2015新版华师大九年级数学上期末考试试卷
- 格式:doc
- 大小:231.00 KB
- 文档页数:2
华师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.计算:2=( )A .3B .9C .6D .2.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <且0k ≠ B .0k ≠ C .1k < D .1k > 3.下列命题中,属于真命题的是( )A .所有的等腰三角形都相似B .所有的直角三角形都相似C .所有的等边三角形都相似D .所有的矩形都相似4.正三角形的边长为4,AD 是BC 边上的高,则BD 是( ).A .1B .2C .3D .45.下列根式中,与 )A B C D 6.已知x=1是方程x 2+bx+b-3=0的一个根,那么此方程的另一个根为 ( ) A .-2 B .-1 C .1 D .27.有四组线段,每组线段长度如下:①2,1②3,2,6,4;③12,1④1,3,5,7,能组成比例的有( )A .1组B .2组C .3组D .4组8.如图,已知Rt △ABC 中,斜边BC 上的高AD=3,cosB=35, 则AC 的长为( )A .3B .3.5C .4.8D .59.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( ).A .1B .2C .-2D .-110.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为2∶1,把△EFO缩小,则点E的对应点E′的坐标是A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)二、填空题11.等腰三角形的两边长分别是3和7,则其周长为___.12.若点M(1-m,2+m)在第四象限内,则m的取值范围是_______.13.如图,点G是ABC的重心,AG的延长线交BC于点D,过点G作GE//BC交AC于=,那么线段GE的长为______.点E,如果BC614.已知关于x的方程x2+kx+3=0的一个根为x=3,则方程的另一个根为__________.15.电流通过导线时会产生热量,设电流是I(安培),导线电阻为R(欧姆),t秒产生的热量为Q(焦),根据物理公式Q=I²Rt,如果导线的电阻为5欧姆,2秒时间导线产生60焦热量,则电流I的值是_______安培.16.已知x= +2,代数x2﹣4x+11的值为________.17.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为_______.18.如图,在Rt ABC中,∠ABC=90°,∠C=60°,AC=10,将BC向BA方向翻折过去,使点C落在BA上的点C',折痕为BE,则EC的长度是_______.19.已知直角三角形的两条边的长分别是6和8,则斜边上的高为_________.20.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2017个正方形的面积为__________。
华师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案,每小题3分) 1.下列等式正确的是( )A .2=3B ﹣3CD .2=﹣3 2.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1B .m≤1C .m >1D .m <13.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1B .()1,1-C .()1,1--D .()1,1-4.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,连接DE ,若S △ADE =1,则四边形DBCE 的面积为( )A .1B .2C .3D .45.如图,在Rt ABC ∆中,90C ∠=︒,4BC =,3AC =,则sin (B = )A .35B .45C .37D .346.如图,A ,B 两个转盘分别被平均分成三个,四个扇形,分别转动A 盘,B 盘各一次,转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在区域为止,两个转盘停止后指针所指区域内的数字之和小于6的概率是( )A .12B .13C .14D .167.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+38.如图,已知零件的外径25mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB,若OC:AC=1:3,量的CD=10mm,则零件的厚度为()A.2mm B.2.5mm C.3mm D.3.5mm9.如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B且OA=OB,则c的值为()A.0 B.1 C.2 D.310.在平面直角坐标系中,A(0,3),B(4,0),把△AOB绕点O旋转,使点A,B分别落在点A′,B′处,若A′B′∥x轴,点B′在第一象限,则点A的对应点A′的坐标为()A.(912,55-)B.(129,55-)C.(1612,55-)D.(1216,55-)二、填空题11.计算_____.12.在一个不透明的口袋里有标号1,2,3,4,5的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球,若从袋中不放回地摸两次,则两球标号数字是一奇一偶的概率是_____.13.如图,AB是一垂直于水平面的建筑物,BC是建筑物底端的一个平台,斜坡CD的坡度(或坡比)为i =1:0.75,坡长为10米,DE 为地平面(A ,B ,C ,D ,E 均在同一平面内),则平台距地面的高度为_____.14.如图,直线334y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线233384y x x =-++经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为_____.15.如图,矩形ABCD 中,AD =5,AB =7,正方形MBND ′的顶点M ,N 分别在矩形的边AB ,BC 上,点E 为DC 上一个动点,当点D 与点D ′关于AE 对称时,DE 的长为_____.三、解答题 16.计算:(1 (2)-17.关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.18.如图1,点O是矩形ABCD的中心(对角线的交点),AB=4cm,AD=6cm.点M是边AB上的一动点,过点O作ON⊥OM,交BC于点N,设AM=x,ON=y,今天我们将根据学习函数的经验,研究函数值y随自变量x的变化而变化的规律.下面是某同学做的一部分研究结果,请你一起参与解答:(1)自变量x的取值范围是______;(2)通过计算,得到了x与y的几组值,如下表:请你补全表格(说明:补全表格时相关数值保留两位小数,≈6.09)(3)在如图2所示的平面直角坐标系中,画出该函数的大致图象.(4)根据图象,请写出该函数的一条性质.19.有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?20.《九章算术》是我国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系,其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”请你计算:出南门多少步而见木(注:1里=300步)?21.如图,某小区楼房附近有一个斜坡CD=6m,坡角到楼房的距离CB=8m,在坡顶D点处观察点A的仰角为54°,已知坡角为30°,求楼房AB的高度.(结果精确到0.1m,参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38 1.73)22.如图1,E,F分别是正方形ABCD的边AD和对角线AC的中点,(1)CFDE的值为;(2)①将△AEF绕点A旋转,(1)中的结论是否仍然成立?如果成立,请仅就图2的情况进行证明;如果不成立,请说明理由;②如果AB=2,当以点E,F,C在一条直线上时,请直接写出CF的值.23.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴的另一交点为点B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)M为抛物线的对称轴x=﹣1上一点,设点M到点A的距离与到点C的距离之和为t,求t的最小值;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,请直接写出使△BPC为直角三角形的点P的坐标.24.如图,在矩形ABCD中,AB=20,点E是BC边上的一点,将△ABE沿着AE折叠,点B刚好落在CD边上点G处;点F在DG上,将△ADF沿着AF折叠,点D刚好落在AG上点H处,此时S△GFH:S△AFH=2:3.(1)求证:△EGC∽△GFH;(2)求AD的长;(3)求HF的值.参考答案1.A【详解】分析:根据二次根式的性质把各个二次根式化简,判断即可.详解:2=3,A正确;,B错误;C错误;(2=3,D错误;故选A.是解题的关键.2.D【详解】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.详解:∵方程2x2x m0-+=有两个不相同的实数根,∴()2240=-->,m解得:m<1.故选D.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.A【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【详解】∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【点睛】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易. 4.C 【分析】先由中位线定理得出DE ∥BC ,DE =12BC ,从而判定△ADE ∽△ABC 并得出相似比,进而得出△ADE 与△ABC 的面积比,然后结合S △ADE =1,可得答案. 【详解】解:在△ABC 中,D ,E 分别是AB ,AC 的中点, ∴DE //BC ,DE =12BC , ∴△ADE ∽△ABC ,DE BC=12, ∴S △ADE :S △ABC =1:4, ∵S △ADE =1, ∴S △ABC =4,∴四边形DBCE 的面积为3. 故选:C . 【点睛】本题考查了三角形的中位线定理和相似三角形的判定与性质,数形结合并熟练掌握相关性质及定理是解题的关键. 5.A 【分析】先利用勾股定理求出斜边AB ,再求出sinB 即可. 【详解】∵在Rt ΔABC 中,C 90∠=︒,BC 4=,AC 3=,∴5AB =, ∴3sin 5AC B AB ==. 故答案为A. 【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.6.A【分析】先画树状图展示所有12种等可能的结果数,再找出两个转盘停止后指针所指区域内的数字之和小于6的结果数,然后根据概率公式计算即可.【详解】解:画树状图为:共有12种等可能的结果数,两个转盘停止后指针所指区域内的数字之和小于6的结果数为6,∴两个转盘停止后指针所指区域内的数字之和小于6的概率=61.=122故选:A.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7.A【详解】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=-5(x+1)2-1.故选A.点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.8.B【分析】根据题意易证△AOB∽△COD,且相似比为1:2,再由CD=10mm,即可求出AB=20mm,最后根据图形即可求出零件厚度.【详解】解:∵两条尺长AC 和BD 相等,OC =OD , ∴OA =OB , ∵OC :AC =1:3, ∴OC :OA =1:2,∴OD :OB =OC :OA =1:2, ∵∠COD =∠AOB , ∴△AOB ∽△COD ,∴CD :AB =OC :OA =1:2, ∵CD =10mm , ∴AB =20mm ,∴零件厚度为()25202 2.5mm -÷= , 故选:B . 【点睛】本题考查相似三角形的实际应用,根据题意证明△AOB ∽△COD ,且求出其相似比是解答本题的关键. 9.D 【分析】依题知,抛物线y =﹣x 2+2x +c 与x 轴正半轴,y 轴正半轴分别交于点A ,B ;可得B 点坐标,又OB=OA ,可得A 点坐标,然后将A 的坐标代入函数解析式即可; 【详解】依题:抛物线y =﹣x 2+2x +c 与x 轴正半轴,y 轴正半轴分别交于点A ,B , ∴ B (0,c ), ∴ OB =c , ∵ OA =OB , ∴ OA =c , ∴ A (c ,0),∴﹣c 2+2c +c =0,解得c =3或c =0(舍去), 故选:D 【点睛】本题考查二次函数待定系数法,重点在理解和熟练求解过程的转化. 10.A 【分析】设A ′B ′交y 轴于T ′,利用勾股定理可求出A ′B ′的长度,再利用三角形面积公式求出OT 的长度,最后再利用勾股定理即可求出A ′T ′的长度,即可求出A ′点坐标 . 【详解】解:如图,设A ′B ′交y 轴于T ′.∵A (0,3),B (4,0), ∴OA =3,OB =4,∵∠A ′OB ′=90°,OT'⊥A ′B ′,OA =OA ′=3,OB =OB ′=4,∴AB =A ′B ′, ∵A OB S''=12•OA ′•OB ′=12•A ′B ′•OT ′,∴OT ′=125,∴A ′T ′95=,∴A ′(-95,125).故选:A . 【点睛】本题考查坐标与图形的变化-旋转,熟练利用勾股定理解直角三角形以及三角形的面积公式是解答本题的关键.11. 【详解】详解:原式故答案为点睛:此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.3 5【分析】列表得出所有等可能的情况数,找出两球标号数字是一奇一偶的情况数,再根据概率公式即可得出答案.【详解】解:列表如下:所有等可能的情况有20种,其中两球标号数字是一奇一偶的情况有12种,则两球标号数字是一奇一偶的概率是1220=35.故答案为:35.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.13.8米 【分析】延长AB 交ED 的延长线于F ,过C 作CG ⊥EF 于G ,由斜坡的坡度i =1:0.75易得出43CG DG =,设CG =4x 米,则DG =3x 米,在Rt △CDG 中利用勾股定理,可求出x ,即可知CG 的长度,即得到答案. 【详解】解:如图,延长AB 交ED 的延长线于F ,过C 作CG ⊥EF 于G , 则BF =CG , 在Rt △CDG 中, i =CG DG=1:0.75=43,CD =10米,设CG =4x 米,则DG =3x 米, 由勾股定理得:222(4)(3)10x x +=, 解得:1122x x ==-,(舍), ∴CG =8(米),DG =6(米),∴BF =CG =8米,即平台距地面的高度为8米,故答案为:8米. 【点睛】本题考查勾股定理的应用,理解题干中斜坡的坡度i 的意义再结合勾股定理解三角形是解答本题的关键.14.32【分析】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【详解】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,233384m m -++),点M 的坐标是(m ,334m -+),∴EM =233384m m -++﹣(334m -+)=23382m m -+=38-(m 2﹣4m )=38-(m ﹣2)2+32,∴当m =2时,EM 有最大值为32,故答案为32.【点睛】本题考查了二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 15.52或53【分析】连接ED ′,AD ′,延长MD ′交DC 于点P .根据题意设MD ′=ND ′=BM =x ,则AM =AB -BM =7-x , AD =AD ′=5,在Rt AMD '△中,利用勾股定理可求出x=3或4,即MD ′的长,分类讨论①当MD ′=3时,设ED ′=a ,则AM =7-3=4,D ′P =5-3=2,EP =4-a ,在Rt △EPD ′中利用勾股定理可求出a 的值,即DE 的长;②当MD ′=4时,同理即可求出DE 的长. 【详解】解:如图,连接ED ′,AD ′,延长MD ′交DC 于点P ,∵正方形MBND ′的顶点M ,N 分别在矩形的边AB ,BC 上,点E 为DC 上一个动点,点D 与点D ′关于AE 对称, ∴设MD ′=ND ′=BM =x , ∴AM =AB ﹣BM =7﹣x , ∵AE 为对称轴, ∴AD =AD ′=5,在Rt AMD '△中,222AM MD AD ''+=,即22725x x +-()=,解得1234x x ==,, 即MD ′=3或4.在Rt △EPD ′中,设ED ′=a ,①当MD ′=3时,AM =7﹣3=4,D ′P =5﹣3=2,EP =4﹣a ,∴222PE PD ED ''+=,即22224a a +-=(), 解得a =52,即DE =52.②当MD ′=4时,AM =7﹣4=3,D ′P =5﹣4=1,EP =3﹣a ,同理,22213a a +=(﹣), 解得a =53,即DE =53.综上所述:DE 的长为:52或53.故答案为:52或53.【点睛】本题考查图形对称的性质,矩形的性质以及勾股定理.根据对称并利用勾股定理求出MD ′的长度是解答本题的关键.16.(1)(2)-6 【分析】(1)分别化简各项,再作加减法; (2)利用平方差公式展开,再作加减法. 【详解】解:(1==(2)-=(--=22(-- =1218-=-6 【点睛】本题考查了二次根式的混合运算,解题的关键是掌握运算法则. 17.(1)m >-54;(2)x 1=0,x 2=-3.【详解】试题分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论. 试题解析:(1)∵关于x 的一元二次方程2x +(2m+1)x+2m ﹣1=0有两个不相等的实数根, ∴△=()()2221411m m +-⨯⨯-=4m+5>0, 解得:m >54-;(2)m=1,此时原方程为2x +3x=0, 即x (x+3)=0, 解得:1x =0,2x =﹣3.考点:根的判别式;解一元二次方程——因式分解法;解一元一次不等式.18.0≤x≤4 2 2.03 【分析】(1)根据线段AB 的长度即可判断;(2)利用特殊位置求出x=2时,y 的值,根据对称性求出x=2.5时,y 的值; (3)利用描点法即可画出图象; (4)观察图象总结函数性质即可; 【详解】(1)∵AB=4,点M 在AB 上AM=x, ∴0≤x≤4, 故答案为:0≤x≤4.(2)当x=2时,点M 是AB 中点,点N 是BC 中点,ON=2, ∴x=2时,y=2,根据对称性可知x=2.5与x=1.5时,函数值相等,∴x=2.5时,y=2.03,故答案为2,2.03;(3)该函数的大致图象如图所示:(4)①该函数是轴对称图形;②函数最小值为2;③0<x<2时,y随x的增大而减小;④2<x<4时,y随x的增大而增大;【点睛】此题考查矩形的性质、坐标与图形等知识,灵活运用所学相关知识解决问题,掌握利用函数的对称性解决问题是解题的关键.19.(1)P(抽到数字为2)=13;(2)不公平,理由见解析.