C D
2.已知空间任一点O 和不共线的三点A,B,C, 下列能得到P,A,B,C四点共面的是(B )A.OP=OA+OB+OC
解 析 :若点P,A,B,C 共面,设OP=xOA+yOB+zOC,则x+y+z=1, 满足条件的只有B, 故选B.
D. 以上都不对
(2)∵M 是AA的中点,
又N 是BC的中点,
回顾一下本节课学习了哪些新知识呢?1.空间向量的概念2.空间向量的运算律3.共线向量和共面向量
小结:
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
的充要条件是
如图,0是直线1上一点,在直线1上取非零向量a, 则对于直线1上任意一 点P, 由数乘向量的定义及向量共线的充要条件可知,存在实数λ,使得
直线的方向向量
OP=λa. 把与向量a 平行的非零向量称为直线l的方向向量.
共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线1平行或重合,那么称向量α平行于直线l.如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.a0 Aa 1aa如果两个向量a,b 不共线,那么向量p 与 向 量a,b 共面的充要条件是存在唯一的有序实数对(x,y), 使 P=xa+yb.
证明:设 DA=a,DC=b.则DB=DC+CB=b+a,
10.如图,在平行六面体ABCD-A₁B₁CD₁中,设AA M,N,P 分别是AA,BC,C₁D₁的中点,试用a,b,c
=a,AB=b,AD=c,表示以下向量: