特殊的平行四边形复习讲义
- 格式:doc
- 大小:347.50 KB
- 文档页数:10
(1)四边______;(2)四个角都是_______;(3)对角线______且互相______、______,并且每条对角线_______一组对角。
8、正方形的判定:(1)一组_______相等的矩形;(2)有一个角是_______的菱形。
9、平行四边形:S=2×(错误!未找到引用源。
×底×高)=底×高; 矩形:S=长×宽; 菱形:1212S l l =⋅(12l l 、是菱形对角线) 正方形:S=边长2 错题重现1.如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点,点M 是AB 边上一动点(不与点A 重合),延长ME 交射线CD 于点N ,连接MD ,AN .(1)求证:四边形AMDN 是平行四边形; (2)填空:①当AM 的值为___ _时,四边形AMDN 是矩形; ②当AM 的值为__ _时,四边形AMDN 是菱形.2.如图,△ABC 是等腰直角三角形,∠BAC =90°,点P ,Q 分别是AB ,AC 上的动点,且满足BP =AQ ,点D 是BC 的中点.(1)求证:△PDQ 是等腰直角三角形;(2)当点P 运动到什么位置时,四边形APDQ 是正方形,并说明理由.知识详解多边形与特殊的四边形考点一:多边形的有关概念(重点)例1:(1)一个多边形的内角和等于它的外角和,那么这个多边形是 边形;(2)一个多边形的每个外角都是300, 则这个多边形是 边形;(3)多边形边数增加一条,则它的内角和增加 度,外角和 。
考点二:平行四边形的性质和判定(重点)例2:在周长为20cm 的平行四边形ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A 、4cmB 、6cmC 、8cmD 、10cm 练习1:(2011浙江)如图,在 ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .H F EDCBA考点三:矩形、菱形的性质与判定(重点)例3:(2012宁夏)如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,DE ⊥AC 于E ,∠EDC ∶∠EDA =1∶2,且AC =10,则DE 的长度是 .练习2:(2011内蒙古)如图,已知矩形ABCD ,一条直线将该矩形 ABCD 分割成两个多边形,若这两个多边形的内角和分别为 M 和 N ,则 M + N 不可能是( )A 、3600B 、5400C 、7200D 、6300练习3:(2008湖北)如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F .(1)求证:EO=FO ;(2)当点O 运动到何处时,四边形AECF 是矩形? 并证明例4:(2012山西)如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( ) A 、 B 、 C 、 D 、练习4:(2012临沂)如图,点A .F 、C .D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB=DE ,∠A=∠D ,AF=DC .(1)求证:四边形BCEF 是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF 为何值时,四边形BCEF 是菱形.例3图例2图练习1图练习2图练习5:下列命题正确的是( )A 、对角线互相平分的四边形是菱形;B 、对角线互相平分且相等的四边形是菱形C 、对角线互相垂直且相等的四边形是菱形;D 、对角线互相垂直且平分的四边形是菱形练习6:(2011江苏)四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC 。
【最新整理,下载后即可编辑】沃根金榜一对一学科教师辅导讲义学生姓名:年级:老师:上课日期:上课时间:上课次数:______年级第______单元课题______ ——————————————————————————————————[ 课前准备]课前检查:作业完成情况:优()良()中()差()复习预习情况:优()良()中()差()——————————————————————————————————[ 学习内容]特殊的平行四边形讲义考试考点综述:特殊平行四边形即矩形、菱形、正方形,它们是初二的必考内容之一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及灵活运用数学思想方法解决问题的能力。
内容主要包括:矩形、菱形、正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。
知识目标掌握矩形、菱形、正方形等概念,掌握矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。
重难点:1.矩形、菱形性质及判定的应用2. 相关知识的综合应用教学过程知识点归纳一.矩形有一角是直角的平行四边形叫做矩形.【强调】矩形(1)是平行四边形;(2)一一个角是直角.矩形的性质性质1矩形的四个角都是直角;性质2 矩形的对角线相等,具有平行四边形的所以性质。
矩形的判定矩形判定方法1:对角线相等的平行四边形是矩形.注意此方法包括两个条件:(1)是一个平行四边形;(2)对角线相等矩形判定方法2:四个角都是直角的四边形是矩形.矩形判断方法3:有一个角是直角的平行四边形是矩形。
例1:若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积为例2:菱形具有而矩形不具有的性质是()A.对角线互相平分; B.四条边都相等; C.对角相等; D.邻角互补例3:已知:如图,□ABCD各角的平分线分别相交于点E,F,G,•H,求证:•四边形EFGH是矩形.二.菱形有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.菱形的性质性质1菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.菱形判定方法2:四边都相等的四边形是菱形.例1已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.例2已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE 是菱形.例3、如图,在中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、BC 分别交于E 、F ,求证:四边形AFCE 是菱形.例4、已知如图,菱形ABCD 中,E 是BC 上一点,AE 、BD 交于M ,若AB=AE,∠EAD=2∠BAE 。