【详解】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P= 13;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=42 63 =,乙获胜的情况有2种,P=21 63 =,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.20.315步【分析】由题意易证△ACB∽△DEC,即得出结论DE DCAC AB=,即3.54.515DE=,解出DE=1.05里,即得出答案.【详解】解:如图,由题意得,AB=15里,AC=4.5里,CD=3.5里,∵DE⊥CD,AC⊥CD,∴AC∥DE,∴△ACB∽△DEC,∴DE DCAC AB=,3.54.515DE=解得,DE=1.05里=1.05×300=315步,故走出南门315步恰好能望见这棵树,【点睛】本题考查相似三角形的实际应用.根据题意证明出△ACB∽△DEC是解答本题的关键.21.楼房AB的高度约是21.2m.【分析】过D点作DF⊥AB,交AB于点F,在Rt△ECD中,根据含30°角的直角三角形的性质,解得线段DF的长,再在Rt△ADF中利用正弦定义求得AF的长,最后由线段的和差解题即可.【详解】解:过D点作DF⊥AB,交AB于点F,如图,则BF=DE,在Rt△ECD中,CD=6,∠ECD=30°,∴BF=DE=12CD=3,EC=∴DF=EC+CB=,在Rt △ADF 中,tan ∠ADF =AFDF,∴tan 548) 1.3818.20AF DF =⨯︒=⨯≈, 18.20321.2021.2AB AF FB ∴=+=+=≈,答:楼房AB 的高度约是21.2m .【点睛】本题考查解直角三角形的应用—俯角、坡角问题,涉及正切、含30°角的直角三角形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1(2)①仍然成立,理由见解析;+1. 【分析】(1)由四边形ABCD 是正方形可知AC .又因为E ,F 分别是正方形ABCD 的边AD和对角线AC 的中点,即可推出22CF DE ,即CFDE. (2)①因为△AFE 和△ACD 都是等腰直角三角形,可推出△AFE ∽△ACD ,即得出结论,AF ACAE AD=再由∠F AE =∠CAD =45°,可推出∠F AC =∠EAD ,即证明△ACF ∽△ADE ,即得出结论CF ACDE AD= ②由题意可知AD =CD =AB =2, EF =AE =12AD =1,∠ADC =90°,∠AEF =90°.因为点E ,F ,C 在一条直线上,说明∠AEC =90°.在Rt AEC 中,利用勾股定理可求出CE 的长度,即可求出CF 的长度. 【详解】解:(1)∵四边形ABCD 是正方形, ∴AD =CD ,∠D =90°,∴AC ,∵E ,F 分别是正方形ABCD 的边AD 和对角线AC 的中点, ∴=2=2AD DE AC CF ,,∴22CF DE ,即CFDE. (2)①(1)中的结论仍然成立,理由如下: ∵△AFE 和△ACD 都是等腰直角三角形, ∴△AFE ∽△ACD ,∴AF ACAE AD= ∵∠F AE =∠CAD =45°,∴∠F AE +∠CAE =∠CAD +∠CAE ,即∠F AC =∠EAD , ∴△ACF ∽△ADE ,∴CF ACDE AD= ②如图3所示:∵四边形ABCD 是正方形, ∴AD =CD =AB =2,∠ADC =90°,∴AC =同②得:EF =AE =12AD =1,∠AEF =90°, ∵点E ,F ,C 在一条直线上, ∴∠AEC =90°,在Rt AEC 中,CE ∴CF =CE +EF1.【点睛】本题为四边形综合题,掌握正方形的性质,相似三角形的判定和性质,等腰直角三角形的性质以及勾股定理是解答本题的关键.23.(1)直线BC 的解析式为y =x +3,抛物线的解析式为y =﹣x 2﹣2x +3;(2)t 的最小值为(3)点P 的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1或(﹣1. 【分析】(1)先根据对称轴x =−1,即12b a -=-,及抛物线经过A (1,0),C (0,3)两点,得出关于a ,b ,c 的方程组,解方程组,则可求得抛物线的解析式,再根据抛物线的对称性得出点B 的坐标,再由待定系数法求得直线BC 的解析式;(2)由轴对称的知识可知t 的最小值即为线段BC 的长,利用勾股定理计算即可;(3)设P (−1,t ),先用含t 的式子表示出BC 2,PB 2,PC 2,再分三种情况:①若点B 为直角顶点,则BC 2+PB 2=PC 2,②若点C 为直角顶点,则BC 2+PC 2=PB 2,③若点P 为直角顶点,则PB 2+PC 2=BC 2,分别求得t 的值,从而可得点P 的坐标.【详解】解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为y =﹣x 2﹣2x +3,∵对称轴为直线x =﹣1,且抛物线经过A (1,0)与点B .∴点B 的坐标为(﹣3,0),把B (﹣3,0),C (0,3)分别代入直线y =mx +n 得:303m n n -+=⎧⎨=⎩, 解得:13m n =⎧⎨=⎩,,直线BC 的解析式为y =x +3,抛物线的解析式为y =﹣x 2﹣2x +3; ∴直线BC 的解析式为y =x +3.(2)设直线BC 与对称轴x =﹣1的交点为M ,如图所示:由轴对称可知,此时点M到点A的距离与到点C的距离之和t最小,即t=MA+MC=MB+MC=BC,∵B(﹣3,0),C(0,3),∴OB=OC=3,在Rt△BOC中,由勾股定理得:BC∴t的最小值为(3)如图,设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2,即18+4+t2=t2﹣6t+10,解得t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2,即18+t2﹣6t+10=4+t2,解得t=4;③若点P为直角顶点,则PB2+PC2=BC2,即4+t2+t2﹣6t+10=18,解得t或t.综上所述,点P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1)或(﹣1.【点睛】本题属于二次函数综合题,考查了待定系数法求二次函数和一次函数的解析式、二次函数的对称性及动点问题的计算,数形结合、分类讨论并熟练掌握二次函数的性质是解题的关键.24.(1)见解析;(2)AD=12;(3)HF=6.【分析】(1)根据折叠性质得到∠AGE=∠B=90°,∠AHF=∠D=90°,结合矩形的性质证明△EGC∽△GFH;(2)由等高三角形的面积比等于边的比得到GH:AH=2:3,再根据折叠性质得到AG=AB=GH+AH=20,继而解题;(3)在R t△ADG中,理由勾股定理解得DG的长,再结合折叠的性质解题.【详解】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,由折叠对称知:∠AGE=∠B=90°,∠AHF=∠D=90°,∴∠GHF=∠C=90°,∠EGC+∠HGF=90°,∠GFH+∠HGF=90°,∴∠EGC=∠GFH,∴△EGC∽△GFH;(2)解:∵S△GFH:S△AFH=2:3,且△GFH和△AFH等高,∴GH:AH=2:3,∵将△ABE沿着AE折叠,点B刚好落在CD边上点G处,∴AG=AB=GH+AH=20,∴GH=8,AH=12,∴AD=AH=12;(3)解:在R t△ADG中,DG16=,由折叠的对称性质可设DF=FH=x,则GF=16﹣x,∵HG2+HF2=FG2,∴82+x2=(16﹣x)2,解得x=6,∴HF=6.【点睛】本题考查矩形的性质、折叠的性质、相似三角形的判定、等高三角形面积比、勾股定理等知识,是重要考点,掌握相关知识是解题关键.。
华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列说法不正确的是()A.为了解宿迁市所有中学生的视力情况,可采用抽样调查的方法B.彩票中奖的机会是1﹪,买100张彩票一定会中奖C.在同一年出生的367名学生中,至少有两人的生日是同一天D.12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任取一只,取到是二等品的概率是2、对一批衬衣进行抽检,统计合格衬衣的件数,得到如下的频数表:抽查件数(件)100 150 200 500 800 1000合格频数85 141 176 445 724 900根据表中数据,下列说法错误的是()A.抽取100件的合格频数是85B.任抽取一件衬衣是合格品的概率是0.8 C.抽取200件的合格频率是0.88 D.出售1200件衬衣,次品大约有120件3、如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,﹣)C.(﹣,﹣)D.(﹣,﹣)4、今年以来,CPI(居民消费价格总水平)的不断上涨已成为热门话题.已知某种食品在9月份的售价为8.1元/kg,11月份的售价为10元/kg.求这种食品平均每月上涨的百分率是多少?设这种食品平均每月上涨的百分率为x,根据题意可列方程式为()A.8.1(1+2x)=10B.8.1(1+x)2=10C.10(1﹣2x)=8.1 D.10(1﹣x)2=8.15、如图,△ABC中,CD⊥AB,BE⊥AC,= ,则sinA的值为()A. B. C. D.6、在平面直角坐标系中,点P(-3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限7、用长分别为5,7,9,13(单位:厘米)的四段木棒为边摆三角形,可摆出不同的三角形的个数为()A.1个B.2个C.3个D.4个8、下列计算正确的是()A. B. =1 C. D.9、如图,的顶点C的坐标为,点A在x轴正半轴上,且,将先绕C顺时针旋转,再向左平移2个单位,则点A的对应点的坐标是()A. B. C. D.10、在平面直角坐标系中,点(﹣3,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11、下面计算正确的是()A. B. C. D.12、如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A. B. C. D.13、有一箱子装有3张分别标示4,5,6的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,则组成的二位数是6的倍数的概率是()A. B. C. D.14、如图,直线1l //l2//l3,直线AC分别交,,于点A,B,C,直线DF分别交,,于点D,E,若,则的值为()A. B. C. D.15、点M(2,3)关于y轴对称的点的坐标为()A.(- 2,- 3)B.(2,- 3)C.(- 2,3)D.(3,- 2)二、填空题(共10题,共计30分)16、在平面直角坐标系中,点P(m,3)在第一象限的角平分线上,点Q(2,n)在第四象限角平分线上,则m+n的值为________.17、如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=8,AC=6,F是DE的中点,若点E是直线BC上的动点,连接BF,则BF的最小值是________.18、△ABC和△A′B′C′中,∠A=60°,∠B=40°,∠A’=60°,当∠C′=________ 时,△ABC∽△A′B′C′.19、已知关于x方程x2﹣6x+m2﹣2m+5=0的一个根为1,则m2﹣2m=________.20、如图, 内接于⊙O, ,则⊙O的直径等于________.21、如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航________ 海里可使渔船到达离灯塔距离最近的位置.22、在平面直角坐标系xOy中,已知A(0,1),B(1,0),C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是________.23、如图,在平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF=60°,则平行四边形ABCD的周长为________.24、在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为________。
华师大版九年级上册期末测试数学试题(含答案)一、选择题1.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4 B.4 C.3.4 D.2.42.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-13.如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.1003m C.150m D.503m4.在平面直角坐标系中,点A(0,2)、B(a,a+2)、C(b,0)(a>0,b>0),若AB=42且∠ACB最大时,b的值为()A.226-+C.242+B.226+D.2425.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定6.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°7.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .48.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+ D .()2241y x =++9.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C 2D .210.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .3411.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 12.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定13.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50°14.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的15.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=600二、填空题16.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.17.正方形ABCD 的边长为4,圆C 半径为1,E 为圆C 上一点,连接DE ,将DE 绕D 顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.18.如图,四边形的两条对角线AC 、BD 相交所成的锐角为60︒,当8AC BD +=时,四边形ABCD 的面积的最大值是______.19.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.20.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.21.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.22.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)23.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.24.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.25.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.26.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)27.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF、EF,则CF+EF的最小值为_____.28.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为_____.29.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.30.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.三、解答题31.解方程:(1)x2﹣2x﹣1=0;(2)(2x﹣1)2=4(2x﹣1).32.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?33.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明.34.已知二次函数y=a2x−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),35.如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.(1)求A,D两点的坐标;(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.四、压轴题36.如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.37.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.38.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.39.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.40.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】直接利用平行线分线段成比例定理对各选项进行判断即可. 【详解】 解:∵a ∥b ∥c , ∴AB DEBC EF=, ∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D . 【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.2.C解析:C 【解析】试题分析:由题意可得根的判别式,即可得到关于k 的不等式,解出即可. 由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.3.A解析:A 【解析】∵堤坝横断面迎水坡AB 的坡比是13,∴BC AC 3, ∵BC=50,∴3,∴()2222AC +BC 503+50100==(m ).故选A4.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.解:∵AB=42,A(0,2)、B(a ,a +2) ∴22(22)42a a ++-=, 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.5.B解析:B 【解析】 【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.6.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.8.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 9.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴12OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.10.