数列递推式求通项公式的方法
- 格式:doc
- 大小:138.00 KB
- 文档页数:3
高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。
类型1)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例:已知数列满足,,求。
解:由条件知:分别令,代入上式得个等式累加之,即所以,变式:(2004,全国I ,个理22.本小题满分14分)已知数列,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式.解:,,即,…………将以上k 个式子相加,得将代入,得,。
经检验也适合,类型2解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。
例:已知数列满足,,求。
解:由条件知,分别令,代入上式得个等式累乘之,即又,例:已知,,求。
解:。
变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,(n ≥2),则{a n }的通项解:由已知,得,用此式减去已知式,得当时,,即,又,,将以上n个式子相乘,得类型3(其中p,q均为常数,)。
解法(待定系数法):把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。
例:已知数列中,,,求.解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.变式:(2006,,文,14)在数列中,若,则该数列的通项_______________(key:)变式:(2006..理22.本小题满分14分)已知数列满足(I)求数列的通项公式;(II)若数列{b n}滿足证明:数列{b n}是等差数列;(Ⅲ)证明:(I)解:是以为首项,2为公比的等比数列即(II)证法一:①②②-①,得即③-④,得即是等差数列证法二:同证法一,得令得设下面用数学归纳法证明(1)当时,等式成立(2)假设当时,那么这就是说,当时,等式也成立根据(1)和(2),可知对任何都成立是等差数列(III)证明:变式:递推式:。
由递推公式求通项公式的三种方法递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,下面介绍由递推公式求通项公式的几种方法.1.累加法[典例1] 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11 [解析] 由已知得b n =2n -8,a n +1-a n =2n -8,所以a 2-a 1=-6,a 3-a 2=-4,…,a 8-a 7=6,由累加法得a 8-a 1=-6+(-4)+(-2)+0+2+4+6=0,所以a 8=a 1=3.[答案] B[题后悟道]对形如a n +1=a n +f (n )(f (n )是可以求和的)的递推公式求通项公式时,常用累加法,巧妙求出a n -a 1与n 的关系式.2.累乘法[典例2] 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n . (1)求a 2,a 3;(2)求{a n }的通项公式.[解] (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 2=31a 1,a 3=42a 2,…,a n -1=n n -2a n -2,a n =n +1n -1a n -1. 将以上n -1个等式中等号两端分别相乘,整理得a n =n n +1 2. 综上可知,{a n }的通项公式a n =n n +1 2.[题后悟道]对形如a n +1=a n f (n )(f (n )是可以求积的)的递推公式求通项公式时,常用累乘法,巧妙求出a n a 1与n 的关系式.3.构造新数列[典例3] 已知数列{a n }满足a 1=1,a n +1=3a n +2;则a n =________.[解析] ∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.[答案] 2×3n -1-1[题后悟道]对于形如“a n +1=Aa n +B (A ≠0且A ≠1)”的递推公式求通项公式,可用迭代法或构造等比数列法.上面是三种常见的由递推公式求通项公式的题型和对应解法,从这些题型及解法中可以发现,很多题型及方法都是相通的,如果能够真正理解其内在的联系及区别,也就真正做到了举一反三、触类旁通,使自己的学习游刃有余,真正成为学习的主人.。
常见递推数列通项的九种求解方法(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。
是一类考查思维能力的好题。
要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。
类型一:1()n na a f n +=+(()f n 可以求和)−−−−→解决方法累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。
【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。
