a )x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求b 的值;(2)当a ≤12时,求函数f (x )的单调区间;(3)若存在x ≥1使得f (x )<2aa -1成立,求a 的取值范围. 解:(1)f ′(x )=2ax+2(1-a )x -b ,由题设知f ′(1)=2a +2(1-a )-b =0,解得b =2. (2)f (x )的定义域为(0,+∞),由(1)知,f (x )=2a ln x +(1-a )x 2-2x ,f ′(x )=-ax -⎝ ⎛⎭⎪⎫x -a 1-a x.由f ′(x )=0,解得x =1或x =a1-a . 因为a ≤12,所以1-a >0,a1-a ≤1.①当a1-a≤0,即a ≤0时, x ∈(0,1]时,f ′(x )≤0,f (x )单调递减; x ∈[1,+∞)时,f ′(x )≥0,f (x )单调递增. ②当0<a 1-a <1,即0<a <12时,x ∈⎝⎛⎦⎥⎤0,a 1-a 时,f ′(x )≥0,f (x )单调递增; x ∈⎣⎢⎡⎦⎥⎤a 1-a ,1时,f ′(x )≤0,f (x )单调递减;x ∈[1,+∞)时,f ′(x )≥0,f (x )单调递增. ③当a 1-a =1,即a =12时,x ∈(0,+∞)时,f ′(x )≥0,f (x )单调递增.综上所述,当a ≤0时,f (x )的单调递减区间为(0,1],单调递增区间为[1,+∞);当0<a <12时,f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤a 1-a ,1,单调递增区间为⎝ ⎛⎦⎥⎤0,a 1-a ,[1,+∞); 当a =12时,f (x )的单调递增区间为(0,+∞),无单调递减区间.(3)①若a ≤12,由(2)知f (x )在[1,+∞)上单调递增,所以存在x ≥1使得f (x )<2a a -1成立的充要条件为f (1)<2a a -1, 即-a -1<2aa -1,解得-2-1<a <2-1.②若12<a <1,则a 1-a >1,故当x ∈⎝ ⎛⎭⎪⎫1,a 1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎪⎫a 1-a ,+∞时,f ′(x )>0,f (x )在⎝⎛⎭⎪⎫1,a 1-a 上单调递减,在⎝ ⎛⎭⎪⎫a 1-a ,+∞上单调递增.所以存在x ≥1使得f (x )<2a a -1成立的充要条件为f ⎝ ⎛⎭⎪⎫a 1-a <2a a -1.而f ⎝ ⎛⎭⎪⎫a 1-a =2a ln a 1-a +a 21-a +2a a -1>2a a -1,所以不符合题意.③若a >1,因为存在x =1,即f (1)=-a -1<2aa -1成立.所以a >1适合题意. 综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).。
6个解答题综合仿真练(一)1.在三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知b =3,c =2. (1)若2a ·cos C =3,求a 的值;(2)若c b =cos C 1+cos B ,求cos C 的值.解:(1)由余弦定理得,2a ·a 2+b 2-c 22ab=3,将b =3,c =2代入,解得a =2. (2)由正弦定理,得sin C sin B =cos C1+cos B ,即sin C +sin C cos B =sin B cos C ,则sin C =sin B cos C -cos B sin C =sin(B -C ). 因为0<C <B <π,所以0<B -C <π, 所以C =B -C ,则B =2C .由正弦定理可得b sin B =c sin C =b2sin C cos C ,将b =3,c =2代入,解得cos C =34.2.如图,在四棱锥P ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP =OC ,PA ⊥PD .求证:(1)PA ∥平面BDE; (2)平面BDE ⊥平面PCD .证明:(1)连结OE ,因为O 为平行四边形ABCD 对角线的交点,所以O 为AC 的中点.又因为E 为PC 的中点, 所以OE ∥PA .又因为OE ⊂平面BDE ,PA ⊄平面BDE , 所以PA ∥平面BDE .(2)因为OE ∥PA ,PA ⊥PD ,所以OE ⊥PD . 因为OP =OC ,E 为PC 的中点,所以OE ⊥PC .又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PC ∩PD =P ,所以OE ⊥平面PCD . 又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD .3.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为23,C 为椭圆上位于第一象限内的一点.(1)若点C 的坐标为⎝ ⎛⎭⎪⎫2,53,求a ,b 的值; (2)设A 为椭圆的左顶点,B 为椭圆上一点,且AB ―→=12OC ―→,求直线AB 的斜率.解:(1)因为椭圆的离心率为23,所以a 2-b 2a =23,即b 2a 2=59. ①又因为点C ⎝ ⎛⎭⎪⎫2,53在椭圆上,所以4a 2+259b 2=1. ②由①②解得a 2=9,b 2=5. 因为a >b >0,所以a =3,b = 5.(2)法一:由(1)知,b 2a 2=59,所以椭圆方程为x 2a 2+9y 25a2=1,即5x 2+9y 2=5a 2.设直线OC 的方程为x =my (m >0),B (x 1,y 1),C (x 2,y 2). 由{ x =my ,5x 2+9y 2=5a 2消去x ,得5m 2y 2+9y 2=5a 2,所以y 2=5a 25m 2+9.因为y 2>0,所以y 2=5a5m 2+9. 因为AB ―→=12OC ―→,所以AB ∥OC .可设直线AB 的方程为x =my -a .由{ x =my -a ,5x 2+9y 2=5a 2消去x ,得(5m 2+9)y 2-10amy =0,所以y =0或y =10am 5m 2+9,得y 1=10am5m 2+9.因为AB ―→=12OC ―→,所以(x 1+a ,y 1)=⎝ ⎛⎭⎪⎫12x 2,12y 2,于是y 2=2y 1,即5a5m 2+9=20am 5m 2+9(m >0),所以m =35. 所以直线AB 的斜率为1m =533.法二:由(1)可知,椭圆方程为5x 2+9y 2=5a 2, 则A (-a ,0).设B (x 1,y 1),C (x 2,y 2).由AB ―→=12OC ―→,得(x 1+a ,y 1)=⎝ ⎛⎭⎪⎫12x 2,12y 2,所以x 1=12x 2-a ,y 1=12y 2.因为点B ,C 都在椭圆5x 2+9y 2=5a 2上,所以⎩⎨⎧5x 22+9y 22=5a 2,5⎝ ⎛⎭⎪⎫12x 2-a 2+9⎝ ⎛⎭⎪⎫y 222=5a 2.解得x 2=a 4,y 2=5a43,所以直线AB 的斜率k =y 2x 2=533.4.如图,半圆AOB 是某市休闲广场的平面示意图,半径OA 的长为10.管理部门在A ,B 两处各安装一个光源,其相应的光强度分别为4和9.根据光学原理,地面上某点处照度y 与光强度I 成正比,与光源距离x 的平方成反比,即y =kIx2(k 为比例系数).经测量,在弧AB 的中点C 处的照度为130.(C 处的照度为A ,B 两处光源的照度之和)(1)求比例系数k 的值;(2)现在管理部门计划在半圆弧AB 上,照度最小处增设一个光源P ,试问新增光源P 安装在什么位置?解:(1)因为半径OA 的长为10,点C 是弧AB 的中点, 所以OC ⊥AB ,AC =BC =10 2. 所以C 处的照度为y =4k 1022+9k 1022=130,解得比例系数k =2 000.(2)设点P 在半圆弧AB 上,且P 距光源A 为x , 则PA ⊥PB ,由AB =20,得PB =400-x 2(0<x <20). 所以点P 处的照度为y =8 000x 2+18 000400-x 2(0<x <20).所以y ′=-16 000x3+36 000x400-x22 =4 000×9x 4-4400-x22x 3400-x 22=20 000×x 2-160x 2+800x 3400-x 22.由y ′=0,解得x =410. 当0<x <410时,y ′<0,y =8 000x 2+18 000400-x2为减函数; 当410<x <20时,y ′>0,y =8 000x 2+18 000400-x 2为增函数.