二次根式知识解说
- 格式:ppt
- 大小:612.50 KB
- 文档页数:15
一、二次根式的概念及性质:① 二次根式的概念:一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a称为被开方数。
例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。
② 二次根式的性质:当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。
③ 最简二次根式:1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。
④ 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
⑤ 商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。
注:对于商的算术平方根,最后结果一定要进行分母有理化。
⑥ 分母有理化:化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。
⑦ 化成最简二次根式的一般方法:1、将被开方数中能开得尽方的因数或因式进行开方;2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。
判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:(1)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。
⑧ 二次根式的加减:(1)先把每个二次根式都化成最简二次根式;(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并,即二、知识点讲解:1、二次根式的概念及有意义的条件:例题1、下列式子中,是二次根式的有 ( B )例题2、使式子 √(m-2) 有意义的最小整数 m 的值是 2 。
二次根式知识点总结1. 二次根式的定义和性质二次根式是指具有形式√a的数,其中a是非负实数。
以下是二次根式的一些重要性质:•非负性:对于任何非负实数a,√a也是一个非负实数。
•平方性:对于任何非负实数a,(√a)2=a。
•唯一性:每个非负实数都有唯一的平方根。
2. 化简和计算二次根式化简和计算二次根式是处理二次根式的基本操作。
下面是一些常见的规则和方法:•合并同类项:如果两个或多个二次根式具有相同的根指数并且根下的值相同,则可以合并它们。
•分解因子:对于某些特定的二次根式,可以将其分解为更简单的形式,例如√ab=√a⋅√b。
•有理化分母:当一个二次根式出现在分母中时,可以通过乘以适当的形式来有理化分母,例如√2=√22。
•乘法和除法规则:二次根式可以与其他数进行乘法和除法运算,例如√a⋅√b=√ab和√a√b =√a√b⋅√b√b=√abb。
3. 二次根式的性质和定理二次根式具有许多重要的性质和定理,这些性质和定理可以帮助我们解决各种问题。
以下是一些常见的性质和定理:•无理数性质:对于大多数非完全平方数a,√a是一个无理数。
•比较大小:对于两个非负实数a和b,如果a<b,那么√a<√b。
•平方根的加法公式:√a+√b不能化简为一个更简单的形式,除非a和b 存在某种特殊关系(例如互为有理数倍)。
•平方根的乘法公式:√a⋅√b=√ab,其中a和b可以是任意非负实数。
4. 解二次根式的方程和不等式解二次根式的方程和不等式是应用二次根式知识的重要方面。
以下是一些解决这类问题的方法:•方程:将方程两边进行平方操作,然后化简为二次根式形式,最后解得方程的解。
•不等式:根据二次根式的性质,可以比较大小或使用其他方法来解决不等式。
5. 与其他数学概念的关系二次根式与其他数学概念之间存在着密切的关系。
以下是一些与二次根式相关的重要概念:•平方数:对于某个非负实数a,如果存在另一个非负实数b,使得b2=a,那么a就是一个平方数。
二次根式知识点归纳二次根式是数学中的一个重要概念,也是我们在中学阶段学习的数学知识之一、学好二次根式的知识,不仅可以提高我们的数学实力,还能够帮助我们更好地理解和应用数学。
下面是对二次根式的知识点进行归纳总结。
一、二次根式的定义与性质1.二次根式的定义:如果一个数x的平方等于一个有理数a,那么称x是a的二次根,记作√a=x。