2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。
3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。
5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
根据递推关系求数列通项公式的几种方法要求根据递推关系求解数列的通项公式,其实是要求找到一个能将数列的每一项都表示为n(项数)的函数的公式。
在数学中,有几种方法可以求解这类问题。
一、代数方法:对于一些简单的递推关系,可以尝试使用代数方法来求解数列的通项公式。
这种方法通过观察数列中的模式,尝试将递推关系转化为代数方程,然后解方程得到通项公式。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设通项公式为Fn=k1a^n+k2b^n,其中k1、k2为常数,a、b为待定数。
k1a^n+k2b^n=k1a^(n-1)+k2b^(n-1)+k1a^(n-2)+k2b^(n-2)整理得:k1a^2-k1a-k2=0。
解这个方程,可以得到a和b的值,然后将a和b的值代入通项公式中,即可求解斐波那契数列的通项公式。
二、特征根法:特征根法是求解一阶线性递推关系(如Fn=aFn-1+b)的通项公式的常用方法。
该方法的基本思想是,将递推关系转化为一个一阶线性常微分方程,然后解方程得到通项公式。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列满足的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1将递推关系转化为一阶线性常微分方程得到:y''-y'-y=0其中y=Fn。
解这个方程得到的特征根为α1=(1+√5)/2,α2=(1-√5)/2通项公式可以表示为:Fn=k1(α1)^n+k2(α2)^n其中k1、k2为常数。
利用初始条件F1=1,F2=1,可以求解出k1和k2的值,进而求解出斐波那契数列的通项公式。
三、母函数法:母函数法是一种求解递推关系的高效方法,尤其适用于求解求和问题。
该方法的基本思想是,将数列视为一个幂级数的系数列,通过构造母函数来解决递推关系。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设母函数为F(x)=F0+F1x+F2x^2+F3x^3+...F(x)=x(F(x)-F0)+x^2F(x)整理得:F(x)=F0+xF(x)+x^2F(x)移项得:F(x)=F0/(1-x-x^2)。
递推数列求通项公式递推数列是一种数学序列,其中每一项都是通过对前一项应用一个递推关系得到的。
求递推数列的通项公式是指找出一种依赖于自变量的表达式,用于计算数列中任意一项的值。
求递推数列的通项公式的方法主要有两种,一种是通过推导和观察数列的特点,找出合适的数学模型;另一种是利用已知的数学工具和技巧,通过数学推理和计算来找到通项公式。
下面以一些常见的递推数列为例,详细介绍如何求其通项公式。
1.等差数列:等差数列是最简单的一种递推数列,每一项与前一项的差值都相等。
设数列的首项为a,公差为d,则第n项可以表示为an = a + (n-1)d。
这是等差数列的通项公式。
2.等比数列:等比数列是一种每一项与前一项的比值都相等的递推数列。
设数列的首项为a,公比为r,则第n项可以表示为an = ar^(n-1)。
这是等比数列的通项公式。
3. 斐波那契数列:斐波那契数列是一种特殊的递推数列,前两项为1,后面每一项都是前两项之和。
即an = an-1 + an-2、通过观察数列的特点可以得知,斐波那契数列的通项公式是an = (1/sqrt(5)) *( ((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n )。
4.等差-等比混合数列:等差-等比混合数列是一种先等差递推,然后再等比递推的数列。
设数列的首项为a,等差为d,公比为r,则第n项可以表示为an = (a + (n-1)d) * r^(n-1)。
5. 将递推数列转化为代数方程求解:对于一些复杂的递推数列,可以通过将数列的前几项转化为代数方程的解,并找到通项公式。
例如,如果递推数列的第n项为an = n^2 - 3n + 2,我们可以将数列的前几项代入an的表达式,然后求解方程组,找到通项公式。
总结起来,求递推数列的通项公式需要运用数学推导和观察、数学工具和技巧、将数列转化为代数方程等方法。
利用递推公式求数列通项公式数列的通项公式是研究数列性质的基础,合理应用递推关系构造新数列求出通项公式就变得很重要了,下面介绍几种常见的类型。
类型1:已知数列{an}的前n项和sn,求数列的通向公式an 方法:利用an与sn的关系,例1.已知数列{an}的前n项和 sn=n2-10n(n=1,2,3……),求数列的通向公式。
解:当n=1时,a1=s1=-9当n≥2时,an=sn-sn-1=n2-10n-[(n-1)2-10(n-1)]=2n-11①又当n=1时由①式可得a1=-9∴an=2n-11变式提升:已知数列{an}中,其前n项的和sn=2+3n,求数列的通向公式。