所以x =410时,y 取得极小值,也是最小值.所以新增光源P 安装在半圆弧AB 上且距A 为410(距B 为415)的位置. 5.已知函数f (x )=(a -3)x -a -2ln x (a ∈R).(1)若函数f (x )在(1,+∞)上为单调增函数,求实数a 的最小值;(2)已知不等式f (x )+3x ≥0对任意x ∈(0,1]都成立,求实数a 的取值范围. 解:(1)法一:因为f ′(x )=a -3-2x(x >0),当a ≤3时,f ′(x )<0,f (x )在(0,+∞)上单调递减; 当a >3时,由f ′(x )<0,得0<x <2a -3,f (x )在⎝ ⎛⎭⎪⎫0,2a -3上单调递减,由f ′(x )>0,得x >2a -3,f (x )在⎝ ⎛⎭⎪⎫2a -3,+∞上单调递增.因为函数f (x )在(1,+∞)上为单调增函数, 所以a >3且2a -3≤1,所以a ≥5, 所以实数a 的最小值为5.法二:因为函数f (x )在(1,+∞)上为单调增函数, 所以f ′(x )=a -3-2x≥0在(1,+∞)上恒成立,所以a ≥3+2x在(1,+∞)上恒成立,又当x >1时,3+2x<5,所以a ≥5,所以实数a 的最小值为5.(2)令g (x )=f (x )+3x =a (x -1)-2ln x ,x ∈(0,1], 所以g ′(x )=a -2x.①当a ≤2时,由于x ∈(0,1],所以2x≥2,所以g ′(x )≤0,g (x )在(0,1]上单调递减,所以g (x )min =g (1)=0,所以对任意x ∈(0,1],g (x )≥g (1)=0, 即对任意x ∈(0,1]不等式f (x )+3x ≥0都成立,所以a ≤2;②当a >2时,由g ′(x )<0,得0<x <2a,g (x )在⎝ ⎛⎭⎪⎫0,2a 上单调递减;由g ′(x )>0,得x >2a,g (x )在⎝ ⎛⎦⎥⎤2a ,1上单调递增.所以,存在2a∈(0,1),使得g ⎝ ⎛⎭⎪⎫2a <g (1)=0,不合题意.综上所述,实数a 的取值范围为(-∞,2]. 6.已知数列{a n }的前n 项和为S n ,且S n =2a n -1. (1)求数列{a n }的通项公式;(2)记集合M ={n |n (n +1)≥λa n ,n ∈N *},若M 中有3个元素,求λ的取值范围; (3)是否存在等差数列{b n },使得a 1b n +a 2b n -1+a 3b n -2+…+a n b 1=2n +1-n -2对一切n ∈N *都成立?若存在,求出b n ;若不存在,说明理由.解:(1)当n =1时,S 1=2a 1-1,得a 1=1. 当n ≥2时,由S n =2a n -1,① 得S n -1=2a n -1-1,② ①-②,得a n =2a n -1,即a na n -1=2(n ≥2). 因此{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.(2)由已知可得λ≤n n +12n -1,令f (n )=n n +12n -1,则f (1)=2,f (2)=3,f (3)=3,f (4)=52,f (5)=158,下面研究f (n )=n n +12n -1的单调性,因为f (n +1)-f (n )=n +1n +22n-n n +12n -1=n +12-n2n,所以,当n ≥3时,f (n +1)-f (n )<0,f (n +1)<f (n ), 即f (n )单调递减. 因为M 中有3个元素, 所以不等式λ≤n n +12n -1解的个数为3,所以2<λ≤52,即λ的取值范围为⎝ ⎛⎦⎥⎤2,52.(3)设存在等差数列{b n }使得条件成立,则当n =1时,有a 1b 1=22-1-2=1,所以b 1=1. 当n =2时,有a 1b 2+a 2b 1=23-2-2=4,所以b 2=2. 所以等差数列{b n }的公差d =1,所以b n =n . 设S =a 1b n +a 2b n -1+a 3b n -2+…+a n b 1,S =1·n +2(n -1)+22(n -2)+…+2n -2·2+2n -1·1,③所以2S =2·n +22(n -1)+23(n -2)+…+2n -1·2+2n·1,④④-③,得S =-n +2+22+23+…+2n -1+2n=-n +21-2n1-2=2n +1-n -2,所以存在等差数列{b n },且b n =n 满足题意.。