其中,a是被开方数,x是二次根。
2.二次根式的性质:二次根式具有以下基本性质:-非负性:对于所有的a≥0,√a≥0。
-唯一性:对于任意一个正数a,二次根√a是唯一确定的。
-传递性:对于任意的a≥0和b≥0,如果√a=√b,那么a=b。
-加减性:对于任意的a≥0和b≥0,有√a±√b=√(a±b)。
-乘除性:对于任意的a≥0和b≥0,有√(a×b)=√a×√b,√(a/b)=√a/√b(其中,b不为零)。
二、二次根式的化简1.因式分解法:将二次根式的被开方数进行因式分解,然后利用乘除性质化简。
2.合并同类项法:将二次根式中相同的根号项合并,然后根据加减性质化简。
三、二次根式的比较大小1.当被开方数相同时,二次根式相等,即√a=√b,当且仅当a=b。
2.当被开方数不同时,可以通过平方的方式来比较大小。
即对于a≥b≥0,有√a≥√b。
四、二次根式的运算1.加减运算:对于任意的a≥0和b≥0,可以进行二次根式的加减运算。
-加法:√a+√b=√(a+b)。
-减法:√a-√b=√(a-b)(需要满足a≥b)。
2.乘法运算:对于任意的a≥0和b≥0,可以进行二次根式的乘法运算。
-乘法:√a×√b=√(a×b)。
3.除法运算:对于任意的a≥0和b>0,可以进行二次根式的除法运算。
-除法:√a/√b=√(a/b)(需要满足b≠0)。
五、二次根式的应用二次根式在实际问题中的应用非常广泛1.几何问题:二次根式可以用来表示长度、面积、体积等物理量,例如计算一个正方形的对角线长度、一个圆的半径等等。
二次根式知识点二次根式在数学中是一个十分重要的概念,涉及到数学中的代数、方程、函数等多个知识领域。
本文将介绍二次根式的定义、性质、运算法则以及实际问题中的应用,并且通过实例帮助读者更好地理解和应用二次根式。
一、二次根式的定义在数学中,二次根式是指形如$\\sqrt{a}$的表达式,其中a是一个实数且$a\\geq0$。
该表达式表示的是一个非负实数,使得它的平方等于a,即$(\\sqrt{a})^2 = a$。
二、二次根式的性质1.二次根式的值一定是非负实数,即$\\sqrt{a} \\geq 0$。
2.如果$a \\geq 0$且$b \\geq 0$,则$\\sqrt{a} \\cdot \\sqrt{b} =\\sqrt{ab}$。
3.如果$a \\geq 0$且$b \\geq 0$,则$\\sqrt{a} + \\sqrt{b}$不一定等于$\\sqrt{a+b}$。
三、二次根式的运算法则1.加减法:二次根式只有在被加减数相同时才能相加或相减,即$\\sqrt{a} \\pm \\sqrt{a} = 2\\sqrt{a}$。
2.乘法:二次根式的乘法可按照分配律进行展开,即$(\\sqrt{a} \\pm\\sqrt{b})(\\sqrt{a} \\pm \\sqrt{b}) = a + 2\\sqrt{ab} + b$。
3.除法:二次根式的除法需要进行有理化处理,即将分母中的二次根式消去。
四、二次根式的应用二次根式常常在实际问题中得到应用,比如在几何中计算斜边长、梯形面积等问题中经常会出现。
下面通过一个实际问题来展示二次根式的应用:例题:一个正方形的对角线长为$\\sqrt{2}$米,求正方形的边长。
解答:设正方形的边长为x米,则根据勾股定理可得:x2+x2=2。
化简得到2x2=2,解方程得x=1。
因此,正方形的边长为1米。
结语通过本文的介绍,相信读者对二次根式有了更深入的了解。
二次根式作为数学中的一个基础知识点,在代数、几何、概率等各个领域都有着重要的应用价值。
二次根式的知识点归纳
二次根式的知识点主要有以下几点:
1、定义:二次根式是一种特殊的多项式,其定义为ax²+bx+c=0,其中a≠0。
2、判断:二次根式可以通过相应的判断条件来判断是否有解,即判断b²-4ac的值是否大于等于0,若大于等于0,则表明此二次方程有解;若小于0,则表明此二次方程无解。
3、解法:当判断出此二次方程有解时,可以使用相应的解法来求解,如利用一元二次方程的判别式求解法、利用一元二次方程的因式分解法等。
4、应用:二次根式在数学中有广泛的应用,如根据二次函数的性质,可以用来求解相关问题;又如可以利用它来求解最佳拟合方程等。
二次根式的知识点的总结二次根式是高中数学中重要的一个内容,也是学习代数的基础。
在学习二次根式时,需要了解其定义、性质、运算法则等知识点。