答案:类型2:已知数列{an}满足an=an-1+q(n)求通向公式(其中q(n)是关于n的代数式)方法:叠加法例2:已知数列{an}中,a1=1,且 an+1-an=3n-n,求数列{an}的通向公式。
解:因为an+1-an=3n-n所以an-an-1=3n-1-(n-1)an-1-an-2=3n-2-(n-2)……a2-a1=31-1将以上n-1式子左右两边各相加可得:an-a1=(3+32+……3n-1)-[1+2+……(n-1)]即所以数列{an}的通向公式:变式提升:已知数列{an}中,a1=1,且an+1=an+2n+2n+1,求数列{an}的通向公式。
答案:an=2n+n2-2类型3:已知数列{an}满足an=q(n)·an-1求通向公式(其中q(n)是关于n的表达式)方法:叠乘法例3:在数列{an}中,已知(n2+n)an+1=(n2+2n+1)an,且a1=1,求数列{an}的通向公式。
解:由(n2+n)an+1=(n2+2n+1)an可得∴,………将以上n-1个式子左右两边各相乘可得:即an=a1·n=n所以数列{an}的通向公式an=n变式提升:已知数列{an}是首项为2,且各项均为正数的数列,且(n+1)a2n +1-na2n +an+1an=0(n∈n*),求数列{an}的通向公式。
递推数列求通项公式的典型方法1、 a n+1=a n +f (n )型 累加法:a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =f (n-1)+f (n-2)+…f (1)+ a1例1 已知数列{a n }满足a 1=1,a n+1=a n +2n (n ∈N *), 求a n 解: a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =2n-1+2n-2+…+21+1=2n -1(n ∈N *)例 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .2、)(1n g a a nn =+型 累积法:112211.....a a aa a a a a n n n n n −−−=所以()()()()11...321a g n g n g n g a n −−−=∴例2:已知数列{a n }满足()*1N n n a ann ∈=+,.11=a 求n a解:112211...a a aa a a a a n n n n n −−−==()()()()!11...321−=−−−n n n n ()()+∈−=∴N n n a n !1例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+−+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题).3.q pa a n n +=+1型(p,q 为常数)方法:(1)⎪⎪⎭⎫ ⎝⎛−+=−++111p q a p p q a n n ,再根据等比数列的相关知识求n a . (2)()11−+−=−n n n n a a p a a 再用累加法求n a .(3)111++++=n n n n n p qp a p a ,先用累加法求n n p a 再求n a 例3.已知{}n a 的首项a a =1(a 为常数),()2,21≥∈=+−n N n a a n n ,求n a解 设()λλ−=−−12n n a a ,则1−=λ()1211+=+∴−n n a a{}1+∴n a 为公比为2的等比数列。
递推数列求通项公式的典型方法1、 a n+1=a n +f (n )型 累加法:a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =f (n-1)+f (n-2)+…f (1)+ a1例1 已知数列{a n }满足a 1=1,a n+1=a n +2n (n ∈N *), 求a n 解: a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =2n-1+2n-2+…+21+1=2n -1(n ∈N *)例 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n则,211112-+=a a 312123-+=a a413134-+=a a ,……,nn a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=2、)(1n g a ann =+型累积法:112211.....a a aa a a a a n n n n n ---=所以()()()()11...321a g n g n g n g a n ---=∴例2:已知数列{a n }满足()*1N n n a ann ∈=+,.11=a 求n a解:112211...a a aa a a a a n n n n n ---==()()()()!11...321-=---n n n n ()()+∈-=∴N n n a n !1例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题). 解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n1. 3.q pa a n n +=+1型(p,q 为常数)方法:(1)⎪⎪⎭⎫⎝⎛-+=-++111p q a p p q a n n ,再根据等比数列的相关知识求n a . (2)()11-+-=-n n n n a a p a a 再用累加法求n a .(3)111++++=n n n n n p qp a p a ,先用累加法求n n p a 再求n a 例3.已知{}n a 的首项a a =1(a 为常数),()2,21≥∈=+-n N n a a n n ,求n a解 设()λλ-=--12n n a a ,则1-=λ ()1211+=+∴-n n a a{}1+∴n a 为公比为2的等比数列。