6个解答题综合仿真练(二)1.已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝ ⎛⎭⎪⎫0,π2.(1)若a -b =⎝ ⎛⎭⎪⎫25,0,求t 的值;(2)若t =1,且a·b =1,求tan ⎝⎛⎭⎪⎫2α+π4的值. 解:(1)因为向量a =(2cos α,sin 2α),b =(2sin α,t ), 且a -b =⎝ ⎛⎭⎪⎫25,0,所以cos α-sin α=15,t =sin 2α.由cos α-sin α=15,得(cos α-sin α)2=125,即1-2sin αcos α=125,从而2sin αcos α=2425.所以(cos α+sin α)2=1+2sin αcos α=4925.因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α+sin α=75.所以sin α=cos α+sin α-cos α-sin α2=35,从而t =sin 2α=925.(2)因为t =1,且a·b =1,所以4sin αcos α+sin 2α=1,即4sin αcos α=cos 2α. 因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α≠0,从而tan α=14.所以tan 2α=2tan α1-tan 2α=815. 从而tan ⎝⎛⎭⎪⎫2α+π4=tan 2α+tan π41-tan 2α·ta n π4=815+11-815=237.2.如图,四棱锥P ABCD 中,PD =PC ,底面ABCD 是直角梯形,AB ⊥BC ,AB ∥CD ,CD =2AB ,点M 是CD 的中点.求证:(1)AM ∥平面PBC ; (2)CD ⊥PA .证明:(1)在直角梯形ABCD 中,AB ∥CD ,CD =2AB ,点M 是CD 的中点,故AB ∥CM ,且AB =CM ,所以四边形ABCM 是平行四边形,所以AM ∥BC .又BC ⊂平面PBC ,AM ⊄平面PBC , 所以AM ∥平面PBC .(2)连结PM ,因为PD =PC ,点M 是CD 的中点, 所以CD ⊥PM , 又AB ⊥BC ,所以平行四边形ABCM 是矩形,所以CD ⊥AM , 又PM ⊂平面PAM ,AM ⊂平面PAM ,PM ∩MA =M ,所以CD ⊥平面PAM .又PA ⊂平面PAM ,所以CD ⊥PA .3.在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2,离心率为22,椭圆的右顶点为A . (1)求椭圆的标准方程;(2)过点D (2,-2)作直线PQ 交椭圆于两个不同点P ,Q ,求证:直线AP ,AQ 的斜率之和为定值.解:(1)由已知得c =1,又e =c a =22, 则a =2,b 2=a 2-c 2=1, 所以椭圆的标准方程为x 22+y 2=1.(2)证明:设直线PQ 的方程为y =k (x -2)-2,P (x 1,y 1),Q (x 2,y 2),由⎩⎨⎧y =k x -2-2,x 22+y 2=1,消去y ,整理得(2k 2+1)x 2-(42k 2+42k )x +4k 2+8k +2=0,所以x 1+x 2=42k 2+42k 2k 2+1,x 1x 2=4k 2+8k +22k 2+1, 所以y 1+y 2=k (x 1+x 2)-22k -22=-22-22k2k 2+1, 又A (2,0),所以k AP +k AQ =y 1x 1-2+y 2x 2-2=y 1x 2+y 2x 1-2y 1+y 2x 1x 2-2x 1+x 2+2,由y 1x 2+y 2x 1=[k (x 1-2)- 2 ]x 2+[k (x 2-2)- 2 ]x 1=2kx 1x 2-(2k +2)(x 1+x 2)=-4k2k 2+1,故k AP +k AQ =y 1x 2+y 2x 1-2y 1+y 2x 1x 2-2x 1+x 2+2=-4k 2k 2+1-2×-22-22k 2k 2+14k 2+8k +22k 2+1-2×42k 2+42k2k 2+1+2=1, 所以直线AP ,AQ 的斜率之和为定值1.4.