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.11.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.12.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.13.B解析:B【解析】【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.14.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.17.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大, 由题可知,PF=4,DF=解析:171+【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴DP=2241+=17,∴FE’=171+,故答案是:171+【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P的位置是解题关键.18.【解析】【分析】设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.【详解】解:∵AC、BD相交所成的锐角为∴根据四边形的面积公式得出,设AC=x,则BD=8-解析:3【解析】【分析】设AC=x,根据四边形的面积公式,1S sin602AC BD=⨯⨯︒,再根据3sin60︒=()1 S 822x x =-⨯,再利用二次函数最值求出答案. 【详解】解:∵AC 、BD 相交所成的锐角为60︒ ∴根据四边形的面积公式得出,1S sin 602AC BD =⨯⨯︒ 设AC=x ,则BD=8-x所以,())21S 842x x x =-=-+∴当x=4时,四边形ABCD 的面积取最大值故答案为:【点睛】本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.19.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】 分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.20.1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC 的各个边的长度,根据勾股定理的逆定理求出∠ACB =90°,再解直角三角形求出即可.【详解】如图:长方形AEFM ,连接AC ,∵由勾股定理得:AB 2=32+12=10,BC 2=22+12=5,AC 2=22+12=5∴AC 2+BC 2=AB 2,AC =BC ,即∠ACB =90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.21.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 22.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长∴圆锥的侧面积. 考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 23.54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD ,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.24.2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.25.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.26.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.27.【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案解析:24 5【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.28.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.29.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M 为AF 中点,则OM⊥AF∵六边形ABCDEF 为正六边形∴2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF ∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题31.(1)x=22;(2)x=52或x=12.【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x+1=2,∴(x﹣2)2=2,∴x=2.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0,∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.32.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.33.(1)21234y x x =-+;(2)相交,证明见解析 【解析】【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A 点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l 的解析式及B 、C 的坐标,分别求出直线AB 、BD 、CE 的解析式,再求出CE 的长,与到抛物线的对称轴的距离相比较即可.【详解】解:(1)设抛物线为y =a (x ﹣4)2﹣1,∵抛物线经过点()0,3A ,∴3=a (0﹣4)2﹣1,a =14; ∴抛物线的表达式为:21234y x x =-+; (2)相交. 证明:连接CE ,则CE ⊥BD ,14(x ﹣4)2﹣1=0时,x 1=2,x 2=6.()0,3A ,()2,0B ,()6,0C ,对称轴x =4,∴OB =2,AB 13BC =4,∵AB ⊥BD ,∴∠OAB +∠OBA =90°,∠OBA +∠EBC =90°,∴△AOB ∽△BEC ,∴AB OB BC CE =132CE =,解得813CE = 813>2, 故抛物线的对称轴l 与⊙C 相交.【点睛】本题考查待定系数法求二次函数解析式、相似三角形的判定与性质、直线与圆的位置关系等内容,掌握数形结合的思想是解题的关键.34.(1)245y x x =--,2x =;(2)当x <1-或x >5时,函数值大于0.【解析】【分析】(1)把(-1,0)和点(2,-9)代入y=ax 2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x 轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数24y ax x c =-+的图象过点(−1,0)和点(2,−9),∴40449a c a c ++=⎧⎨-+=-⎩, 解得:15a c =⎧⎨=-⎩, ∴245y x x =--;∴对称轴为:4222b x a -=-=-=; (2)令2450x y x --==,解得:11x =-,25x =,如图:∴点A 的坐标为(1-,0),点B 的坐标为(5,0);∴结合图象得到,当x <1-或x >5时,函数值大于0.【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x 轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.35.(1)A (1,0),D (4,3);(2)①当点P 的横坐标为2时,求△PAD 的面积;②当∠PDA =∠CAD 时,直接写出点P 的坐标.【解析】【分析】(1)由于A 、D 是直线直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5的交点,要求两个交点的坐标,需可联立方程组求解;(2)①要求△PAD 的面积,可以过P 作PE ⊥x 轴,与AD 相交于点E ,求得PE ,再用△PAE 和△PDE 的面积和求得结果;②分两种情况解答:过D 点作DP ∥AC ,与抛物线交于点P ,求出AC 的解析式,进而得PD 的解析式,再解PD 的解析式与抛物线的解析式联立方程组,便可求得P 点坐标;当P 点在AD 上方时,延长DP 与y 轴交于F 点,过F 点作FG ∥AC 与AD 交于点G ,则∠CAD =∠FGD =∠PDA ,则FG =FD ,设F 点坐标为(0,m ),求出G 点的坐标(用m 表示),再由FG =FD ,列出m 的方程,便可求得F 点坐标,从而求出DF 的解析式,最后解DF 的解。
华师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=2.方程x2-3x=0的解是()A.0 B.3 C.0或3 D.1或33.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD=( )cm.A.3 B.4 C.5 D.24.如图,在△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,DE⊥AC于点E,则tan∠CDE的值等于()A.512B.125C.513D.10135.如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得三角形的周长可能是()A.5.5 B.5 C.4.5 D.46.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,S△CDE=3cm2,则△BCF的面积为()A.6cm2B.9cm2C.18cm2D.27cm27.两个相似三角形,他们的周长分别是36和12.周长较大的三角形的最大边为15,周长较小的三角形的最小边为3,则周长较大的三角形的面积是()A.52 B.54 C.56 D.58.8.如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,则AB长为()A.2B.7C.5D.25二、填空题9x的取值范围是___.10.如图,在Rt△ABC内画有边长为9,6,x的三个正方形,则x的值为________.11.一元二次方程2x+px-2=0的一个根为2,则p的值________.12.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是_____________.13.式子________ .14.各边长度都是整数、最大边长为11的三角形共有_____个.15.在Rt△ABC中,∠C=90°,cosA=13,则tanA=________16.将直线y=3x向上平移1个单位,可以得到直线________.17.(2016湖北省孝感市)如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE的值为_________.18.如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,直角∠MPN的顶点P 与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是_____.(1);(2)S四边形OEBF:S正方形ABCD=1:4;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=34;(4)OG•BD=AE2+CF2.三、解答题19.计算:()012tan60π-⨯--︒20.张老师担任初一(2)班班主任,她决定利用假期做一些家访,第一批选中8位同学,如果他们的住处在如图所示的直角坐标系中,A(-1,-2),B(0,5),C(-4,3),D(-2,5),E(-4,0),F(1,5),G(1,0),H(0,-1),请你在图中的直角坐标系中标出这些点,设张老师家在原点O,再请你为张老师设计一条家访路线.21.关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1、x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2,求k的值.22.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,月份的营业额达到633.6万元.求3月份到5月份营业额的平均月增长率.23.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.24.如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.25.在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其它均相同.甲、乙、两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号.将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数.若该两位数能被4整除,则甲胜,否则乙胜.问:这个游戏公平吗?请说明理由.26.如图,明亮同学在点A处测得大树顶端C的仰角为36°,斜坡AB的坡角为30°,沿在同一剖面的斜坡AB行走16米至坡顶B处,然后再沿水平方向行走6.4米至大树脚底点D 处,那么大树CD的高度约为多少米?)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,).27.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.参考答案1.D【详解】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.2.C【分析】利用因式分解法解方程.【详解】x(x-3)=0,x=0或x-3=0,所以x1=0,x2=3.故选C.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.D【解析】【分析】连接BD,根据三角形的内角和定理和等腰三角形性质求出DC=2BD,根据线段垂直平分线的性质求出AD=BD,即可求出答案.【详解】连接BD.∵AB=BC,∠ABC=120°,∴∠A=∠C=12(180°-∠ABC)=30°,∴DC=2BD,∵AB的垂直平分线是DE,∴AD=BD,∴DC=2AD,∵AC=6,∴AD=13×6=2,故选D.【点睛】本题主要考查对等腰三角形的性质,含30度角的直角三角形,线段的垂直平分线,三角形的内角和定理等知识点的理解和掌握,能求出AD=BD和DC=2BD是解此题的关键.4.A【详解】试题解析:∵△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,∴AD⊥BC,CD=12BC=5,∴,∴tan∠CAD=CDAD=512.∵AD⊥BC,DE⊥AC,∴∠CDE+∠ADE=90°,∠CAD+∠ADE=90°,∴∠CDE=∠CAD,∴tan∠CDE=tan∠CAD=5 12.故选A.考点:解直角三角形.5.A【详解】试题分析:本题依据三角形三边关系,可求第三边大于2小于8,原三角形的周长大于10小于16,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于5而小于8,看哪个符合就可以了.解:设三角形的三边分别是a、b、c,令a=3,b=5,∴2<c<8,∴10<三角形的周长<16,∴5<中点三角形周长<8.故选A.考点:三角形中位线定理;三角形三边关系.6.D【解析】试题分析:根据平行四边形的性质得BC=AD,BC∥AD,CD∥AB,∠D=∠B,则BC=3DE,再证明△CDE∽△FBC,然后利用三角形相似的性质可计算出△BCF的面积.考点:(1)、相似三角形的判定与性质;(2)、平行四边形的性质.7.B【解析】【分析】根据已知先求得两相似三角形的相似比,然后根据相似比可求得较大的三角形的三边的长,根据其边长判定三角形为直角三角形,从而不难求得其面积.【详解】∵两相似三角形的周长分别是36和12∴相似比为3:1∵周长较大的三角形的最大边为15,周长较小的三角形的最小边为3∴周长较大的三角形的最小边为9,周长较小的三角形的最大边为5∴周长较大的三角形的第三条边为12∴两个三角形均为直角三角形∴周长较大的三角形的面积=12×9×12=54故选B.【点睛】此题主要考查学生对相似三角形的性质及三角形面积公式的运用能力.8.B【解析】【分析】先求出BD的长度,再求得∠ADB=30°.过A作AE⊥BD于E,在△AED中,求AE、ED 的长,可求BE,最后在Rt△ABE中,利用勾股定理求AB的长.【详解】过点A作AE⊥BD,垂足为E.∵BD⊥DC,∠C=60°,BC=6,∴∠1=30°,BD=BC•sin60°=∵AD∥BC,∴∠2=∠1=30°.∵AE⊥BD,AD=4,∴AE=2,DE=∴BE=BD−DE=∴AB故选B.【点睛】本题利用直角三角形30°角所对的直角边等于斜边的一半、平行线的性质和勾股定理求解,需要熟练掌握并灵活运用.9.x2≥【详解】x﹣2≥0,解得x≥2.故答案是x≥2.【点睛】考点:二次根式有意义的条件.10.4【解析】∵这三个正方形的边都互相平行,∴它们均相似,∴x6=69,解得:x=4.故答案为4.11.-1【详解】把x=2代入方程x2+px﹣2=0得4+2p﹣2=0,解得p=﹣1.故答案为﹣1.12.23;【详解】试题解析:列表得:所有等可能的情况有12种,其中之和为奇数的情况有8种,则82.123 P==故答案为:2 . 313.1<x≤3【解析】【分析】根据题意得x-1>0,3-x≥0,解不等式组即可.【详解】∵x-1>0,3-x≥0,∴x>1且x≤3,即1<x≤3.故答案为1<x≤3.【点睛】本题考查了二次根式的乘除法,被开方数要大于等于0,分母不能为0.14.36【解析】试题解析:设另外两边长为x,y,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取值11时,x=1,2,3,…,11,可有11个三角形;当y取值10时,x=2,3,…,10,可有9个三角形;当y取值分别为9,8,7,6时,x取值个数分别是7,5,3,1,∴根据分类计数原理知所求三角形的个数为11+9+7+5+3+1=36.故答案是:36.15.【解析】【分析】根据锐角三角函数的概念,可以证明:同一个角的正弦和余弦的平方和等于1;同一个角的正切等于它的正弦除以它的余弦.【详解】因为在△ABC中,∠C=90°,cosA=13,所以所以tanA=313故答案为【点睛】解答此题要用到同角三角函数关系式,同角三角函数关系常用的是:sin2x+cos2x=1;sinAtanAcosA=.16.y=3x+1【解析】试题分析:图象的平移法则为:“左加右减,上加下减”,然后根据法则就可以得到答案. 考点:一次函数图象与几何变换.17.23.【解析】试题分析:小正方形EFGH面积是a2,则大正方形ABCD的面积是13a2,则小正方形EFGH边长是a ,则大正方形ABCD 的面积是a ,设AE=DH=x ,利用勾股定理求出x ,最后利用熟记函数即可解答.设小正方形EFGH 面积是a 2,则大正方形ABCD 的面积是13a 2, ∴小正方形EFGH 边长是a ,则大正方形ABCD 的面积是a ,∵图中的四个直角三角形是全等的, ∴AE=DH , 设AE=DH=x , 在Rt △AED 中,AD 2=AE 2+DE 2,即13a 2=x 2+(x+a )2 解得:x 1=2a ,x 2=﹣3a (舍去), ∴AE=2a ,DE=3a , ∴tan ∠ADE=考点:(1)勾股定理;(2)全等三角形的判定;(3)锐角三角函数的定义. 18.(1)(2)(4) 【解析】 【分析】(1)由四边形ABCD 是正方形,直角∠MPN ,易证得△BOE ≌△COF (ASA ),则可证得结论;(2)由(1)易证得S 四边形OEBF =S △BOC =14S 正方形ABCD ,则可证得结论; (3)首先设AE=x ,则BE=CF=1﹣x ,BF=x ,继而表示出△BEF 与△COF 的面积之和,然后利用二次函数的最值问题,求得答案;(4)易证得△OEG ∽△OBE ,然后由相似三角形的对应边成比例,证得OG•OB=OE 2,再利用OB 与BD 的关系,OE 与EF 的关系,即可证得结论. 【详解】∵四边形ABCD 是正方形,∴OB=OC ,∠OBE=∠OCF=45°,∠BOC=90°, ∴∠BOF+∠COF=90°, ∵∠EOF=90°, ∴∠BOF+∠COE=90°, ∴∠BOE=∠COF , 在△BOE 和△COF 中, BOE COF OB OCOBE OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOE ≌△COF (ASA ), ∴OE=OF ,BE=CF , ∴;故(1)正确;∵S 四边形OEBF =S △BOE +S △BOE =S △BOE +S △COF =S △BOC =14S 正方形ABCD , ∴S 四边形OEBF :S 正方形ABCD =1:4;故(2)正确; 过点O 作OH ⊥BC , ∵BC=1, ∴OH=12BC=12,设AE=x ,则BE=CF=1-x ,BF=x , ∴S △BEF +S △COF =12BE•BF+12CF•OH=12x (1-x )+12(1-x )×12=-12(x-14)2+932,∵a=-12<0,∴当x=14时,S △BEF+S △COF 最大;即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE=14;故(3)错误;∵∠EOG=∠BOE ,∠OEG=∠OBE=45°, ∴△OEG ∽△OBE , ∴OE :OB=OG :OE , ∴OG•OB=OE 2,∵OB=12BD ,,∴OG•BD=EF 2,∵在△BEF 中,EF 2=BE 2+BF 2, ∴EF 2=AE 2+CF 2,∴OG•BD=AE 2+CF 2.故(4)正确,综上所述:(1)(2)(4)正确, 故答案为(1)(2)(4) 【点睛】本题考查四边形的综合题、正方形的性质、旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题,灵活运用所学知识,学会正确寻找全等三角形解决问题,学会构建二次函数解决最值问题是解题关键.19.【分析】按照实数的运算法则依次计算,注意:()0tan60π11︒=-=. 【详解】解:原式12=⨯2=【点睛】考查实数的混合运算,掌握二次根式,零次幂以及特殊角的三角函数值是解题的关键. 20.O→G→H→A→E→C→D→B→F 【解析】 【分析】先在平面直角坐标系中描出各点,然后顺次连接即可. 【详解】描出各点,如下图所示,设计家访路线时,以路程较短为原则,如:O→G→H→A→E→C→D→B→F【点睛】本题考查了在平面直角坐标系中描点,注意在描点时点的纵横坐标不要写反了. 21.(1)12k ≤;(2)3k =- 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围;(2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12;(2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.22.20% 【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),设3月份到5月份营业额的平均增长率是x ,则四月份的营业额是400(1+10%)(1+x ),5月份的营业额是400(1+10%)(1+x )2,据此即可列方程求解.要注意根据实际意义进行值的取舍. 【详解】设月份至月份的营业额的平均月增长率为. 依题意,得: 2400(110%)(1)633.6x ++=. 整理得: 2(1) 1.44x +=.解得: 120.2, 2.2x x ==-(不合题意,舍去). 答:月份至月份的营业额的平均月增长率为20%. 【点睛】可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键. 23.该建筑物的高度为:(tan ?tan tan tan m n αββα+-)米.【解析】试题分析:首先由题意可得,,CE CEBE AE tan tan ,βα== 由AE −BE =AB =m 米,可得CE CEm tan tan αβ-=,继而可求得CE 的长,又由测角仪的高度是n 米,即可求得该建筑物的高度.试题解析:由题意得:,CE CEBE AE tan tan ,βα== ∵AE −BE =AB =m 米, CE CEm tan tan αβ∴-= (米), mtan tan CE tan tan αββα⋅∴=- (米),∵DE =n 米, mtan tan CD n tan tan αββα⋅∴=+- (米).∴该建筑物的高度为:mtan tan n tan tan αββα⋅+-米24【解析】 【分析】根据相似多边形的性质列出比例式,得到一元二次方程,解方程即可. 【详解】∵矩形ABCD ∽矩形ECDF , ∴BC CDCD EC =,即BC CD CD BC AB=- ∴BC 2﹣BC•AB ﹣CD 2=0,解得,CD , ∵BC 、CD 是正数,∴BC AB =【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键. 25.这个游戏不公平,理由见解析. 【分析】用列表法或树状图法求出两位数的个数和两位数能被4整除的个数,从而求出甲胜和乙胜的概率,比较两概率是否相等,得出结论.【详解】根据题意列出表格如下:共有9种可能.22,23,24,32,33,34,42,43,44 能被4整除有:24,32,44,∴P(甲胜)=3193,P(乙胜)=23.∵P(甲胜)≠P(乙胜),∴这个游戏不公平.26.大树CD的高度约为6.6米.【解析】【分析】作BF⊥AE于F,则FE=BD=6.4米,DE=BF,设BF=x米,则米,在Rt△ABF 中,由勾股定理得出方程,解方程求出DE=BF=8米,AF≈13.6米,得出AE的长度,在Rt△ACE 中,由三角函数求出CE,即可得出结果.【详解】作BF⊥AE于F,如图所示:则FE=BD=6.4米,DE=BF,∵斜坡AB的坡角为30°,∴,设BF=x米,则米,在Rt△ABF中,由勾股定理得:x2+)2=162,解得:x=8,∴DE=BF=8米,AF≈13.6米,∴AE=AF+FE=20米,在Rt△ACE中,CE=AE•tan36°≈20×0.73=14.6米,∴CD=CE﹣DE=14.6﹣8=6.6米.故大树CD的高度约为6.6米.【点睛】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.27.【详解】试题分析:方法一:作BF⊥DE于点F,CG⊥DE于点G,∴∠F=∠CGE=90°.又∵∠BEF=∠CEG,BE=CE,∴△BFE≌△CGE.∴BF=CG.在△ABF和△DCG中,∵∠F=∠DGC=90°,∠BAE=∠CDE,BF=CG,∴△ABF≌△DCG.∴AB=CD.方法二:作CF∥AB,交DE的延长线于点F,∴∠F=∠BAE.又∵∠ABE=∠D,∴∠F=∠D.∴CF=CD.∵∠F=∠BAE,∠AEB=∠FEC,BE=CE,∴△ABE≌△FCE.∴AB=CF.∴AB=CD.方法三:延长DE至点F,使EF=DE,又∵BE=CE,∠BEF=∠CED,∴△BEF≌△CED.∴BF=CD,∠D=∠F.又∵∠BAE=∠D,∴∠BAE=∠F.∴AB=BF.∴AB=CD.考点:1.全等三角形的判定与性质;2.阅读理解.。
华师大版九年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________ 一、选择题(本题共10小题,每小题4分,共40分)1.下列根式中,与20是同类二次根式的是()A.15B.45C.35 D.182.关于x的一元二次方程x2=1的根是()A.x=1 B.x1=1,x2=-1C.x=-1 D.x1=x2=13.用配方法解方程x2+4x-1=0时,配方结果正确的是()A.(x+4)2=5 B.(x+2)2=5 C.(x+4)2=3 D.(x+2)2=34.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有2个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯5.某班一同学在老师的培训后学会了某个物理实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又各自教会了同样多的同学,这样全班共有36名同学会做这个实验.若设1名同学每次都能教会x名同学,则可列方程为()A.x+(x+1)x=36 B.1+x+(1+x)x=36C.1+x+x2=36 D.x+(x+1)2=3663的整数部分为x,小数部分为y,则3x-y的值是()A.3 3-3 B.3C.1D.37.定义运算:a*b=2ab, 若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a的值为()A.m B.2-2m C.2m-2 D.-2m-28.如图,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cos α=35,AB=4,则AC的长为( ) A .3B.165C.203D.163(第8题)(第9题) 9.如图,在菱形ABCD 中,∠ABC =60°,连结AC 、BD ,则ACBD =( )A.12B.22C.32D.3310.如图,正方形ABCD 的边AB =3,对角线AC 和BD 交于点O ,P 是边CD 上靠近点D 的三等分点,连结P A 、PB ,分别交BD 、AC 于点M 、N ,连结MN .有下列结论:①OM =MD ;②S △OMA S △ONB=52;③MN =35820;④S △MDP =38,其中正确的是( )(第10题)A .①②③B .①②④C .②③④D .①②③④二、填空题(本题共6小题,每小题4分,共24分) 11.计算:12+27=________.12.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出1个球是红球的概率为________.13.若关于x 的方程x 2+(k -3)x -k 2=0的两根互为相反数,则k =________.14.如图,添加一个条件:__________________________,使△ADE ∽△ABC .(写一个即可)(第14题)(第15题)15.如图,在三角形纸片ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,BF =4,CF =6.将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为________.16.如图,菱形ABCD的顶点A在函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且过B、D两点.若AB=2,∠BAD=30°,则k=________.(第16题)三、解答题(本题共9小题,共86分)17.(8分)计算:(-3)2-2sin 45°+||2-1.18.(8分)解方程:2x2-7x-4=0.19.(8分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,-2).(1)以原点O为位似中心,在y轴的右侧按21放大,画出△OAB的一个位似图形△OA1B1;(2)画出将△OAB向左平移2个单位长度,再向上平移1个单位长度后得到的△O2A2B2;(3)△OA1B1与△O2A2B2是位似图形吗?若是,请在图中标出位似中心点M,并写出点M的坐标.(第19题)20.(8分)如图,将Rt△AOB绕直角顶点O按顺时针方向旋转,得到△A′OB′,使点A的对应点A′落在边AB上,过点B′作B′C∥AB,交AO的延长线于点C.(第20题)(1)求证:∠BA′O=∠C;(2)若OB=2OA,求tan∠OB′C的值.21.(8分)如图,已知▱ABCD,点F在AB的延长线上,CF⊥AB.(1)尺规作图:在边BC上找一点E,使得△DCE∽△CBF(保留作图痕迹,不写作法,不必证明)(2)在(1)的条件下,若E为BC的中点,AD=8,BF=3,求AB的长.(第21题)22.(10分)定义:如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根互为相反数,那么称这样的方程是“对称方程”.例如:一元二次方程x2-4=0的两个根是x1=2,x2=-2,2和-2互为相反数,则方程x2-4=0是“对称方程”.(1)通过计算,判断下列方程是否是“对称方程”:①x2+x-2=0;②x2-12=0.(2)已知关于x的一元二次方程x2-(k2-4)x-3k=0 (k是常数)是“对称方程”,求k的值.23.(10分)如图,在等腰三角形ADC中,AD=AC,B是DC上的一点,连结AB,且有AB=DB.(1)若∠BAC=90°,AC=3,求CD的长;(第23题)(2)若ABCD=13,求证:∠BAC=90°.24.(12分)在如今智能手机的功能中,都可以利用手势密码进行锁屏和解锁.其中最常见的就是利用3×3的正方形点阵设置密码,我们将其称为“9点码”.通常,在设置“9点码”时,只能连结相邻的两点(如图,不妨将9个点依次对应数字1到9,例如图中路线Ⅰ,Ⅱ是可行的,路线Ⅲ,Ⅳ是不可行的),不能走重复的路线,从而形成相应的密码线段,线段越多,密码越复杂.已知小明设置的“9点码”从右上角的点“3”出发,且用了3个数字.(1)已知横向和纵向的相邻两点距离为1,且以小明设置的“9点码”所经过的点为顶点的三角形恰好是等腰三角形,则该等腰三角形的面积所有可能的值为________;(2)用概率知识并结合树状图回答:若小明设置的“9点码”用了3个数字,对于一个不知道该密码的人(已知出发点和用了3个数字),通过画树状图,求其一次尝试能将小明手机解锁的概率.(第24题)25.(14分)如图,在正方形ABCD中,AB=4,P、Q分别是边AD、AC上的动点.(1)填空:AC=________;(2)若AP=3PD,且点A关于PQ的对称点A′落在边CD上,求tan∠A′QC的值;(3)设AP=a,直线PQ交直线BC于点T,求△APQ与△CTQ面积之和S的最小值.(用含a的代数式表示)(第25题)参考答案一、1.B 2.B 3.B 4.B 5.B 6.C7.D8.C9.D10.D二、11.5 312.3 813.314.∠ADE=∠B(答案不唯一) 15.5 316.6+2 3三、17.解:原式=3-2×22+2-1=2.18.解:原方程可化为(x -4)(2x +1)=0 ∴x -4=0或2x +1=0 ∴x 1=4,x 2=-12.19.解:(1)如图,△OA 1B 1为所作.(2)如图,△O 2A 2B 2为所作.(3)△OA 1B 1与△O 2A 2B 2是位似图形.如图,点M 为所求,其坐标为(-4,2).(第19题)20.(1)证明:如图,∵B ′C ∥AB ,∴∠A +∠C =180°.由旋转,得OA ′=OA ,∴∠1=∠A .∵∠1+∠BA ′O =180°,∴∠A +∠BA ′O =180° ∴∠BA ′O =∠C .(第20题)(2)解:如图,由旋转,得OB ′=OB ∠A ′OB ′=∠AOB =90°,∴∠2+∠3=90°. ∵∠3+∠4=90°,∴∠2=∠4. 由(1)得,∠BA ′O =∠C∴△A ′OB ≌△COB ′,∴∠B =∠OB ′C . 在Rt △AOB 中,OB =2OA∴tan B=OAOB=12.∴tan∠OB′C=tan B=1 2.21.解:(1)如图,点E即为所求.(第21题)(2)∵四边形ABCD是平行四边形,AD=8∴BC=AD=8,AB=CD.∵E为BC的中点,∴CE=BE=12BC=4.∵△DCE∽△CBF,∴CEBF=DCBC∴43=DC8,∴DC=323,∴AB=DC=323.22.解:(1)①x2+x-2=0,即(x+2)(x-1)=0∴x1=-2,x2=1.∵-2和1不互为相反数,∴不是“对称方程”.②由题意,得x=±12=±2 3即x1=2 3,x2=-2 3.∵2 3与-2 3互为相反数,∴是“对称方程”.(2)设x1,x2为原方程的解,∵该方程为“对称方程”∴x1+x2=k2-4=0,即k2=4,解得k=±2.当k=-2时,方程为x2+6=0,无解,不符合题意.当k=2时,方程为x2-6=0,符合题意.∴k的值为2.23.(1)解:∵AD=AC,AB=DB∴∠C=∠D,∠D=∠DAB,∴∠C=∠D=∠DAB.∵∠BAC=90°,∠C+∠D+∠DAC=∠C+∠D+∠DAB+∠BAC=180°,∴∠C+∠D+∠DAB=90°∴∠C=∠D=∠DAB=30°.在△ABC中,∠BAC=90°,∠C=30°∴AB=AC·tan 30°=3×33=1∴BC=2AB=2,BD=AB=1 ∴CD=BD+BC=1+2=3.(2)证明:∵ABCD=13,AB=DB∴BC=2AB,DC=3AB.∵∠DAB=∠C,∠D=∠D∴△DAB∽△DCA,∴ABAC=ADCD.∵AD=AC,∴AC2=3AB2.∵BC=2AB,∴BC2=4AB2.∴AB2+AC2=BC2,∴∠BAC=90°.24.解:(1)12或1(2)如图.(第24题)由树状图可得,所有等可能的结果有15种,而符合条件的结果只有1种,所以一次尝试能将小明手机解锁的概率为1 15.25.解:(1)4 2(2)∵在正方形ABCD中,AB=4,AC为对角线∴AD=AB=4,∠DAC=∠DCA=45°,∠ADC=90°.∵点A关于PQ的对称点A′落在CD边上∴△APQ和△A′PQ关于PQ对称∴AP=A′P,∠P AQ=∠P A′Q=45°.∵∠DA′Q=∠DCA+∠A′QC=∠P A′Q+∠P A′D∴∠A′QC=∠P A′D.∵AP=3PD,AD=4,∴A′P=AP=3,PD=1第 11 页 共 11 页 ∴A ′D =A ′P 2-PD 2=2 2∴tan ∠A ′QC =tan ∠P A ′D =PD A ′D =12 2=24. (3)如图,过点Q 作直线MN ⊥AD 于点M ,交BC 于点N ,则MN ⊥BC .(第25题)∵AP ∥CT ,∴△APQ ∽△CTQ ,∴AP CT =QM QN .设QM =h ,则QN =4-h ,∴a CT =h 4-h解得CT =a (4-h )h∴S =12ah +12·a (4-h )h ·(4-h )=12ah +a (4-h )22h整理得ah 2-(4a +S )h +8a =0.∵方程有实数根∴[-(4a +S )]2-4a ·8a ≥0,即(4a +S )2≥32a 2.又∵4a +S >0,a >0,∴4a +S ≥4 2a∴S ≥(4 2-4)a .当S =(4 2-4)a 时,由方程可得h 1=h 2=2 2,满足题意.故当h =2 2时,△APQ 与△CTQ 面积之和S 最小,最小值为(4 2-4)a .。