下面是对二次根式知识的总结:一、二次根式的定义和性质:1. 定义:对于非负实数a,b,如果存在非负实数x使得$x^2=a$,则称x为a的平方根,记作$x=\sqrt{a}$。
简记作$\sqrt{a}$,a称为二次根式的被开方数。
2.性质:(1)非负实数的平方根是唯一的。
即对于非负实数a,其平方根也是非负实数且唯一(2)非负实数a的平方根如果记作±$\sqrt{a}$,则规定非负实数a的平方根仅指称为非负实数$\sqrt{a}$。
(3)非负实数a的平方根的平方等于a。
即$(\sqrt{a})^2=a$。
(4)非负实数的平方根存在且非负。
即对于非负实数a,总是存在非负实数x使得$x^2=a$,且x唯一(5)相等的二次根式具有相等的平方根。
即如果$\sqrt{a}=\sqrt{b}$,则有a=b。
(6)平方根的运算:$\sqrt{ab}=\sqrt{a}\sqrt{b}$、$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。
二、二次根式的化简:1. 因式分解法:将二次根式的被开方数进行因式分解,然后利用性质$\sqrt{ab}=\sqrt{a}\sqrt{b}$和$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$对二次根式进行简化,最后利用性质$\sqrt{a^2}=,a,$化简。
2. 合并同类项法:对于同根号的二次根式,可以合并同类项进行简化。
如$\sqrt{2}+\sqrt{3}+\sqrt{2}=\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{2}+\sqrt{3}$。
3.有理化法:对于含有分母的二次根式,可以通过有理化的方法将其化简为一个无理数。
三、二次根式的比大小:1. 利用性质$\sqrt{a^2}=,a,$,我们可以对二次根式的大小进行比较。
专题01二次根式的概念和性质(知识点考点串编)【思维导图】例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是()个A .3个B .4个C .5个D .6个练习2.(2021·河北·结果相同的是( ).◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
A .321-+B .321+-C .321++D .321--练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a-C .32a-D .23a -例.(2021·n 的最小值是( )A .2B .4C .6D .8练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B.1C .7D .±1练习3.(2021·全国·n 的值是( )A .B .1C .2D .5例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C.x >2D .x ≠2练习1.(2022·全国·九年级专题练习)函数y =x 的取值范围是( )A .x ≥2B .x >﹣2C .x ≤2D .x <2练习2.(2022·全国·九年级专题练习)函数y 中自变量x 的取值范围是()◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
二次根式数学知识点(8篇)二次根式数学知识点1知识点一:二次根式的概念形如a(a0)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是a为二次根式的前提条件,如5,(x2+1),(x-1)(x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。
知识点三:二次根式a(a0)的非负性a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即0(a0)。
注:因为二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。