如图所示,某公路AB 一侧有一块空地△OAB ,其中OA =3 km ,OB =3 3 km ,∠AOB =90°.当地政府拟在中间开挖一个人工湖△OMN ,其中M ,N 都在边AB 上(M ,N 不与A ,B 重合,M 在A ,N 之间),且∠MON =30°.(1)若M 在距离A 点2 km 处,求点M ,N 之间的距离;(2)为节省投入资金,人工湖△OMN 的面积要尽可能小.试确定M 的位置,使△OMN 的面积最小,并求出最小面积.解:(1)在△OAB 中,因为OA =3,OB =33,∠AOB =90°,所以∠OAB =60°. 在△OAM 中,由余弦定理得OM 2=AO 2+AM 2-2AO ·AM ·cos A =7, 所以OM =7,所以cos ∠AOM =OA 2+OM 2-AM 22OA ·OM =277,在△OAN 中,sin ∠ONA =sin(∠A +∠AON )=sin(∠AOM +90°)=cos ∠AOM =277.在△OMN 中,由MN sin 30°=OM sin ∠ONA ,得MN =7277×12=74.(2)法一:设AM =x,0<x <3.在△OAM 中,由余弦定理得OM 2=AO 2+AM 2-2AO ·AM ·cos A =x 2-3x +9, 所以OM =x 2-3x +9,所以cos ∠AOM =OA 2+OM 2-AM 22OA ·OM =6-x2x 2-3x +9, 在△OAN 中,sin ∠ONA =sin(∠A +∠AON )=sin(∠AOM +90°)=cos ∠AOM =6-x2x 2-3x +9. 由ON sin ∠OAB =OAsin ∠ONA ,得ON =36-x2x 2-3x +9·32=3 3 x 2-3x +96-x. 所以S △OMN =12OM ·ON ·sin∠MON=12·x 2-3x +9·3 3 x 2-3x +96-x ·12 =33x 2-3x +946-x ,0<x <3.令6-x =t ,则x =6-t,3<t <6, 则S △OMN=33t 2-9t +274t=334⎝ ⎛⎭⎪⎫t -9+27t ≥334·⎝⎛⎭⎪⎫2t ·27t -9=272-34.当且仅当t =27t,即t =33,x =6-33时等号成立,S △OMN 的最小值为272-3 4.所以M 的位置为距离A 点6-3 3 km 处,可使△OMN 的面积最小,最小面积是272-34km 2.法二:设∠AOM =θ,0<θ<π3,在△OAM 中,由OM sin ∠OAB =OAsin ∠OMA ,得OM =332sin ()θ+60°.在△OAN 中,由ON sin ∠OAB =OAsin ∠ONA ,得ON =332sin ()θ+90°=332cos θ.所以S △OMN =12OM ·ON ·sin∠MON=12·332sin ()θ+60°·332cos θ·12 =2716sin ()θ+60°cos θ=278sin θcos θ+83cos 2θ=274sin 2θ+43cos 2θ+43=278sin ()2θ+60°+43,0<θ<π3.当2θ+60°=90°,即θ=15°时,S △OMN 的最小值为272-34.所以应设计∠AOM =15°,可使△OMN 的面积最小,最小面积是272-3 4km 2.5.已知数列{a i }共有m (m ≥3)项,该数列前i 项和为S i ,记r i =2S i -S m (i ≤m ,i ∈N *). (1)当m =10时,若数列{a i }的通项公式为a i =2i +1,求数列{r i }的通项公式; (2)若数列{r i }的通项公式为r i =2i (i ≤m ,i ∈N *), ①求数列{a i }的通项公式;②数列{a i }中是否存在不同的三项按一定次序排列构成等差数列,若存在求出所有的项,若不存在请说明理由.解:(1)因为S i =3+2i +12·i =i 2+2i,所以由题意得r i =2S i -S 10=2i 2+4i -120(i ≤10,i ∈N *). (2)①因为r i =2S i -S m =2i,r i +1=2S i +1-S m =2i +1,两式相减得a i +1=2i -1,所以数列{a i }从第2项开始是以1为首项,2为公比的等比数列,即a i =2i -2(2≤i ≤m ,i ∈N *).又2a 1=2+S m ,即a 1=2+(a 2+a 3+…+a m )=2+1-2m -11-2=2m -1+1.