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!期末测试答案解析一、 1.【答案】C【解析】根据中心对称图形的概念求解即可. A .不是中心对称图形,本选项错误; B .不是中心对称图形,本选项错误; C .是中心对称图形,本选项正确; D .不是中心对称图形,本选项错误. 故选:C. 2.【答案】D【解析】求出抛物线平移后的顶点坐标,然后利用顶点式写出即可.∵抛物线22y x =向左平移1个单位,再向下平移2个单位后的顶点坐标为()12--,, ∴得到的抛物线是()2212y x =+-.故选:D. 3.【答案】D【解析】正确理解“必然事件”的定义,即可解答.必然事件是指事件一定会发生,即事件发生的可能性为100%.A .袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A 不是必然事件;B .C 袋子中有4个黑球,有可能摸到的全部是黑球,B 、C 有可能不发生,所以B 、C 不是必然事件;D .白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D 正确. 故选:D. 4.【答案】C【解析】根据多边形内角和定理、正五边形的性质求出ABC ∠、CD CB =,根据等腰三角形的性质求出CBD ∠,计算即可.∵五边形ABCDE 为正五边形, ()521801085ABC C ︒︒-⨯∠=∠==∴,CD CB =∵,180108362CBD ︒︒︒-∠==∴,72ABD ABC CBD ︒∠=∠-∠=∴.故选:C. 5.【答案】C【解析】直接利用位似图形的性质进而分别分析得出答案.∵以点O 为位似中心,把ABC △放大为原图形的2倍得到A B C '''△,ABC A B C '''∴△∽△,点C 、点O 、点C '三点在同一直线上,AB A B ''∥, :1:2AO OA '=,故选项C 错误,符合题意.故选:C. 6.【答案】A【解析】利用一次函数的性质得到0k >,0b ≤,再判断240k b =-△>,从而得到方程根的情况.∵一次函数y kx b =+的图象不经过第二象限, 0k ∴>,0b ≤,240k b =-∴△>,∴方程有两个不相等的实数根.故选:A. 7.【答案】D【解析】作直径CD ,根据勾股定理求出OD ,根据正切的定义求出tan CDO ∠,根据圆周角定理得到OBC CDO ∠=∠,等量代换即可.作直径CD ,在Rt OCD △中,6CD =,2OC =,则OD ==,tan OC CDO OD ∠==, 由圆周角定理得,OBC CDO ∠=∠,则tan OBC ∠=故选:D.8.【答案】A【解析】设降价得百分率为x ,根据降低率的公式()21a x b -=建立方程,求解即可. 设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20%.故选:A. 9.【答案】B【解析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出的AB 长. 作AD BC ⊥于点D , 则390.325BD =+=, cos =BDABα∵,95cos =ABα∴,解得,95cos AB α=米.故选:B.10.【答案】A【解析】由()10-,,()30,和()03,坐标都满足函数223y x x =--知①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线1x =,②也是正确的;根据函数的图象和性质,发现当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大,因此③也是正确的;函数图象的最低点就是与x 轴的两个交点,根据0y =,求出相应的x 的值为1x =-或3x =,因此④也是正确的;从图象上看,当1x -<或3x >,函数值要大于当1x =时的2234y x x --==,因此⑤时不正确的;逐个判断之后,可得出答案. 故选:A.二、11.【答案】3π【解析】根据弧长公式计算. 该9063180ππ⨯==扇形的弧长. 故答案为:3π. 12.【答案】9【解析】由已知条件易证ACD BCA △∽△,根据相似三角形的性质求出BCA △的面积为12,进而可求出ABD △的面积.CAD B ∠=∠∵,ACD BCA ∠=∠,ACD BCA ∴△∽△, 2ACD BCA S AC S BC ⎛⎫= ⎪⎝⎭△△∴, 2AC =∵,4BC =,214ACD BCA S AC S BC ⎛⎫== ⎪⎝⎭△△∴, ADC ∵△的面积为3, BCA ∴△的面积为12, ABD ∴△的面积为:1239-=.故答案为:9. 13.【答案】2-【解析】已知()42A -,,B 是OA 的中点,根据平行线等分线段定理可得点B 的坐标,把B 的坐标代入关系式可求k 的值.如图:AC BD ∵∥,B 是OA 的中点,OD DC =∴同理OF EF =()42A -∵,2AC =∴,4OC =2OD CD ==∴,1BD OF EF ===,()21B ∴-,代入ky x=得: 212k =-⨯=-∴.故答案为:2-.14.【答案】94π【解析】如图,连接BD ,BF .根据BEF BDC BDF BCE BDF BCE S S S S S S S =+-=-△△阴扇形扇形扇形扇形计算即可. 如图,连接BD ,BF .由题意()229090293603604BEF BDC BDF BCE BDF BCE S S S S S S S πππ=+-=-=-=△△阴扇形扇形扇形扇形,故答案为94π.15.【答案】45或2【解析】分两种情况:①当DE DC =时,连接DM ,作DG BC ⊥于G ,如图1所示:∵四边形ABCD 是菱形,2AB CD BC ===∴,AD BC ∥,AB CD ∥,60DCG B ︒∠=∠=∴,120A ︒∠=, 2DE AD ==∴, DG BC ⊥∵,906030CDG ︒︒︒∠=-=∴,112CG CD ==∴,DG ==∴3BG BC CG =+=,M ∵为AB 的中点, 1AM BM ==∴,由折叠的性质得:EN BN =,EM BM AM ==,60MEN B ︒∠=∠=,在ADM △和EDM △中,AD ED AM EM DM DM =⎧⎪=⎨⎪=⎩,()ADM EDM SSS ∴△≌△, 120A DEM ︒∠=∠=∴, 180MEN DEM ︒∠+∠=∴, D ∴、E 、N 三点共线,设BN EN x ==,则3GN x =-,2DN x =+, 在Rt DGN △中,由勾股定理得:()()22232x x -++=,解得:45x =,即45BN =; ②当CE CD =时,CE CD AD ==,此时点E 与A 重合,N 与点C 重合,如图2所示:CE CD DE DA ===,CDE △是等边三角形,2BN BC ==(含CE DE =这种情况);综上所述,当CDE △为等腰三角形时,线段BN 的长为45或2; 故答案为:45或2.三、16.【答案】(1)21212-=+-⨯=-=-⎝⎭原式 (2)方程整理,得:23520x x --=,()()2310x x -+=∵, 20x -=∴或310x +=,解得12x =;213x =-.【解析】(1)将三角函数值代入计算可得; (2)利用因式分解法求解可得. 17.【答案】(1)60(2)601518918---=(人),补全条形统计图如图1所示:(3)108(4)画树状图如图2所示:共有16个等可能的结果,小明和小华恰好选中同一个主题活动的结果有4个,∴小明和小华恰好选中同一个主题活动的41164==概率.【解析】(1)用“A”的频数除以所占比例即可得出答案;本次随机调查的学生人数1525%60=÷=人;故答案为:60;(2)求出“C”的频数,补全条形统计图即可;(3)用360°乘以“B”所占的比例即可;在扇形统计图中,“B”所在扇形的1836010860︒︒=⨯=圆心角,故答案为:108;(4)画出树状图,由概率公式即可得出结果.18.【答案】(1)证明:如图,连接OB,PA∵与O相切于点B,90ABO︒∠=∴,90ABE OBE︒∠+∠=∴,OB OD=∵,OBD ODB∠=∠∴,PAO PDB ∠=∠∵, PAO OBD ∠=∠∴,90ABE PAO ︒∠+∠=∴, 90AEB ︒∠=∴, CD ∵是直径,90CBD ︒∠=∴, CBD AEB ∠=∠∴, OA BC ∴∥;(2)220CD OD ==∵,8BC =BD ==∴, OE BD ⊥∵,BE DE ==∴BAE D ∠=∠∵,90AEB CBD ︒∠=∠=ABE DCB ∴△∽△, BE AEBC BD =∴= 21AE =∴.【解析】(1)如图,连接OB ,由切线的性质可得90ABO ︒∠=,由等腰三角形的性质和余角的性质可得90AEB ︒∠=,由圆周角的性质可得90CBD AEB ︒∠=∠=,可得结论;(2)由勾股定理可求BD 的长,通过证明ABE DCB △∽△,可得BE AEBC BD=,即可求解. 19.【答案】解:延长PQ 交直线AB 于点C , (1)906030BPQ ︒︒︒∠=-=; (2)设PC x =米.在直角APC △中,45PAC ︒∠=, 则AC PC x ==米;60PBC ︒∠=∵, 30BPC ︒∠=∴.在直角BPC △中,BC ==米, 10AB AC BC =-=∵,10x =∴,解得:15x =+则()5BC =+米.在直角BCQ △中,)55QC ⎛==+= ⎝⎭米.1551015.8PQ PC QC ⎛=-=++=≈ ⎝⎭∴(米). 答:树PQ 的高度约为15.8米.【解析】(1)延长PQ 交直线AB 于点C ,根据直角三角形两锐角互余求得即可;(2)设PC x =米,在直角APC △和直角BPC △中,根据三角函数利用x 表示出AC 和BC ,根据AB AC BC =-即可列出方程求得x 的值,再在直角BQC △中利用三角函数求得QC 的长,则PQ 的长度即可求解.20.【答案】(1)由已知可得5AD =,∵菱形ABCD ,()60B ∴,,()94C ,, ∵点()44D ,在反比例函数()0ky x x=>的图象上, 16k =∴,将点()94C ,代入23y x b =+, 2b =-∴;(2)()02E -,, 直线223y x =-与x 轴交点为()30,, ()122462AECS =⨯⨯+=△∴. 【解析】(1)由菱形的性质可知()60B ,,()94C ,,点()44D ,代入反比例函数ky x=,求出k ;将点()94C ,代入23y x b =+,求出b ; (2)求出直线223y x =-与x 轴和y 轴的交点,即可求AEC △的面积.21.【答案】(1)由题意可得:()100580y x =+-; (2)由题意可得:()40w y x =-,整理得:()2255005700200005704500w x x x =-+=-+-=--+,50a =∵-<, w ∴有最大值,即当70x =时,4500w =最大值;(3)由题意,得:()257045003800200x --+=+ 解得:160x =,280x =,∵抛物线开口向下,对称轴为直线70x =, ∴当6080x ≤≤时,符合该网店要求;而为了让顾客得到最大实惠,故60x =,∴当销售单价定为60元时,即符合网店要求,又能让顾客得到最大实惠.【解析】(1)由题意可得:()100580y x =+-; (2)由题意可得:()40w y x =-,即可求解;(3)由题意,得:()257045003800200x --+=+,即可求解. 22.【答案】(1)相等(2)如图2,3即为旋转后的图形.①如图2,当C 在AD 上时, 由(1)知ABD ACE △≌△,ADB AEC ∠=∠∴又PCD ACE ∠=∠∵,PCD ACE ∴△∽△, PD CDAE CE=∴又CE ===∵532CD AD AC =-=-=5PD =∴,解得PD =; 如图3,当C 在AD 反向延长线上时,同理PEB ABD △∽△PB BEAB BD =BD =∵532BE AE AB =-=-=3PB =∴解得PB =PD DB PB =+==∴.答:此时PD .(3)1【分析】(1)把ABC △绕点A 旋转到图1,根据旋转的性质,可以证明ABD ACE △≌△,即可得BD 、CE 的关系;BD 、CE 的关系是相等.理由:ABC ∵△和ADE △是有公共顶点的等腰直角三角形,90BAC DAE ︒∠=∠=,AB AC =∴, BAD CAE ∠=∠,DA EA =,()ABD ACE SAS ∴△≌△ BD CE =∴.故答案为:相等.(2)把ABC △绕点A 旋转,当90EAC ︒∠=时,分两种情况在图中作出旋转后的图形,进而求出此时PD 的长;(3)根据旋转的性质即可知旋转过程中线段PD 的最小值. 如图4所示,以点A 为圆心,AC 长为半径画圆,当CE 在圆A 下方与圆A 相切时,PD 的值最小.在Rt ACE △中,4CE ===在Rt ADE △中,DE ===∵四边形ABPC 是正方形, 3PC AB ==∴347PE PC CE =+=+=∴在Rt DEP △中,1PD ===∴线段PD 的最小值为1.故答案为:1.23.【答案】(1)将()10A -,,()03C ,代入22y ax x c =++,得203a c c -+=⎧⎨=⎩,解得,13a c =-⎧⎨=⎩,∴抛物线的解析式为:223y x x =++-;(2)联立2231y x x y x ⎧=-++⎨=--⎩,解得,10x y =-⎧⎨=⎩或45x y =⎧⎨=-⎩,()45E -∴,,如图1,当点Q 在x 轴上时,设()0Q m ,,AE ∵为底边, QA QE =∴, 22QA QE =∴,即()()222154m m +=+-, 解得,4m =,()140Q ∴,;当点Q 在y 轴上时,设()0Q n ,,AE ∵为底边, QA QE =∴, 22QA QE =∴,即()2222145n n +=++, 解得,4n =-,()204Q -∴,;综上所述,()140Q ,,()204Q -,;(3)如图2,过点E 作EH x ⊥轴于点H ,()10A ∵-,,()45E -,,5AH EH ==∴,AE ==45BAE ︒∠=,又3OB OC ==,45ABC ︒∠=∴,4AB =,BC ==,设()0P t ,,则3BP t =-,45BAE ABC ︒∠=∠=∵,∴只可能存在PBC BAE △∽△和PBC EAB △∽△两种情况,当PBC BAE △∽△时,PB ABBC AE=,=,35t =∴,1305P ⎛⎫ ⎪⎝⎭∴,; 当PBC EAB △∽△时,PB AEBC AB=,=,92t =-∴,2902P ⎛⎫- ⎪⎝⎭∴,,综上所述,点P 的坐标为305⎛⎫ ⎪⎝⎭,或902⎛⎫- ⎪⎝⎭,.【解析】(1)将点A ,C 的坐标代入22y ax x c =++即可;(2)求出点E 坐标,如图1,当点Q 在x 轴上时,设()0Q m ,,由QA QE =可列出关于m 的方程,解方程即可;当点Q 在y 轴上时,设()0Q n ,,则QA QE =可列出关于n 的方程,解方程即可;(3)如图2,过点E 作EH x ⊥轴于点H ,求出45BAE ︒∠=,所以可能存在PBC BAE △∽△和PBC EAB△∽△两种情况,设()0P t,,分别利用相似三角形的性质可求出t的值,即可写出点P的坐标.期末测试一、选择题(每题3分,共30分).1.(3分)下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是( ) A .B .C .D .2.(3分)将抛物线22y x =向左平移1个单位,再向下平移2个单位,得到的抛物线是( ) A .()2212y x =++ B .()2212y x =-+ C .()2212y x =--D .()2212y x =+-3.(3分)不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是( ) A .3个都是黑球B .2个黑球1个白球C .2个白球1个黑球D .至少有1个黑球4.(3分)如图,已知正五边形ABCDE 内接于O ,连结BD ,则ABD ∠的度数是( )A .60°B .70°C .72°D .144°5.(3分)如图,以点O 为位似中心,把ABC △放大为原图形的2倍得到A B C '''△,以下说法中错误的是( )A .ABC ABC '''△∽△B .点C 、点O 、点C '三点在同一直线上 C .:1:2AO AA '=D .AB A B ''∥6.(3分)若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定7.(3分)如图,半径为3的A 经过原点O 和点()02C ,,B 是y 轴左侧A 优弧上一点,则tan OBC ∠为( )A .13B .C D 8.(3分)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ) A .20%B .40%C .18%D .36%9.(3分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( )A .95sin α米 B .9cos α米 C .59sin α米 D .59cos α米10.(3分)我们定义一种新函数:形如()22040y ax bx c a b a =++≠-,>的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数223y x x =--的图象(如图所示),并写出下列五个结论:其中正确结论的个数是( )①图象与坐标轴的交点为()10-,,()30,和()03,; ②图象具有对称性,对称轴是直线1x =;③当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大; ④当1x =-或3x =时,函数的最小值是0; ⑤当1x =时,函数的最大值是4,A .4B .3C .2D .1二、填空题(每题3分,共15分)11.(3分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为________.12.(3分)如图,在ABC △中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠,若ADC △的面积为3,则ABD △的面积为________.13.(3分)如图,在平面直角坐标系中,点A 的坐标为()42-,,反比例函数()0ky x x=<的图象经过线段OA 的中点B ,则k =________.14.(3分)如图,将矩形ABCD 绕点B 顺时针旋转90°得矩形BEFG ,若3AB =,2BC =,则图中阴影部分的面积为________.15.(3分)如图,在菱形ABCD 中,60B ︒∠=,2AB =,M 为边AB 的中点,N 为边BC 上一动点(不与点B 重合),将BMN △沿直线MN 折叠,使点B 落在点E 处,连接DE 、CE ,当CDE △为等腰三角形时,BN 的长为________.三、解答题(共75分)16.(8分)(1)计算:21cos30tan302cos 45sin 60-+-(2)解方程:2523x x +=17.(9分)为了响应市政府号召,某校开展了“六城同创与我同行”活动周,活动周设置了“A :文明礼仪,B :生态环境,C :交通安全,D :卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)本次随机调查的学生人数是________人; (2)请你补全条形统计图;(3)在扇形统计图中,“B ”所在扇形的圆心角等于________度;(4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.18.(9分)如图,已知点P 是O 外一点,直线PA 与O 相切于点B ,直线PO 分别交O 于点C 、D ,PAO PDB ∠=∠,OA 交BD 于点E .(2)当O 的半径为10,8BC =时,求AE 的长.19.(9分)如图,为了测量山坡上一棵树PQ 的高度,小明在点A 处利用测角仪测得树顶P 的仰角为45°,然后他沿着正对树PQ 的方向前进10m 到达点B 处,此时测得树顶P 和树底Q 的仰角分别是60°和30°,设PQ 垂直于AB ,且垂足为C .(1)求BPQ ∠的度数;(2)求树PQ 的高度(结果精确到0.1m 1.73≈).20.(9分)如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()10,,点()44D ,在反比例函数()0k y x x =>的图象上,直线23y x b =+经过点C ,与y 轴交于点E ,连接AC ,AE .(2)求ACE △的面积.21.(10分)“互联网+”时代,网上购物备受消费者青眯,某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可售价100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条.(1)直接写出y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3 800元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?22.(10分)实验探究:如图,ABC △和ADE △是有公共顶点的等腰直角三角形,90BAC DAE ︒∠=∠=,交于BD 、CE 点P .【问题发现】(1)把ABC △绕点A 旋转到图1,BD 、CE 的关系是________(“相等”或“不相等”),请直接写出答案;【类比探究】(2)若3AB =,5AD =,把ABC △绕点A 旋转,当90EAC ︒∠=时,在图中作出旋转后的图形,并求出此时PD 的长;【拓展延伸】(3)在(2)的条件下,请直接写出旋转过程中线段PD 的最小值为________.23.(11分)如图,抛物线22y ax x c =++经过()10A -,,B 两点,且与y 轴交于点()03C ,,抛物线与直线1y x =--交于A ,E 两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q ,使得AQE △是以AE 为底边的等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,说明理由.(3)P 点在x 轴上且位于点B 的左侧,若以P ,B ,C 为顶点的三角形与ABE △相似,求点P 的坐标.。