六类递推数列通项公式的求解方法一、an-1=an+f(n)型利用叠加法.a2=a1+f(1),a3=a2+f(2),…,an=an-1+f(n-1),an=a1+∑n-1k=1f(k).【例1】数列{an}满足a1=1,an=an-1+1n2-n(n≥2) ,求数列{an}的通项公式.解:由an+1=an+1(n+1)2-(n+1) 得an=a1+∑n-1k=11(k+1)2-(k+1) =1+∑n-1k=1(1k-1k+1)=1+1-1n =2-1n.二、an+1=anf(n)型利用叠代法.a2=a1f(1),a3=a2f(2),…,an=an-1f(n-1).an=a1∏n-1k=1f(k).【例2】数列{an}中a1=2,且an=(1-1n2)an-1 ,求数列{an}的通项.解:因为an+1=[1-1(n+1)2 ]an,所以an=a1∏n-1k=1f(k)=2∏n-1k=1[1-1(k+1)2 ]=2∏n-1k=1[kk+1 ×k+2k+1 ]=n+1n .三、an+1=pan+q,其中p,q为常数,且p≠1,q≠0当出现an+1=pan+q(n∈n*)型时可利用叠代法求通项公式,即由an+1=pan+q得an=pan-1+q=p(pan-2+q)+q=…=pn-1a1+(pn-2+pn-3+…+p2+p+1)q=a1pn-1+q(pn-1-1)p-1 (p≠1).或者利用待定系数法,构造一个公比为p的等比数列,令an+1+λ=p(an+λ),则(p-1)λ=q,即λ=qp-1 ,从而{an+qp+1 }是一个公比为p的等比数列.【例3】设数列{an}的首项a1=12 ,an=3-an-12 ,n=2,3,4,…,求数列{an}的通项公式.解:令an+k=-12(an-1+k) ,又∵an=3-an-12=-12an-1+32 ,n=2,3,4,…,∴k=-1,∴an-1=-12(an-1-1) ,又a1=12,∴{an-1} 是首项为-12,公比为-12 的等比数列,即an-1=(a1-1)(-12)n-1 ,即an=(-12)n+1 .四、an+1=pan+qan-1(n≥2),p,q为常数可用下面的定理求解:令α,β为相应的二次方程x2-px-q=0的两根(此方程又称为特征方程),则当α≠β时,an=aαn+bβn;当α=β时,an=(a+bn)αn-1,其中a、b分别由初始条件a1、a2所得的方程组aα+bβ=a1,aα2+bβ2=a2和 a+b=a1,(a+2b)α=a2唯一确定.【例4】数列{an},{bn}满足:an+1=-an-2bn①,bn+1=6an+6bn ②,且a1=2,b1=4,求an,bn.解:由②得an=16bn+1-bn,∴an+1=16bn+2-bn+1 ,代入①到式中,有bn+2=5bn+1-6bn,由特征方程可得bn=-12×2n+283×3n ,代入②式中,可得an=8×2n-143×3n .五、an+1=pan+f(n)型,这里p为常数,且p≠1【例5】在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n ∈n*),其中λ>0,求数列{an}的通项公式.解:由 a1=2,an+1=λan+λn+1+(2-λ)2n(n∈n*),λ>0,可得,an+1λn+1-(2λ )n+1=anλn -(2λ )n+1,所以{anλn-(2λ)n}为等差数列,其公差为1,首项为0.故anλn-(2λ )n=n-1,所以数列{an}的通项公式为an=(n-1)λn+2n.六、an+1=makn(m>0,k∈q,k≠0,k≠1)一般地,若正项数列{an}中,a1=a,an+1=makn(m>0,k∈q,k≠0,k≠1),则有lgan+1=klgan+lgm,令lgan+1+a=k(lgan+a)(a为常数),则有a=1k-1lgm.数列{lgan+1k-1lgm }为等比数列,于是lgan+1k-1lgm=(lga+1k-1lgm)kn-1 ,从而可得an=akn-1?mkn-1-1k-1 .【例6】已知各项都是正数的数列{an}满足a1=32,an+1=12an(4-an) ,求数列{an}的通项公式.解:由已知得an+1=-12(an-2)2,令2-an=bn,则有b1=12,bn+1=12b2n .∵an>0,∴0<an+1<2,又0<a1<2,∴0<an<2,从而bn>0.取对数得lgbn+1=2lgbn-lg2,即lgbn+1-lg2=2(lgbn-lg2).∴{lgbn-lg2}是首项为-2lg2,公比为2的等比数列,∴lgbn-lg2=-2nlg2,∴bn=21-2n,∴an=2-21-2n.(责任编辑金铃)。
数列递推式求通项公式的方法