所以数列{a i }的通项公式为a i ={ 2m -1+1,i =1,2i -2,2≤i ≤m ,i ∈N *.②数列{a i }中任意三项都不能构成等差数列,理由如下:因为数列{a i }从第2项开始是以2为公比的等比数列,所以若存在三项构成等差数列,不妨设为a p ,a q ,a r (2≤p <q <r ≤m ,p ,q ,r ∈N *),则有2a q =a p +a r ,即2·2q -2=2p -2+2r -2,2q -p +1=1+2r -p.因为q -p +1∈N *,r -p ∈N *,所以上式左边为偶数,右边为奇数,此时无解. 所以数列{a i }从第2项至第m 项中不可能存在三项构成等差数列,所以若数列{a i }中存在三项构成等差数列,则只能是a 1和第2项至第m 项中的两项,不妨设为a p ,a q (2≤p <q ≤m ,p ∈N *,q ∈N *).因为0<a p <a q ≤a m <a 1.所以a p ,a q ,a 1若构成等差数列,只能是a q 为等差中项, 故有2·2q -2=2p -2+(2m -1+1),因为左边=2q -1≤2m -1,右边>2m -1,所以该情况下也无解.因此,数列{a i }中任意三项都不能构成等差数列.6.设函数f (x )=2a ln x +(1-a )x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求b 的值;(2)当a ≤12时,求函数f (x )的单调区间;(3)若存在x ≥1使得f (x )<2aa -1成立,求a 的取值范围. 解:(1)f ′(x )=2ax+2(1-a )x -b ,由题设知f ′(1)=2a +2(1-a )-b =0,解得b =2. (2)f (x )的定义域为(0,+∞),由(1)知,f (x )=2a ln x +(1-a )x 2-2x , f ′(x )=21-ax -1⎝ ⎛⎭⎪⎫x -a 1-a x.由f ′(x )=0,解得x =1或x =a1-a .因为a ≤12,所以1-a >0,a1-a ≤1.①当a1-a≤0,即a ≤0时, x ∈(0,1]时,f ′(x )≤0,f (x )单调递减; x ∈[1,+∞)时,f ′(x )≥0,f (x )单调递增. ②当0<a 1-a <1,即0<a <12时,x ∈⎝⎛⎦⎥⎤0,a 1-a 时,f ′(x )≥0,f (x )单调递增; x ∈⎣⎢⎡⎦⎥⎤a 1-a ,1时,f ′(x )≤0,f (x )单调递减;x ∈[1,+∞)时,f ′(x )≥0,f (x )单调递增. ③当a 1-a =1,即a =12时,x ∈(0,+∞)时,f ′(x )≥0,f (x )单调递增.综上所述,当a ≤0时,f (x )的单调递减区间为(0,1],单调递增区间为[1,+∞);当0<a <12时,f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤a 1-a ,1,单调递增区间为⎝ ⎛⎦⎥⎤0,a 1-a ,[1,+∞); 当a =12时,f (x )的单调递增区间为(0,+∞),无单调递减区间.(3)①若a ≤12,由(2)知f (x )在[1,+∞)上单调递增,所以存在x ≥1使得f (x )<2a a -1成立的充要条件为f (1)<2a a -1, 即-a -1<2aa -1,解得-2-1<a <2-1.②若12<a <1,则a 1-a >1,故当x ∈⎝ ⎛⎭⎪⎫1,a 1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎪⎫a 1-a ,+∞时,f ′(x )>0,f (x )在⎝⎛⎭⎪⎫1,a 1-a 上单调递减,在⎝ ⎛⎭⎪⎫a 1-a ,+∞上单调递增.所以存在x ≥1使得f (x )<2a a -1成立的充要条件为f ⎝ ⎛⎭⎪⎫a 1-a <2a a -1.而f ⎝ ⎛⎭⎪⎫a 1-a =2a ln a 1-a +a 21-a +2a a -1>2a a -1,所以不符合题意.③若a >1,因为存在x =1,即f (1)=-a -1<2aa -1成立.所以a >1适合题意. 综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).。