华师大版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列各式中一定是二次根式的是( ) A. B. C. D.2.如果(x +2y )2+3(x +2y )﹣4=0,那么x +2y 的值为( )A .1B .﹣4C .1或﹣4D .﹣1或3 3.李明同学对下面习题解答正确的是( )A .若x 2=4,则x=2B .方程x (2x ﹣1)=2x ﹣1的解为x=1C .若方程(m -2)m x +3mx ﹣1=0是关于x 的一元二次方程,则m=﹣2D .若分式的值为零,则x=1或24.如图,已知楼房AB 高为50m ,铁塔塔基距楼房基间的水平距离BD•为100m ,•塔高CD 为100√3+1503m ,则下面结论中正确的是( ).A .由楼顶望塔顶仰角为60°B .由楼顶望塔基俯角为60°C .由楼顶望塔顶仰角为30°D .由楼顶望塔基俯角为30°5.一个盒子里有完全相同的三个小球,球上分别标有数字﹣2,1,4.随机摸出一个小球(不放回),其数字为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px+q=0有实数根的概率是( )A. B. C. D.6.如图,在Rt ABC 中,90C ∠=︒,30A ∠=︒,AB 的垂直平分线DE 交AC 于点D ,交AB 于点E ,连结B D .下列说法错误的是( )A .BC 是ADB △的AD 边上的高B .DE DC =C .图中所有的直角三角形都全等D .ADB △是等腰三角形7.如图,已知AB=AC ,∠A=36°,AB 的中垂线MD 交AC 于点D 、交AB 于点M .下列结论:①BD 是∠ABC 的平分线;②△BCD 是等腰三角形;③△ABC ∽△BCD ;④△AMD ≌△BCD . 正确的有( )个.A .4B .3C .2D .18.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0; ②4a+c <2b ; ③3b+2c <0; ④m (am+b )+b <a (m≠﹣1), 其中正确结论的个数是( )A .4个B .3个C .2个D .1个9.计算18827÷⨯的结果是( )A .463B .186C .932D .16410.已知1x 、2x 是一元二次方程220x x --=的两个根,则1211+x x 的值是( ) A .1B .12C .1-D .12- 二、填空题11.若实数a 、b 满足|a+2|,则=_________.12.已知一元二次方程有一个根是2,那么这个方程可以是_________(填上一个符合条件的方程即可答案不惟一).13.在△ABC 中,AB =6cm ,AC =9cm ,动点D 从点B 开始沿BA 边运动,速度为1cm/s ;动点E 从点A 开始沿AC 边运动,速度为2cm/s .如果D ,E 两动点同时运动,那么当它们运动__________________s时,由D,A,E三点连成的三角形与△ABC相似.14.在平面直角坐标系中有两点A(6,2),B(6,0),以原点为位似中心,相似比为1:3,把线段AB缩小,则A点对应点的坐标是_________.15.如图,是由四个直角边分别为3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是_________.16.如图,在△ABC中,AB=AC,D、E分别是AB、AC的中点,M、N为BC上的点,连接DN、EM.若AB=10cm,BC=12cm,MN=6cm,则图中阴影部分的面积为_________cm2.17.如图,抛物线y=﹣x2+2x+m(m<0)与x轴相交于点A(x1,0)B(x2,0),点A在点B的左侧.当x=x2﹣2时,y_________0(填“>”“=”或“<”号).三、解答题18.(1)用配方法解方程:x2+x+=0.(2)化简:.19.(9分)先化简,再求值.(﹣)÷,其中m=tan45°+2cos30°.20.某工厂生产的某种产品按质量分为10个档次,第一档次(最低档次)的产品一天可生产80件,每件产品的利润为10元,每提高一个档次,每件产品的利润增加2元.(1)当每件产品的利润为16元时,此产品质量在第几档次?(2)由于生产工序不同,此产品每提高一个档次,一天的产量减少4件.若生产某档次产品一天的总利润为1200元,问该工厂生产的是第几档次的产品?21.完全相同的4个小球,上面分别标有数字1,﹣1,2,﹣2,将其放入一个不透明的盒子中摇匀,在从中随机摸球两次(第一次摸出球后放回摇匀).把第一次,第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率.(用树状图或列表法求解)22.如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC形内一点,且∠APB=∠APC=135°.(1)求证:△CPA∽△APB;(2)试求tan∠PCB的值.23.(10分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).24.(10分)已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.25.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的函数解析式.(2)设点D在抛物线上,点E在抛物线的对称轴上,若四边形AODE是平行四边形,求点D的坐标.(3)联接BC 交x 轴于点F .y 轴上是否存在点P ,使得△POC 与△BOF 相似?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案1.D【解析】试题分析:二次根式必须满足被开方数为非负数.A 、被开方数为负数;B 、为三次方根;C 、当a <0时,10a 为负数.考点:二次根式的定义.2.C【分析】在本题中有两个未知数,且通过观察最后结果,可采用换元法,把2x y +当成一个整体进行考虑.【详解】设2x y a +=,则原方程变形为2340a a +-=,解得4a =-或1a =.故选:C .【点睛】此题考查了解一元二次方程,主要是把2x y +当成一个整体,把求代数式的值的问题转化为解关于这个整体的方程,利用因式分解法求解.3.C【详解】试题分析:A 、x=±2;B 、1x =1、2x =0.5;D 、x=2.考点:一元二次方程的解法和定义、分式的值.4.C【解析】试题分析:过点A 作AE ⊥CD ,则DE=AB=50m ,AE=BD=50m ,则CE=503√3,∴∠CAE=30°,即楼顶望塔顶的仰角为30°.考点:三角函数的应用5.D【解析】试题分析:首先分别求出p 和q 的所有情况,然后代入方程判定是由有解.考点:概率的计算、一元二次方程根的判别式.6.C【分析】根据三角形的高的定义可判断A ,根据线段垂直平分线的性质、等腰三角形的性质、含30°角的直角三角形的性质可判断B 、C ,根据全等三角形的判定可判断C 逐项即可.【详解】解:A 、BC 是ADB △的AD 边上的高,正确,不符合题意;B 、∵在Rt ABC 中,90C ∠=︒,30A ∠=︒,∴∠ABC =90°﹣30°=60°,∵DE 是线段AB 的垂直平分线,∴DA=DB ,∴∠ABD =∠A =30°,∴∠DBC =30°,∴DE=DC= 12DB ,故B 正确,不符合题意;C 、图中所有的直角三角形都全等,明显△AED 与△ACB 都是直角三角形,但不全等,故C 错误,符合题意;D 、∵DE 是线段AB 的垂直平分线,∴DA=DB ,故D 正确,不符合题意,故选:C .【点睛】本题考查了三角形的高的定义、线段垂直平分线的性质、等腰三角形的性质、含30°角的直角三角形的性质、全等三角形的判定,熟练掌握这些知识的灵活运用是解答的关键.7.B【解析】试题分析:根据题意得:AD=BD ,则∠ABD=∠A=36°,∵AB=AC ,则∠ABC=∠C=72°,则∠DBC=36°,∴BD 为∠ABC 的平分线;∵∠DBC=36°,∠C=72°,则∠BDC=72°,则△BCD 是等腰三角形;∵∠DBC=∠A=36°,∠C=∠C ,则△ABC ∽△BCD.考点:中垂线的性质、三角形相似的判定.8.B【解析】试题分析:图象与x 轴有两个交点,则2b -4ac >0,即4ac -2b <0;当x=-2时,y >0,即4a -2b+c >0,即4a+c >2b ;根据对称轴为x=-1可得:2a=b ,则a=0.5b ,当x=1时,y <0,即a+b+c <0,∴0.5b+b+c <0,即1.5b+c <0,则3b+2c <0;当x=m 时(m≠-1)的y 值小于当x=-1时的y 的值,即a 2m +bm+c <a -b+c ,则a 2m +bm <a -b ,移项得:a 2m +bm+b <a ,∴m (am+b )+b <a.考点:二次函数图象的性质9.C【分析】先根据二次根式的乘除法则得到原式【详解】解:原式故选:C .【点睛】本题考查了二次根式的乘除法,灵活应用二次根式的乘法法则和除法法则是解决此类问题的关键.10.D【分析】根据1x 、2x 是一元二次方程220x x --=的两个根得到12121,2x x x x +==-,再将1211+x x 变形为1212x x x x +,然后代入计算即可. 【详解】解:∵1x 、2x 是一元二次方程220x x --=的两个根,∴12121,2x x x x +==- ∵12121211x xx x x x ++=, ∴121212111122x x x x x x ++===--, 选D .【点睛】本题主要考查了一元二次方程20(a 0)++=≠ax bx c 的根与系数的关系:若方程的两根为1x 、2x ,则1212,b c x x x x a a+=-=,熟记知识点与代数式变形是解题的关键. 11.1.【解析】试题分析:根据非负数之和为零,则每个非负数都为零求出a 和b 的值,然后代入代数式进行计算.根据题意可得:a+2=0;b -4=0,解得:a=-2,b=4.考点:非负数的性质.12.x (x -2)=0(答案不唯一)【详解】试题分析:利用解方程的方法倒着写出一个方程,答案并不唯一.考点:一元二次方程的解.13.32或187 【分析】分AED ABC △∽和AED ACB △∽两种情况讨论,分别列出比例式求解即可【详解】解:根据题意得:AE=2t,BD=t,∴AD=6﹣t,∵∠A=∠A,∴分两种情况:①当AED ABC△∽时,AEAB=ADAC即26t=69t-,解得:t=32;②当AED ACB△∽时,AEAC=ADAB即29t=66t-,解得:t=187;综上所述:当t=32或187时,△ADE与△ABC相似.故答案为:32或187【点睛】本题考查了相似三角形的性质,分类讨论是解题的关键.14.(2,23)或(-2,-23)【解析】试题分析:本题需要分两种情侣进行讨论,第一种处于第一象限,第二种处于第三象限.根据相似比可以求出点A的坐标.考点:位似图形的性质15.1 25【解析】试题分析:根据题意可得大正方形的边长为5,小正方形的边长为1,则大正方形的面积为25,小正方形的面积为1,然后进行计算概率.考点:概率的计算.16.24【解析】试题分析:根据题意可得:△ABC底边BC上的高为8cm,连接DE,空白部分的面积为三个三角形的面积之和,∵DE为△ABC的中位线,则DE=6cm,∴三个三角形的底都是6cm,三个三角形的高之和为8cm,则三个三角形的面积之和为:6×8÷2=24平方厘米,∵△ABC的面积=12×8÷2=48平方厘米,则阴影部分的面积为:48-24=24平方厘米. 考点:不规则图形的面积求法. 17.< 【解析】试题分析:根据题意可得函数的对称轴为x=1,∵0<1x <1,则1<2x <2,∴x=2x -2<0,根据图象可得:当x <0时,y <0. 考点:二次函数的性质18.(1)无解 (2)【详解】试题分析:(1)首先将二次项系数化为1,然后再进行配方;(2)将每个根式进行化简,然后再进行合并同类项计算.试题解析:(1)原方程可变形为:234x x +=- 配方得:21142x x ++=- 即211()22x +=-∴方程无解.(2)原式考点:一元二次方程的解法、二次根式的计算.19【解析】试题分析:首先将分式进行化简,然后求出m 的值,将m 的值代入化简后的式子进行计算. 试题解析:原式=33()331m m m m m m =3331m m m =-31m当=3331313考点:分式的化简、三角函数计算. 20.(1)第四档次 (2)第六档次 【详解】试题分析:(1)首先求出提高了几元钱,然后求出提高几个档次,然后进行说明;(2)设生产x 档次的产品,则每件产品的利润为:10+2(x -1),产品的数量为:80-4(x -1),根据总利润=单件利润×数量列出方程进行计算.试题解析:(1)当每件利润是16元时,提高了(16﹣10)÷2=3个档次,∵提高3个档次∴此产品的质量档次是第4档次.(2)设生产产品的质量档次是在第x档次时,一天的利润是y,由题意可得y=[10+2(x﹣1)][80﹣4(x﹣1)],整理得y=﹣8x2+136x+672,当利润是1200元时,即﹣8x2+136x+672=1200,解得:x1=6,x2=11(11>10,不符合题意,舍去)答:当生产产品的质量档次是在第6档次时,一天的总利润为1200元. 考点:一元二次方程的应用.21.3 4 .【分析】首先将各种情况用列表的方法表示出来,然后求出所有的情况和不在第二象限的情况,最后计算概率.【详解】解:如图所示:根据表格可得:共有16种情况,不在第二象限的有12种情况,则P(不在第二象限)=123 164.【点睛】利用列表法求概率.22.(1)见解析(2)2.【解析】试题分析:(1)根据∠PBA+∠PAB=45°和∠PAC+∠PAB=45°得出∠PAC=∠PBA,再根据已知条件∠APB=∠APC得出三角形相似;(2)根据等腰直角三角形的性质得出CA和AB的比值,设CP=k,则PB=2k,然后根据∠BPC=90°求出∠PCB的正切值.试题解析:(1)∵在△ABC中,∠ACB=90°,AC=BC,∴∠BAC=45°,即∠PAC+∠PAB=45°,又在△APB中,∠APB=135°,∴∠PBA+∠PAB=45°,∴∠PAC=∠PBA,又∠APB=∠APC,∴△CPA∽△APB.(2)∵△ABC是等腰直角三角形,∴,又∵△CPA∽△APB,∴,令CP=k,则,又在△BCP中,∠BPC=360°﹣∠APC﹣∠APB=90°,∴.考点:三角形相似的判定、锐角三角函数的计算.23.(4+3)米【解析】试题分析:缩小过点A作AH⊥CD,根据∠CAH的正切值求出CH,从而得到CD的长度,然后根据∠CED的正弦值求出CE的长度.试题解析:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt △ACH 中,tan ∠CAH=, ∴CH=AH•tan ∠CAH ,∴CH=AH•tan ∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt △CDE 中, ∵∠CED=60°,sin ∠CED=,∴CE==(4+)(米),答:拉线CE 的长为(4+)米.考点:三角函数的应用24.(1)等边三角形;(2)S=23332t t ;(3)t=65. 【解析】试题分析:(1)当t=2时,分别求出BQ 和BP 的长度,然后进行说明;(2)过点Q 作QE ⊥AB ,利用三角函数求出QE 的长度,然后求出△BPQ 与t 之间的关系;(3)根据题意可得△CRQ 为等边三角形,求出QR 、BE 、EP 与t 的关系可以得出四边形EPQR 是平行四边形,然后进行计算.试题解析:(1)△BPQ 是等边三角形 当t=2时 AP=2×1=2,BQ=2×2=4∴BP=AB ﹣AP=6﹣2=4 ∴BQ=BP 又∵∠B=60° ∴△BPQ 是等边三角形; (2)过Q 作QE ⊥AB ,垂足为E由QB=2t ,得QE=2t•sin60°=t 由AP=t ,得PB=6﹣t∴S △BPQ =×BP×QE=(6﹣t )×t=﹣t∴S=﹣t ;(3)∵QR∥BA ∴∠QRC=∠A=60°,∠RQC=∠B=60°∴△QRC是等边三角形∴QR=RC=QC=6﹣2t∵BE=BQ•cos60°=×2t=t∴EP=AB﹣AP﹣BE=6﹣t﹣t=6﹣2t∴EP∥QR,EP=QR ∴四边形EPRQ是平行四边形∴PR=EQ=t 又∵∠PEQ=90°,∴∠APR=∠PRQ=90°∵△APR∽△PRQ,∴∠QPR=∠A=60°∴tan60°=即解得t=∴当t=时,△APR∽△PRQ.考点:二次函数的实际应用、三角形相似的判定.)或(0,﹣4).25.(1) y=x2+2x;(2) (1,3);(3) (0,﹣12【解析】试题分析:(1)将点A、点B和原点代入解析式进行求解;(2)根据平行四边形的性质得出点D的坐标;(3)首先求出OB、OF、OC的长度,然后根据三角形相似的条件求出点P的坐标,分两种情况进行讨论.试题解析:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),将点A(﹣2,0),B(﹣3,3),O(0,0),代入可得:,解得:,所以函数解析式为:y=x2+2x;(2)∵AO为平行四边形的一边,∴DE∥AO,DE=AO,∵A(﹣2,0),∴DE=AO=2,∵四边形AODE是平行四边形,∴D在对称轴直线x=﹣1右侧,∴D横坐标为:﹣1+2=1,代入抛物线解析式得y=3,∴D的坐标为(1,3);(3)在y轴上存在点P,使得△POC与△BOF相似,理由如下:由y=x2+2x,顶点C的坐标为(﹣1,1)∵tan∠BOF=,∴∠BOF=45°,当点P在y轴的负半轴时,tan∠COP=,∴∠COP=45°,∴∠BOF=∠COP,设BC的解析式为y=kx+b(k≠0),∵图象经过B(﹣3,3),C(﹣1,1)∴,解得∴,∴y=﹣2x﹣3;令y=0,则x=﹣1.5.∴F(﹣1.5,0),∴OB=3,OF=1.5,OC=,①当△POC∽△FOB时,则,即,∴OP=,∴P(0,﹣)②当△POC∽△BOF时,∴,∴OP=4,∴P(0,﹣4),∴当△POC与△BOF相似时,点P的坐标为(0,﹣)或(0,﹣4).考点:待定系数法求函数解析式、三角形相似的判定、平行四边形的性质.。