特殊的平行四边形一、矩形的定义、性质及判定和对称性.(1)定义:有一个角是直角的平行四边形叫做矩形.(2)性质:矩形的四个角都是直角,矩形的对角线相等(3)判定:①有一个角是直角的平行四边形叫做矩形;②有三个角是直角的四边形是矩形:③两条对角线相等的平行四边形是矩形.(4)对称性:矩形是轴对称图形也是中心对称图形.【驻足“双基”】1、下列给出的条件中,不能判断一个四边形是矩形的是()A.一组对边平行且相等,有一个内角是直角B.有三个角都是直角C.两条对角线把四边形分成两对全等的等腰三角形D.一组对边平行,另一组对边相等,且两条对角线相等2、一个平行四边形,如果一个内角等于_____时,这个平行四边形变成矩形;如果两条对角线____时,这个平行四边形变成矩形3、四边形ABCD的对角线相交于点O,在下列条件中,不能判别它是矩形的是()A.AB=CD,AD=BC,∠BAD=90°B.AO=CO,BO=CO,AC=BD C.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°4、如图,有一个矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED的DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为()10A.4 B.6 C.8 D.【提升“学力”】5、(淄博)如图,将一矩形形纸片按如图方式折叠,BC、BD为折痕,折叠后AB与EB在同一条直线上,则∠CBD的度数为()A.大于90°B.等于90°C.小于90°D.不能确定C6、如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 边上的动点,PE ⊥AC 于E ,PF ⊥BD 于F , 则PE+PF= .7、在平行四边形ABCD 中,对角线AC 、BD 相交于O ,EF 过点O ,且AF ⊥BC ,求证:四边形AFCE 是矩形【聚焦“中考”】8、(淄博)已知:如图,在△ABC 中,AB=AC ,AD⊥BC,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE⊥AN,垂足为点E ,(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.9、如图,在矩形ABCD 中,点H 在对角线BD 上.HC ⊥BD ,HC 的延长线交∠BAD 的平分线于点E 。
学科教师指导讲义教课内容一、知识回首矩形、菱形、正方形1、菱形的性质:①菱形的四条边都相等.②菱形的对角线相互垂直,而且每条对角线均分一组对角.③拥有平行四边形全部性质.2.菱形的判断:①对角线相互垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形.③四条边都相等的四边形是菱形.3.矩形的性质:①矩形的四个角都是直角.②矩形的对角线相等.③矩形拥有平行四边形的全部性质.4.矩形的判断:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形.③有三个角是直角的四边形是矩形.5.正方形的性质:①正方形的四个角都是直角,四条边都相等.②正方形的两条对角线相等,而且相互垂直均分,每条对角线均分一组对角.6.正方形的判断:①有一个角是直角的柳是正方形.②有一组邻边相等的矩形是正方形.③对角线相等的菱形是正方形.④对角线相互垂直的矩形是正方形.课前练习 : 1 .已知平行四边形ABCD的周长是28cm, CD-AD=2cm,那么 AB=______cm, BC=______cm.2.菱形的两条对角线分别是6cm, 8cm,则菱形的边长为_____,一组对边的距离为_____3.在菱形ABCD中,∠ ADC=120°,则 BD: AC等于 ________4.已知正方形的边长为a,则正方形内随意一点到四边的距离之和为_____.5.矩形 ABCD 被两条对角线分红的四个小三角形的周长之和是86cm,对角线长是13cm,则矩形ABCD 的周长是6.如图,将一张等腰直角三角形纸片沿中位线剪开,能够拼出不一样形状的四边形,请写出此中两个不一样的四边形的名称:.7.如图,有一张面积为 1 的正方形纸片ABCD,M,N分别是AD,BC边的中点,MAD将 C 点折叠至 MN 上,落在 P 点的地点,折痕为BQ,连接PQ,则PQQ8.如图,梯形ABCD中,AD∥BC,AB CD AD1,B60o,直线 MN 为梯形 ABCD 的对称轴, P 为 MN 上一点,那么PC PD 的最小值为BNC.9.如图, OBCD是边长为 1 的正方形,∠ BOx=60°,则点 C 的坐标为 ________10.如图,把正方形 ABCD 沿着对角线 AC 的方向挪动到正方形 A B C D 的地点,它们的重叠部分的面积是正方形ABCD 面积的一半,若AC =2,则正方形挪动的距离AA 是A MDD DA A C CB CNB B第 3题图二、例题解说D CO矩形A B例 1.如图,已知矩形ABCD 的纸片沿对角线BD 折叠,使 C 落在 C’处, BC’边交 AD 于 E, AD=4 , CD=2( 1)求 AE 的长( 2)△ BED 的面积C’A E DB C 稳固练习:1.如图,矩形ABCD中, AD=9, AB=3,将其折叠,使其点 D 与点 B 重合,折痕为EF求 DE和 EF的长。
沃根金榜一对一学科教师辅导讲义学生姓名:年级:老师:上课日期:上课时间:上课次数:______年级第______单元课题______ ——————————————————————————————————[ 课前准备]课前检查:作业完成情况:优()良()中()差()复习预习情况:优()良()中()差()——————————————————————————————————[ 学习内容]特殊的平行四边形讲义考试考点综述:特殊平行四边形即矩形、菱形、正方形,它们是初二的必考内容之一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及灵活运用数学思想方法解决问题的能力。
内容主要包括:矩形、菱形、正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。
知识目标掌握矩形、菱形、正方形等概念,掌握矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。
重难点:1.矩形、菱形性质及判定的应用2. 相关知识的综合应用教学过程知识点归纳性质边对边平行且相等对边平行,四边相等对边平行,四边相等角四个角都是直角对角相等四个角都是直角对角线互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定·有三个角是直角;·是平行四边形且有一个角是直角;·是平行四边形且两条对角线相等.·四边相等的四边形;·是平行四边形且有一组邻边相等;·是平行四边形且两条对角线互相垂直。
·是矩形,且有一组邻边相等;·是菱形,且有一个角是直角。
对称性既是轴对称图形,又是中心对称图形矩形,菱形和正方形之间的联系如下表所示:一.矩形矩形定义:有一角是直角的平行四边形叫做矩形.【强调】矩形(1)是平行四边形;(2)一一个角是直角.矩形的性质性质1矩形的四个角都是直角;性质2 矩形的对角线相等,具有平行四边形的所以性质。