类型一:累加法 )(1n f a a n n +=+
例1:n n n n a n a a n a a 求时,有当中,已知.122,1}{11-+=≥=-
2
12
11221111)2(13)32()12()()()(1
2)2(12n
a a n n n n a a a a a a a a n a a n n a a n n n n n n n n n n =≥=++-+-=+-+-+-=∴-=-∴≥-+=-----故也适合上式解:
类型二:累乘法 n n a n f a ⋅=+)(1
例2:n n n n a a n na n a a 求时有:中,.)1(2,1}{11+=≥=- 1
211
23
211
11
1)2(1)1(1
22
111
++-++-=
≥=
⋅⋅=
⋅⋅
=∴=
∴+=----n n n n
n n n
a a a a a a n n n a a n n a a n a a a n na n n n n n n 也适合上式,所以
解:
类型三:待定系数法
B Aa a n n +=+1
例3:n n n n a a a n a a 求时,有中,.232,1}{11+=≥=- 1
3
23
21321}1{)1(311,22),2(2323)(31
1
11111-⋅=⋅=+∴=+++=+∴==≥+=+=+=+------n n n n n n n n n n n n n a a a a a a x x n a a x a a x a x a 从而为公比的等比数列为首项,是以即所以而则解:设
类型四:待定系数法,构造法 )(1n f pa a n n +=+
例4:n n n n a n a a n a a 求时,中,.122,1}{12
11-+=
≥=-
6
4)(3,)(3643}64{6
,41,2)
2(12]
)1([1
2
11
2
12
12
2
112
12
2
112
1121-+⋅=⋅=+-∴+-∴=-=⇒-=-
=-
∴≥-+=-
-
=+-+=++--+-+--n a n a n a B A A n n a a An a a B n A a B An a n n n n n B A n n B A n n n n 为公比的等比数列
为首项是以而则:解:设
例5:n n n n n a a a n a a 求时,中,.222,2}{111+-+=≥= n
n a a
a a n n n n a n n a a n
n n n n n n
n 2
)12(1221}{2
)2(2
22
22
2
1
11
1-=⇒-=∴
∴+=
∴
≥+=--+-为公差的等差数列为首项是以解:
类型五:特征根法,构造法
011=++-+n n n Ca Ba Aa
例6:n n n n n a n a a a a a a 求且中,).2(23,4,2}{1121≥-===-+ n
n n a a n n n n n n n n n n n n n n n
n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a a a a x x x x a x a x a n
n 2
22}{202222:2223)(2
,222}{)(22
,10231,,:)(11221111
111n
1111212
12
1=∴=∴
=-==-=-=--=-∴-===-∴--=-∴==⇒=+-===+---+-+-+++-+-+为公比的等比数列,
为首项是以即依此类推:构造法累加法得为公比的等比数列
为首项是以即得:令特征根法解
类型六:倒数法其中 )0,,(1≠=
++d p c a d
pa ca n n n
例7:n a a n n a a a a n n 求中,.,4}{1
2211++==
7
2
22
7211
1
2
1471
2
14
7112
112111
2212
1
1
1
1
2
7)(2-}2{),2(21-⋅----++++--++=
=
∴⋅-=-=-∴
--=
-⇒
+=
∴
=
n n n n
n n n n
n n n n n n a a a a a a a a n a a 的等比数列为公比
为首项是以即解:
类型七:特征根法 B
Aa D Ca n n n a +++=
1
例8:n a a n n a N n a a a n n 求(且中,).,2}{*
6
4211∈=
=+-+
n
n n n a a a a a a a a a a n x x n n a a x x x x x a a n n
n n n n n n n n 244
2
14
14
121412
1214)2()2(46
846
4212
6
421}{22,20
44,1-++++++++++-++-+=⇒=
∴
⇒+
=
∴=
=
+=+∴-=⇒=++===+为公差的等差数列为首项是以
即则解:令
类型八:对数法 r
n n pa a =+1
例9:n n n n a a e a a a 求且中,.,2}{2311==+
3
2
)32(ln 3ln 232ln }3{ln )
3(ln 23ln 3ln 2)ln(ln 1
2
)32(ln 1
12
31231-=⇒⋅+=+∴++∴+=+⇒+==∴=-⋅+-+++n e
a a a a a a a e a a e a n n n n n n n n n n n 为公比的等比数列为首项,是以解:。