华师大版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列运算结果正确的是( )A B .2=C 3=D .)213=-2.小丽抛一枚硬币10次,其中有6次正面朝上,则反面朝上的频数是( ) A .6 B .0.6 C .4 D .0.43.某公司今年1月份生产口罩250万只,按计划第一季度的总生产量要达到910万只.设该公司2、3两个月生产量的月平均增长率为x ,根据题意列方程正确的是( ) A .250(1)910x += B .()22501910x +=C .()()225012501910x x +++=D .()()225025012501910x x ++++= 4.如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA ∶OD =1∶2,则△ABC 与△DEF 的面积比为( )A .1∶2B .1∶3C .1∶4D .1∶5 5.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( )A .两个小球的标号之和等于1B .两个小球的标号之和等于6C .两个小球的标号之和大于1D .两个小球的标号之和大于66.关于x 的一元二次方程()221620k x x k k -+++-=有一个根是0,则k 的值是( )A .0B .1C .-2D .1或-2 7.已知(﹣3,1y ),(﹣2,2y ),(1,3y )是抛物线2312y x x m =--+上的点,则( ) A .3y <2y <1y B .3y <1y <2y C .2y <3y <1y D .1y <3y <2y8.已知抛物线24y x bx=++的顶点在x轴上,则b的值为()A.2 B.4 C.-4 D.9.在Rt△ABC中,∠ACB=90°,BC=1,CE是斜边AB上的中线,CD是斜边上的高,则DE的长为()A B C D10.如图,在△ABC中,EF//BC,EG//AB,则下列式子一定正确的是()A.AE EFEC CD=B.EF EGCD AB=C.CG AFBC AD=D.AF BGDF GC=二、填空题11.m的结果为正整数,则无理数m的值可以是__________.(写出一个符合条件的即可)12.等腰三角形一边长是3,另两边长是关于x的方程240x x k-+=的两个根,则k的值为_______.13.构建几何图形解决代数问题是“数形结合”思想的重要体现,在计算tan 15°时,如图,在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB到点D,使BD=AB,连接AD,得∠D=15°,所以tan 15°=ACCD1tan22.5的值为_______.14.将一条长为20 cm的铁丝剪成两段并用每一段铁丝刚好围成一个正方形,则这两个正方形面积之和的最小值是____________ .15.如图,正方形ABCD的边长为4,E为AB边上一点,tan∠ADE=34,M为ED的中点,过点M作DE的垂线,交边AD于点P,若点N在射线PM上,且由点E、M、N组成的三角形与△AED 相似,则PN 的长为______.三、解答题1617.解方程:()()251x x +-=.18.如图,在△ABC 中,DE//AC ,EF//AB .(1)求证:△BDE ∽△EFC .(2)若23BD AD =,且△BDE 的面积是5,求△EFC 的面积.19.一个盒子中装有1个红球、1个白球和2个黄球,这些球除颜色外都相同.(1)从盒子中任意摸出一个球,恰好是白球的概率是_________;(2)从盒子中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,试用树状图或表格列出所有可能的结果,并求摸到一个红球和一个黄球的概率;(3)往盒子里面再放入一个白球,如果从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,那么摸到一个白球和一个黄球的概率是__________.20.如图,甲、乙两座建筑物的水平距离BC为34 m,从甲建筑物的顶部A处测得乙建筑物的顶部D处的俯角为48°,测得乙建筑物的底部C处的俯角为58°,求乙建筑物的高度CD.(结果精确到0.1m.参考数据:sin 48°≈0.74,cos 48°≈0.67,tan 48°≈1.11,sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60)21.已知二次函数y=﹣x2+bx+c的图象如图所示,解决下列问题:(1)关于x的一元二次方程﹣x2+bx+c=0的解为;(2)求此抛物线的解析式;(3)当x为值时,y<0;(4)若直线y=k与抛物线没有交点,直接写出k的范围.22.如图,在△ABC中,AB=AC,∠BAC=90°,AD平分∠BAC,连接DB,将线段DB 绕点D逆时针旋转90°得到线段DE,连接BE、CE.(1)求ADCE的值;(2)求射线AD与直线CE相交所成的较小角的度数;(3)题设其它条件不变,若点D是∠BAC平分线上的一个动点,且AB=1,∠DBC=15°,直接写出线段CE的长.23.如图,已知抛物线2y x bx c=-++经过A、B(-3,0)、C(0,3)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点M,使点M到点O和点C的距离之和最小,求出此时点M的坐标;(3)设点P为抛物线的对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.24.如图,在△ABC中,点D,E分别是边AB,AC的中点,过点C作CF//AB,交DE的延长线于点F,连接AF,BF.(1)求证:△AED∽△ACB;(2)若∠ACB=90°,试判断四边形ADCF的形状,并加以证明.参考答案1.D【分析】直接根据二次根式的运算法则计算各项,再进行判断即可.【详解】解:A. A计算错误,不符合题意;B.2B计算错误,不符合题意;C. =C计算错误,不符合题意;D.. )213=-故选:D.【点睛】本题主要考查二次根式的运算,熟练掌握运算法则是解答此题的关键.2.C【分析】由小丽抛一枚硬币10次,其中有6次正面朝上,由正反两面次数之和为10,则反面朝上的次数为总次数-正面朝上的次数即可.【详解】解:小丽抛一枚硬币10次,其中有6次正面朝上,由正反两面次数之和为10,则反面朝上的次数为:10-6=4次,则反面朝上的频数是4.故选择:C.【点睛】本题考查频数与频率的概念,掌握频数是重复出现的次数,频率是重复出现的次数除以总的次数,会区分是解题关键.3.D【分析】根据所设未知数,先表示出该公司2、3两个月生产量,再列方程即可.【详解】解:设该公司2、3月的生产量的月平均增长率为x,依题意,得:250+250(1+x)+250(1+x)2=910.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.C【分析】根据位似图形的性质即可得出答案.【详解】由位似变换的性质可知,//,//AB DE AC DF∴12 OA OB OD OE==12 AC OADF OD∴==∴△ABC 与△DEF 的相似比为:1∶2∴△ABC 与△DEF 的面积比为:1∶4故选C .【点睛】本题考查了位似图形的性质,熟练掌握性质定理是解题的关键.5.B【分析】随机事件是指在某个条件下有可能发生有可能不会发生的事件,根据此定义即可求解.【详解】解:从两个口袋中各摸一个球,其标号之和最大为6,最小为2,选项A :“两个小球的标号之和等于1”为不可能事件,故选项A 错误;选项B :“两个小球的标号之和等于6”为随机事件,故选项B 正确;选项C :“两个小球的标号之和大于1”为必然事件,故选项C 错误;选项D :“两个小球的标号之和大于6”为不可能事件,故选项D 错误.故选:B .【点睛】本题考查了随机事件、不可能事件、必然事件的概念,熟练掌握各事件的定义是解决本题的关键.6.C【分析】把x=0代入方程,得到220k k +-=,解得k 值后,验证二次项系数不为零,判断即可.【详解】∵x 的一元二次方程()221620k x x k k -+++-=有一个根是0,∴220k k +-=,且k-1≠0,解得k= -2或k=1,且k≠1,∴k= -2,故选C .【点睛】本题考查了已知一元二次方程的一个根探解字母系数问题,熟练运用根的定义,一元二次方程的定义是解题的关键.7.B【分析】先求出抛物线的对称轴,然后通过增减性判断即可.【详解】解:抛物线2312y x x m =--+的对称轴为()12223x ==-⨯-, ∵30-<,∴2x <-是y 随x 的增大而增大,2x >-是y 随x 的增大而减小,又∵(﹣3,1y )比(1,3y )距离对称轴较近,∴3y <1y <2y ,故选:B .【点睛】本题考查了二次函数的图象和性质,找到对称轴,注意二次函数的增减性是解题的关键. 8.D【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解.【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯, ∵顶点在x 轴上, ∴241441b ⨯⨯-⨯=0, 解得b 2=16,b=±4.故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.9.A【分析】根据勾股定理即可求得AB 的长,再根据直角三角形斜边上的中线等于斜边的一半得出CE 的长,由三角形面积相等即可求得CD 的长,进而由勾股定理可以求得DE 的长.【详解】解:Rt △ABC 中,∠ACB=90°,∴AC 2+BC 2=AB 2,∵BC=1,∴∵CD 是斜边上的高,∴三角形ABC 面积=⋅=⋅11AC BC AB CD 22∴∵CE 是斜边AB 上的中线,∴CE=12==AB ,Rt △CDE 中,∠CDE=90°,∴==DE故选:A【点睛】本题考查了勾股定理和直角三角形的性质,正确求出AD 和CE 的值是解题的关键. 10.D【分析】根据平行线分线段成比例定理逐一判断即可.【详解】∵EG //AB ,EF //BC ,∴AE AF AC FD=,∵AC≠EC∴AE EFEC CD=不成立,∴选项A错误;∵EG//AB,EF//BC,∴EF AECD AC=,EG ECAB AC=,∵AE≠EC,∴EF EGCD AB=不成立,∴选项B错误;∵EG//AB,EF//BC,∴CG CECB CA=DFDA=,∵DF≠AF∴CG AFBC AD=不成立,∴选项C错误;∵EG//AB,EF//BC,∴AF AEDF EC=,AE BGEC GC=,∴AF BG DF GC=,∴选项D正确;故选D.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理,特别是比例中对应线段的属性保持一致是解题的关键.11【分析】根据2为12,即可得到一个无理数m的值.【详解】解:∵212=,∴12m时m的结果为正整数,.【点睛】本题考查了二次根式,注意2a=是解题的关键.12.3或4.【分析】分等腰三角形的腰长为3和底边为3两种情形求解即可.【详解】当等腰三角形的腰长为3时,则另一边长为3,∵另两边长是关于x的方程240x x k-+=的两个根,∴x=3是方程240x x k-+=的根,∴23430k-⨯+=,∴k=3,∴2430x x-+=,∴x=3或x=1,∴等腰三角形的三边为3,3,1,存在,当等腰三角形的底边为3时,则两腰为方程的根,∵另两边长是关于x的方程240x x k-+=的两个根,∴2(4)40k--=,∴k=4,∴2440x x-+=,∴122x x==,∴等腰三角形的三边为2,2,3,存在,综上所述,k=3或k=4,故答案为:3或4.【点睛】本题考查了一元二次方程的根与等腰三角形的边长之间的关系,灵活运用分类思想,根的定义,根的判别式是解题的关键.13【分析】在Rt △ACB 中,∠C=90°,∠ABC=45°,可知AC=BC ,延长CB 到点D ,使BD=AB ,得∠D=22.5°,根据勾股定理求出,可求CD= (AC ,利用定义求tan 22.5°,取倒数即可.【详解】解:在Rt △ACB 中,∠C=90°,∠ABC=45°,∴AC=BC ,延长CB 到点D ,使BD=AB ,得∠D=22.5°,根据勾股定理,CD=BC+BD=AC+AB=(AC ,tan 22.5°=AC CD , 1=tan 22.5..【点睛】 本题考查类比方法求三角函数值,勾股定理,掌握三角函数的定义,勾股定理的应用,以及构图取半角的方法是解题关键.14.252cm2【分析】根据正方形面积和周长的转化关系“正方形的面积=116×周长×周长”列出面积的函数关系式并求得最小值.【详解】设一段铁丝的长度为x,另一段为(20−x),则S=116x2+116(20−x)(20−x)=18(x−10)2+252,∴由函数当x=10cm时,S最小,为252cm2.答:这两个正方形面积之和的最小值是252cm2.故答案为25 2.【点睛】本题考查了函数模型的选择与应用,解题的关键是熟练的掌握函数模型的选择与应用.15.0或154或12524【分析】首先根据tan∠ADE=34求得AE=3,根据勾股定理求出DE=5,由M为ED的中点得DM=EM=5 2,根据tan∠ADE=34求得PM=158,然后分三种情况,根据相似三角形的性质即可求解.【详解】解:∵正方形ABCD的边长为4,tan∠ADE=AEAD=34,AE=3,∴5=,∵M为ED的中点,∴DM=EM=52,∴在Rt△PMD中,PM=DM∙an∠ADE=52×34=158,如图:点N 在线段PM 上,1EMN DAE △∽△时1MN EMAE DA =,即15234MN =, ∴1158MN =, ∴111515088PN PM MN =-=-=;点N 在线段PM 的延长线上,2EMN DAE △∽△时2MN EMAE DA =,即25234MN =, ∴2158MN =, ∴22151515884PN PM MN =+=+=;点N 在线段PM 的延长线上,3EMN EAD △∽△时3MN EMAD EA =,即35243MN =, ∴3103MN =, ∴3315101258324PN PM MN =+=+=.故答案为:0或154或12524.【点睛】本题考查正方形的性质,相似三角形的性质,利用正切值求边长,熟练掌握相似三角形的性质是解题的关键.16.12【分析】先利用特殊的三角函数值计算,再利用二次根式的混合运算法则计算得出结果.【详解】解:原式1)212+12=. 【点睛】本题考查了特殊的三角函数值及二次根式的混合运算,解题的关键是熟练掌握运算法则.17.1x =2x =【分析】先把方程进行整理,然后利用公式法解方程,即可得到答案.【详解】解:原方程可化为:23110x x --=.∵ 1,3,11,a b c ==-=-∴()()23411153∆=--⨯⨯-=>0,∴x ==∴1x =2x = 【点睛】本题考查了解一元二次方程,解题的关键是熟练掌握公式法解一元二次方程.18.(1)见解析;(2)454【分析】 (1)由平行线的性质可得∠BED=∠ECF ,∠B=∠FEC ,从而可证得△BDE ∽△EFC ; (2)先根据DE ∥AC ,得出23BE BD CE AD ==,进而根据△BDE ∽△EFC ,得出相似三角形的面积比等于相似比的平方得出等式,然后结合△BDE 的面积是5,可求得△ABC 的面积.【详解】(1)证明:∵ DE ∥AC ,∴ ∠BED=∠C .∵ EF ∥AB ,∴ ∠B=∠FEC .∴ △BDE ∽△EFC .(2)解:∵23BD AD =,∴23BD AD =. ∵ DE ∥AC ∴23BE BD CE AD ==. 由(1)知△BDE ∽△EFC ,且5BDE S ∆=, ∴2224()()39BDE EFC S BE S CE ∆∆===. ∴99455444EFC BDE S S ∆∆==⨯=. 【点睛】本题考查了相似三角形的判定与性质,熟练掌握相关性质及定理是解题的关键.19.(1)14 ;(2)13 ;(3)825【分析】(1)根据各种颜色球的个数,直接求出概率;(2)无放回摸球,用树状图法列举出所有等可能出现的情况,从中找出一红一黄的情况,进而求出概率.(3)两次放回摸球,用列表法列举出所有等可能出现的情况,从中找出一白一黄的情况,进而求出概率.【详解】解:(1)111124P ==++. (2)画树状图:∴共有12种等可能的结果.41123P ==(摸到一个红球和一个黄球). (3)再加1个白球,有放回摸两次,所有可能的情况如下:共有25种等可能的情况,其中一白一黄的有8种,∴摸到一个白球和一个黄球的概率是:825. 【点睛】考查列表法或树状图法求等可能事件发生的概率,使用次方法一定注意每一种结果出现的可能性是均等的,即为等可能事件,同时注意“有放回”和“无放回”的区别.20.乙建筑物的高度CD 约为16.7米【分析】作AE ⊥CD 交CD 的延长线于点E ,根据正切的定义分别求出CE 、DE ,结合图形计算即可.【详解】解:如图,作AE ⊥CD 交CD 的延长线于点E ,则四边形ABCE 是矩形,∴AE =BC =34m ,在Rt △ACE 中,tan ∠CAE =CE AE , ∴CE =AE •tan58°≈34×1.60=54.4(m )在Rt △ADE 中,tan ∠DAE =DE AE,∴DE=AE•tan48°≈34×1.11=37.74(m)∴CD=CE﹣DE=54.4﹣37.74=16.66≈16.7(m)答:乙建筑物的高度CD约为16.7m.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.(1)﹣1或3;(2)y=﹣x2+2x+3;(3)x>3或x<﹣1;(4)y>4【分析】(1)直接观察图象,抛物线与x轴交于﹣1,3两点,所以方程的解为x1=﹣1,x2=3.(2)设出抛物线的顶点坐标形式,代入坐标(3,0),即可求得抛物线的解析式.(3)若y<0,则函数的图象在x轴的下方,找到对应的自变量取值范围即可.(4)若直线y=k与抛物线没有交点,则k>函数的最大值即可.【详解】解:(1)观察图象可看对称轴出抛物线与x轴交于x=﹣1和x=3两点,∴方程的解为x1=﹣1,x2=3,故答案为:﹣1或3;(2)设抛物线解析式为y=﹣(x﹣1)2+k,∵抛物线与x轴交于点(3,0),∴(3﹣1)2+k=0,解得:k=4,∴抛物线解析式为y=﹣(x﹣1)2+4,即:抛物线解析式为y=﹣x2+2x+3;(3)若y<0,则函数的图象在x轴的下方,由函数的图象可知:x>3或x<﹣1;(4)若直线y=k与抛物线没有交点,则k>4函数的最大值,即y>4.【点睛】本题主要考查了二次函数与不等式(组)、二次函数的图象、抛物线与x 轴的交点、待定系数法求二次函数解析式,准确计算是解题的关键.22.(1(2)射线AD 与直线CE 相交所成的较小角的度数为45°;(3)CE 1或3【分析】(1)根据等腰直角三角形性质,证△ABD ∽△CBE ,求相似比即可;(2)延长AD 、CE 相交于点F ,由相似可知∠BCF=∠BAD=45°,再根据角平分线和三角形内角和求∠F 即可;(3)作DF ⊥AB ,垂足为F ,根据D 点在三角形内和外分类讨论,利用30°角的直角三角形性质和等腰直角三角形的性质以及(1)的结论可求EC .【详解】解:(1)由题意知ΔABC 和ΔBDE 均为等腰直角三角形.∴2BCAB ,BE =.∠ABC=∠DBE=45°.∴AB BD BC BE ==, ∵∠ABC=∠DBE=45°.∴∠ABD=∠CBE .∴△ABD ∽△CBE .∴AB AD CE BC ==. (2)延长AD 、CE 相交于点F ,∵AB=AC ,∠BAC=90°,∴∠ABC=∠ACB=45°.∵AF 平分∠BAC ,∴∠BAD=∠CAF=12∠BAC=45°.∵△ABD ∽△CBE .∴∠BCF=∠BAD=45°.∠F=180°-∠BCF-∠ACB -∠CAF=45°.射线AD 与直线CE 相交所成的较小角的度数为45°.(3)如图1,作DF ⊥AB ,垂足为F ,∵∠DBC=15°,∠ABC=45°,∴∠DBA=30°,∴设DF 为x ,BD 为2x ,∴,∵∠BAD=45°,∴DF=AF=x ,∵AB=1,1x +=,解得,x =∵AD CE =∴1,如图2,作DF ⊥AB ,垂足为F ,∵∠DBC=15°,∠ABC=45°,∴∠DBA=60°,∠BDF=30°,∴设BF 为x ,BD 为2x ,∴,∵∠BAD=45°,∴,∵AB=1,1x +=,解得,x =∵AD CE =∴CE=3CE 1或3【点睛】本题考查相似三角形的综合问题,涉及到了直角三角形的有关性质,解题关键是熟练的判定三角形相似,画出准确图形,树立分类讨论思想.23.