知识点四:二次根式(a)的性质(a)2=a(a0)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若a0,则a=(a)2,如:2=(2)2,1/2=(1/2)2.知识点五:二次根式的性质a2=|a|文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a(a若a是负数,则等于a的相反数-a,即a2=|a|=-a(a﹤0);2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;3、化简a2时,先将它化成|a|,再根据绝对值的意义来进行化简。
二次根式知识点1. 二次根式的定义二次根式指的是形如√a的数,其中a为非负实数。
a被称为被开方数,√a被称为二次根式,也可以叫做平方根。
2. 二次根式的基本性质① 非负性:二次根式必须为非负实数。
② 同根式的加减法:同一指数的二次根式可以进行加减法运算,结果等于指数不变时各自运算后相加减。
③ 同根式的乘法:同一指数的二次根式可以进行乘法运算,结果等于指数不变时各自运算后相乘。
④ 同底数的指数运算:同一被开方数的不同指数的二次根式,可以进行指数运算,结果等于底数相同时指数相加或相减后的二次根式。
⑤ 合并同类项:不同被开方数的二次根式不能进行加减运算,必须化为同一被开方数才能进行操作。
3. 二次根式的化简① 化简含有平方数的二次根式例如:√36 = √(6²)= 6② 化简含有分数的二次根式例如:√(1/4)= 1/√4= 1/2③ 化简含有根号的二次根式例如:√(128)= √(2*64)= 8√2④ 去除被开方数中的平方因子例如:√(80)= √(16*5)= 4√54. 二次根式的应用由于二次根式代表着平方根,所以在一些实际问题中,经常出现二次根式的应用。
例1:计算正方形对角线的长度设正方形边长为a,则对角线长度d = √(a²+a²)=a√2例2:炮弹落地问题假设炮弹以初速度v以角度α斜抛,落地时的水平距离为x,求炮弹所需的最小速度v。
根据物理学上的知识,可以得到:x = v²sin2α/g其中g为重力加速度,有g = 9.8m/s²,化简可得:v = √(gx/ sin2α)在实际问题中,二次根式的应用还有很多,比如在建筑设计中计算楼梯踏步和踏板的长度,计算圆周率的近似值等等。
5. 二次根式的拓展除了√a这种形式的二次根式外,还可以拓展为含有多个根号的形式。
例如:√(a±√b)化简时,可以拆分成两个二次根式相加或相减的形式:当加号为正号时,可拆分为:√(a+√b)+√(a-√b)当减号为负号时,可拆分为:√(a-√b)-√(a+√b)在拓展的形式中,二次根式的化简变得更为复杂,需要运用其他方法进行化简。
二次根式知识点总结1. 二次根式的定义二次根式是指形如√a的数式,其中a是一个非负实数。
在二次根式中,a被称为被开方数,√a被称为二次根号。
二次根式可以是完全平方数,也可以是非完全平方数。
2. 二次根式的化简化简二次根式的目的是将其写成最简形式。
对于完全平方数,化简的过程比较简单,只需要将√a的值直接提取出来即可。
而对于非完全平方数,需要用到分解质因数的方法来化简。
比如对于√18,可以分解质因数得到√(2×3×3),然后将成对的质因数提取出来得到3√2。
3. 二次根式的运算(1)二次根式的加减法二次根式的加减法遵循着类似项相加的原则。
即对于同一次幂的二次根式,可以进行加减运算。
比如√8 + √32,可以将8和32分解质因数得到√(2×2×2) + √(2×2×2×2×2),然后将相同的项加在一起得到2√2 + 4√2,再进行合并得到6√2。
(2)二次根式的乘法二次根式的乘法用到了平方根的性质,即√a×√b=√(a×b)。
对于二次根式的乘法,可以直接将被开方数相乘再提取出来即可。
比如(√5 + √3)×(√5 - √3),可以将其展开得到√5×√5 - √5×√3 +√3×√5 - √3×√3,再合并得到5 - 3=2。
(3)二次根式的除法二次根式的除法也用到了平方根的性质,即√a/√b=√(a/b)。
对于二次根式的除法,可以直接将被开方数相除再提取出来即可。
比如(√12 + √3)/(√3),可以将其展开得到√12/√3 + √3/√3,再化简得到2√3 + 1。
4. 二次根式的化简与支配数在二次根式的运算中,有时候会出现需要化简的情况。
这就需要用到支配数的概念。
支配数是指对于一个二次根式,可以找到一个更小的数,使得原二次根式是这个数的倍数。
比如对于√75,可以找到√25×3,这里25就是√75的支配数。