矩形的判定矩形判定方法1:对角线相等的平行四边形是矩形.注意此方法包括两个条件:(1)是一个平行四边形;(2)对角线相等矩形判定方法2:四个角都是直角的四边形是矩形.矩形判断方法3:有一个角是直角的平行四边形是矩形。
例1:若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积为例2:菱形具有而矩形不具有的性质是()A.对角线互相平分; B.四条边都相等; C.对角相等; D.邻角互补例3:已知:如图,□ABCD各角的平分线分别相交于点E,F,G,•H,求证:•四边形EFGH是矩形.二.菱形菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.菱形的性质性质1菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.菱形判定方法2:四边都相等的四边形是菱形.例1已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.例2已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.例3、如图,在 ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、BC 分别交于E 、F ,求证:四边形AFCE 是菱形.例4、已知如图,菱形ABCD 中,E 是BC 上一点,AE 、BD 交于M ,若AB=AE,∠EAD=2∠BAE 。
求证:AM=BE 。
例6、如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;ABCDEFO12BM ADCE(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.三.正方形正方形是在平行四边形的前提下定义的,它包含两层意思:①有一组邻边相等的平行四边形(菱形)②有一个角是直角的平行四边形(矩形)正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.正方形定义:有一组邻边相等.....叫做正方形........的平行四边形......并且有一个角是直角正方形是中心对称图形,对称中心是对角线的交点,正方形又是轴对称正方形的判定方法:•(1)有一个角是直角的菱形是正方形;•(2)有一组邻边相等的矩形是正方形.•注意:1、正方形概念的三个要点:•(1)是平行四边形;•(2)有一个角是直角;•(3)有一组邻边相等.2、要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.例1 已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.求证:OE=OF.例2 已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.求证:四边形PQMN是正方形.例3、如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E 在射线BC上,且PE=PB.(1)求证:① PE=PD;② PE⊥PD;(2)设AP=x, △PBE的面积为y.① 求出y关于x的关系式,并写出x的取值范围;② 当x取何值时,y取得最大值,并求出这个最大值.实战演练:1.对角线互相垂直平分的四边形是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形2.顺次连接菱形各边中点所得的四边形一定是()A.等腰梯形B.正方形C.平行四边形D.矩形3.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形 C .当∠ABC=900时,它是矩形 D .当AC=BD时,它是正方形4.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平行四边形B .如果90BAC ∠=o,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形 D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形5.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于( ) A .B . C .D .86.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( ) A .5cmB .8cmC .9cmD .10cm7.在右图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点), 若方格纸中每个最小正方形的边长为1,则该菱形的面积为D C B AA FCD B EBFCEDAADABCDABCD8.如图,在矩形ABCD 中,对角线AC BD ,交于点O ,已知120 2.5AOD AB ∠==o,,则AC 的长为 .9.边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 .10.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可).11.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 . 12.如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,.(1)求证:BOE DOF △≌△;(2)当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形证明你的结论.应用探究:1.如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若22.5DBC ∠=°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( ) A .6个B .5个C .4个D .3个ADC B OB C D APFDOC B EA第12题图2.如图,正方形ABCD 的面积为1,M 是AB 的中点,则图中阴影部分的面积是( ) A .310B .13C .25D .493.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )A .B .C .D .4.红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为_______2.cm5.如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米.6.如图:矩形纸片ABCD ,AB =2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .AB CPDEA BEC '22.5oDACBMBA 1 D C2 112B AD C BAC 1 2D 12BAD CB F CH DE本次课作业:家长签字:1、预习:2、写:教学主管签字:。