(1)223y x x =--+;(2)M (-1,32);(3)1(P -,2P ⎛- ⎝⎭,()31,4P -,()41,2P --【分析】(1)根据待定系数法先把点B 、C 两点坐标代入抛物线解析式,解方程组即可求得抛物线的解析式;(2)过C 作对称轴x=-1的对称点D ,根据OM+CM=OM+MD≤OD ,当D 、M 、O 三点共线时其和最短,求出直线OD 的解析式为:32y x =- ,求当x=-1时,32y = 即可.;(3)设P (-1,m ),又因为B (-3,0),C (0,3),再分三种情况,以点P 为直角顶点,以点C 为直角顶点,以点B 为直角顶点分别讨论构造方程,求出符合题意m 值,即可求出点P 的坐标.【详解】解:(1)把B (-3,0)、C (0,3)分别代入2y x bx c =-++中, 得 9303b c c --+=⎧⎨=⎩.∴ 23b c =-⎧⎨=⎩.∴抛物线的解析式为:223y x x =--+ ;(2)∵抛物线的对称轴是直线x=-1,作点C (0,3)关于直线x=-1的对称点D (-2,3).抛物线的对称轴上找一点M ,使点M 到点O 和点C 的距离之和最小,OM+CM=OM+MD≤OD ,当D 、M 、O 三点共线时其和最短,设直线OD 的解析式为:k y x =,过点D , ∴332,2k k =-=-,∴直线OD 的解析式为:32y x =- .当x=-1时,32y = ,∴M (-1,32);(3)设点P 的坐标为(-1,m ),以点P 为直角顶点,由勾股定理得PB 2=PC 2+BC 2,解()224+13=18m m ++-,整理得2320m m --=,解得m =点P 的坐标1(P -,2P ⎛- ⎝⎭;以点C 为直角顶点,由勾股定理得PB 2=PC 2+BC 2,解()2241318m m +=+-+,解得m=4,点P 3(-1,4),以点B 为直角顶点,由勾股定理得PC 2=PB 2+BC 2,解()2213418m m +-=++,解得m=-2,点P 4(-1,-2).使△BPC 为直角三角形时点P 的坐标1(P -,2P ⎛- ⎝⎭,()31,4P -,()41,2P --. 【点睛】 本题考查待定系数法求抛物线解析式,点P 在对称轴上的最短路径,组成直角三角形点P 坐标,掌握待定系数法求抛物线解析式,利用一次函数与对称轴的交解决点P 在对称轴上的最短路径,利用分类讨论组成直角三角形,应用勾股定理构造方程求点P 坐标是解题关键.24.(1)见解析;(2)菱形,见解析.【分析】(1)根据点D ,E 分别是边AB ,AC 的中点,可得DE//BC ,进而可以证明△AED ∽△ACB ;(2)先利用ASA 证明△DAE ≌△FCE 可得DE =FE ,可证可得四边形ADCF 是平行四边形,再证明AC ⊥DF ,根据对角线互相垂直平分的四边形是菱形即可证明结论.【详解】(1)证明:∵点D ,E 分别是边AB ,AC 的中点,∴DE 是△ABC 的中位线∴DE//BC ,∴△AED ∽△ACB ;(2)解:四边形ADCF 是菱形,理由如下:∵CF//AB ,∴∠DAE =∠FCE ,在△DAE 和△FCE 中,DAE FCE AE CE AED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DAE ≌△FCE (ASA ),∴DE =FE ,∵AE =CE ,∴四边形ADCF 是平行四边形,∵DE//BC ,∴∠AED =∠ACB =90°,∴AC ⊥DF ,∴四边形ADCF 是菱形.【点睛】本题主要考查了相似三角形的判定、全等三角形的判定与性质、菱形的判定以及三角形中位线的判定与性质,灵活应用相关性质和判定定理是解答本题的关键.。
华师大版九年级上册数学期末试卷及答案九年级上册数学试卷一、选择题1.若a>3,则√a2−4a+4+√9−6a+a2=()A.1B.-1C.2a-5D.5-2a2.如果ab>0,a+b<0,那么下面各式:①√ab =√a√b,②√ab •√ba=1,③√ab÷√ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③3.若α,β是方程x2-2x-2=0的两个实数根,则α2+β2的值为()A.10B.9C.8D.74.有一人患了流感,经过两轮传染后共有121人患了流感,设每轮传染中平均一个人传染了x个人,则可列方程()A.x+x(1+x)=121B.1+x(x+1)=121C.(1+x)2=121D.x(x+1)=1215.如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是() A.AD=BC′ B.∠EBD=∠EDB C.△ABE ∽△CBD D.sin∠ABE=AEED6.如图,在▱ABCD中,AC与BD相交于点O,AE=EF=FD,BE交AC于G,则GE:BE=()A.1:2B.2:3C.1:4 D.2:55题图6题图7题图8题图7.如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABG;④△ADF与△CFB.其中相似的为()A.①④B.①②C.②③④D.①②③8.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.8二、填空题9.如果关于x的一元二次方程2x2-2x+3m-1=0有两个实数根x1,x2,且它们满足不等式x1x2x1+x2−3<1,则实数m的取值范围是____________ .10.关于x的一元二次方程mx2+x+m2+3m=0有一个根为零,则m=____________,另一根为____________.11.已知a,b是正整数,若√7a +√10b是不大于2的整数,则满足条件的有序数对(a,b)为____________ .12.若实数a、b满足b=√a2−1+√1−a2a+1,则a+b的值为_______________.13.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为___________ .13题14题15题16题14.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C 的相似矩形AB2C2C1,…,按此规律继续下去,则矩形AB n C n C n-1的面积为____________ .15.如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则AGFD的值为____________.16.如图,正方形ABCD的边长为2√2,过点A作AE⊥AC,AE=1,连接BE,则tan E= ____________.三、计算题(本大题共1小题,共6.0分)17.先化简,再求值:(a2+4a)÷(a2−9a−6a+9-13−a),其中a是方程x2-3x-1=0的根.四、解答题(本大题共7小题,共56.0分)18.已知如图,点E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于F,FD∥BC交AC 于D,设AB=5,AC=8,求DC的长.19.如图,已知:AB∥CD,AD、BC 相交于点E,过点E作EF∥AB,交AB于点F,分别对AB、CD取几组简单的值,并计算EFAB +EFCD的值,你有什么发现?请给予说明.20.若关于x的一元二次方程x2+2x+m=0有两个不等的实数根,化简:|2−m|−√m2−2m+1.21. 钟楼是云南大学的标志性建筑之一,某校教学兴趣小组要测量钟楼的高度,如图,他们在点A处测得钟楼最高点C的仰角为45°,再往钟楼方向前进至点B处测得最高点C的仰角为54°,AB=7m,根据这个兴趣小组测得的数据,计算钟楼的高度CD.(tan36°≈0.7,结果保留整数).22. 2015年1月29日网易新闻报道,2014年中国铁路总公司进一步加快铁路建设,各项铁路建设任务全面完成,新线投产8427公顷,创历史最高纪录.,某两个城市间铁路新建后,列车行驶的路程比原铁路列车行驶的路程短,新铁路列车每小时的设计运行速度比原铁路列车设计运行速度的2倍还多40千米,这两个列车设计运行速度的乘积为16000.(1)求原铁路的列车设计运行速度;(2)专家建议,从安全角度考虑,列车实际的运行速度要比设计的运行速度减少m%,以便有充分的时间应对突发事件,这样这两个城市间的实际运行时间比设计运m小时,若这两个城市间新铁路列车行驶行时间增加110的路程为1600千米,求m的值.23.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数;(2)显示屏的顶部B′比原来升高了多少?24.图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果保留根号)25. .已知在R t△ABC中,∠ABC=90°,∠A=30°,点P在BC上,且∠MPN=90°.(1)当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1).过点P作PE⊥AB于点E,请探索PN 与PM之间的数量关系,并说明理由;(2)当PC=√2PA,①点M、N分别在线段AB、BC上,如图2时,请写出线段PN、PM之间的数量关系,并给予证明.②当点M、K分别在线段AB、BC的延长线上,如图3时,请判断①中线段PN、PM之间的数量关系是否还存在.(直接写出答案,不用证明)九年级上册数学试卷【答案】1.C2.B3.C4.C5.C6.C7.D8.D9.-1<m≤1210.-3;1311.(7,10)或(28,40)12.113.11.8米 14.5n2 15.43 16.2317.解:原式=a (a +4)÷a 2−9+a−3(a−3)2=a (a +4)•(a−3)2(a−3)(a+4)=a 2-3a , 由a 是方程x 2-3x -1=0的根,得到a 2-3a -1=0,即a 2-3a =1, 则原式=1.18.解:(1)∵∠AEB=∠ABC ,∠BAE=∠CAB , ∴△BAE ∽△CAB ,∴∠ABE=∠C ,(2)∵FD ∥BC ,∴∠ADF=∠C ,∵∠ABE=∠C ,∴∠ADF=∠ABF ,∵AF 平分∠BAE ,∴∠DAF=∠BAF ,在△DAF 和△BAF 中, {∠ADF =∠ABF∠DAF =∠BAF AF =AF,∴△DAF ≌△BAF (AAS )∴AD=AB=5,∵AC=8,∴DC=AC-AD=8-5=3.19.解:EF AB +EF CD =1.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC , ∴EF AB =DF BD ,EF CD =BF BD ,∴EF AB +EF CD =DF BD +BF BD =DF+BF BD =1. 20. .解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m ,∵在R t △ACD 中,∠ACD=∠CAD=45°,∴AD=CD ,∵AD=AB+BD ,∴BD=AD-AB=CD-7(m ),∵在R t △BCD 中,tan ∠BCD=BD CD ,∠BCD=90°-∠CBD=36°,∴tan 36°=BD CD ,∴BD=CD •tan 36°,∴CD •tan 36°=CD-7,∴CD=71−tan36°≈71−0.73≈26(m ).答:天塔的高度CD 约为:26m .21.解:(1)设原铁路的列车设计运行速度为x 千米/小时,则新铁路列车每小时的设计运行速度为(2x +40)千米/小时,由题意得x(2x+40)=16000解得:x1=80,x2=-100(舍去)答:原铁路的列车设计运行速度是80千米/小时.(2)由题意得:2x+40=200,200(1-m%)(1600÷200+110m)=1600,解得:m1=20,m2=0(不合题意舍去).答:m的值为20.22.解:∵方程有两个不相等的实数根,∴△=b2-4ac=4-4m>0,解得:m<1,∴2-m>0,m-1<0,∴|2−m|−√m2−2m+1=2-m+m-1=1.23.解:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=O′CO′A =O′COA=12,∴∠CAO′=30°.(2)过点B作BD⊥AO交AO的延长线于D.∵sin∠BOD=BDOB,∴BD=OB•sin∠BOD,∵∠AOB=120°,∴∠BOD=60°,=12√3.∴BD=OB•sin∠BOD=24×√32∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°.∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°.∴O′B′+O′C-BD=24+12-12√3=36-12√3.∴显示屏的顶部B′比原来升高了(36-12√3)cm.24.解:(1)猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.(2)如图2,连接AD、BD.由(1)知,∠BED=90°,∵BE=DE,∴∠EDB=∠EBD=45°,同理,∠ADC=45°又由(1)知,∠CDE=90°,∴∠ADC+∠CDE+∠EDB=180°,∴点A、D、B三点共线.BE=2OE=2×10×cos30°=10√3cm,同理可得,DE=10√3cm,则BD=10√6cm,同理可得,AD=10√6cm,AB=BD+AD=20√6≈49cm.答:A,B两点之间的距离大约为49cm.25.解:(1)PN=√3PM,理由:如图1,作PF⊥BC,∵∠ABC=90°,PE⊥AB,∴PE∥BC,PF∥AB,∴四边形PFBE是矩形,∴∠EPF=90°∴P是AC的中点,∴PE=12BC ,PF=12AB , ∵∠MPN=90°,∠EPF=90°,∴∠MPE=∠NPF ,∴△MPE ∽△NPF ,∴PN PM =PF PE =AB BC ,∵∠A=30°,在RT △ABC 中,cot 30°=AB Bc =√3,∴PN PM =√3, 即PN=√3PM .(2)解;①PN=√6PM ,如图2 在R t △ABC 中,过点P 作PE ⊥AB 于E ,PF ⊥BC 于点F∴四边形BFPE 是矩形,∴△PFN ∽△PEM∴PF PE =PN PM ,又∵R t △AEP 和R t △PFC 中,∠A=30°,∠C=60°∴PF=√32PC ,PE=12PA∴PNPM =PFPE=√3PCPA∵PC=√2PA∴PNPM=√6,即:PN=√6PM ②如图3,成立.。
一、选择题:(每小题3分,共30分)
1
二次根式的个数是()
A.4
个 B.3个 C.2个 D.1个
2、用直接开平方法解方程2
(3)8
x-=的根是()
A.3
x=+.
1
3
x=+
2
3
x=-
C.3
x=-.
1
3
x=+
2
3
x=-
3、方程(2)310
m
m x mx x
+++=是关于的一元二次方程,则()
A.m=±2 B.m=2 C.m=-2 D.m≠±2
4、如图,三条平行线
1
l,
2
l,
3
l分别与另外两条直线相交于点A、C、E和点B、D、F
,
且AC≠
CE,AC≠
BD,则下列四个式子中,错误的是(
)
A.
AC
BD
CE DF
=
B.
AC BD
AE BF
=C.
AC BD
DF CE
=D.
CE DF
AE BF
=
5、同一时刻,高为2米的测量竿的影长为1.5米,某古塔的影长为24米,则古塔的
高是()
A.18米B.20米C.30米D.32米
6、如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交
于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有()
A.4对 B.5对 C.6对 D.7对
7、如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE:S△COB=()
A.1:4 B.2:3 C.1:3 D.1:2
8、一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地
等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到
白球的概率为()
A.
1
9
B.
1
3
C.
2
1
D.
2
3
9、2000
sin45cos30tan60
+∙,其结果是()
A. 2 B.1 C.
5
2
D.
5
4
10、如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,
则坝底AD的长度为()
A. 26米B. 28米C. 30米D. 46
二、填空题:(每小题3分,共18分)
11、③其中第组是同类二次根式。
12、已知关于x的方程230
x x m
-+=的一个根是1,则m= ,另一个根为 .
13、
5
,
13
b a b
a a b
-
==
+
已知则
14、如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆
的距离DB=12m,则旗杆AB的高为
14、如图,为估计池塘两岸边A,B两点间的距离,在池塘的一侧选取点O,分别去OA、OB的中点M,N,
测的MN=32 m,则A,B两点间的距离是_____________m.
15、在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是_________
16、如图,在△ABC中,∠A=30°,∠B=45°,AC=AB的长为 .
三、解答题:(共72分)
17、(6分)计算:
2
020142015
1
6sin30(2(2
2
-
⎛⎫
--+++
⎪
⎝⎭
18、(6分)如图ΔABC中,AB=8,AC=6,点D在AC上且AD=2,如果要在AB上找一
点E,使ΔADE与原三角形相似。
求AE的长。
2014-2015九年级数学上学期末阶段性检测3
(满分:120分;考试时间:90分钟)
14题图15题图
16题图
19、(8分)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).
(1)请画出△ABC关于x轴对称的△A
1B
1
C
1。
(2)将△A
1B
1
C
1
的三个顶点的横坐标与纵坐标同时乘以-2,得到
对应的点A
2,B
2
,C
2
,请画出△A
2
B
2
C
2
.
(3)求△A
1B
1
C
1
与△A
2
B
2
C
2
的面积比,即△A
1
B
1
C
1
:△
A
2B
2
C
2
= 。
20、(6分)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.
21、(8分)如图,在△ABC中,CD⊥AB,垂足为D.若AB=12,CD=6,tanA=3
2
,求sinB+cosB的值.
22、(8分)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.
(1)求两建筑物底部之间水平距离BD的长度;
(2)求建筑物CD的高度(结果保留根号).23、(8分)某同学报名参加校运动会,有以下5个项目可供选择
径赛项目:100m,200m,400m(分别用A
1、
A2、A3表示);
田赛项目:跳远,跳高(分别用B
1、
B2表示).
(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为;
(2)该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
24、(10分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).
25、(12分)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.
(1)求证:EB=GD;
(2)若∠DAB=60°,AB=2,AG=3。