高三补习班数学寒假作业(03)--绵中实校12级-邓
- 格式:doc
- 大小:240.50 KB
- 文档页数:3
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B. C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。
(建议用时:45分钟)[学业达标]一、选择题1.下列命题是“∀x ∈R ,x2>3”的表述方法的是( ) A .有一个x ∈R ,使得x2>3 B .对有些x ∈R ,使得x2>3 C .任选一个x ∈R ,使得x2>3 D .至少有一个x ∈R ,使得x2>3 【答案】 C2.下列四个命题中,既是全称命题又是真命题的是( ) A .斜三角形的内角是锐角或钝角 B .至少有一个实数x ,使x2>0 C .任意无理数的平方必是无理数 D .存在一个负数x ,使1x>2 【解析】 只有A ,C 两个选项中的命题是全称命题,且A 显然为真命题.因为2是无理数,而(2)2=2不是无理数,所以C 为假命题.【答案】 A3.给出四个命题:①末位数是偶数的整数能被2整除;②有的菱形是正方形;③存在实数x ,x >0;④对于任意实数x,2x +1是奇数.下列说法正确的是( )A .四个命题都是真命题B .①②是全称命题C .②③是特称命题D .四个命题中有两个是假命题 【答案】 C4.(·湖南高考)设命题p :∀x ∈R ,x2+1>0,则¬p 为( ) A .∃x0∈R ,x20+1>0 B .∃x0∈R ,x20+1≤0 C .∃x0∈R ,x20+1<0D .∀x ∈R ,x2+1≤0【解析】 根据全称命题的否定为特称命题知B 正确. 【答案】 B 5.下列四个命题:p1:∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫13x ; p2:∃x ∈(0,1),log 12 x >log 13x ;p3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >log 12 x ; p4:∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <log 13x. 其中的真命题是( ) A .p1,p3 B .p1,p4 C .p2,p3D .p2,p4【解析】 取x =12, 则log 12 x =1,log 13x =log32<1,p2正确.当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <1,而log 13x >1,p4正确. 【答案】 D 二、填空题6.(·大同二诊)已知命题p :“∃x0∈R ,sin x0>1”,则¬p 为________.【解析】根据特称命题的否定为全称命题,并结合不等式符号的变化即可得出¬p 为∀x ∈R ,sin x ≤1.【答案】∀x ∈R ,sin x ≤17.若∀x ∈R ,f(x)=(a2-1)x 是单调减函数,则a 的取值范围是________. 【解析】由题意知,0<a2-1<1,∴⎩⎪⎨⎪⎧a2-1<1,a2-1>0,即⎩⎪⎨⎪⎧a2<2,a2>1,解得⎩⎨⎧ -2<a<2,a>1或a<-1,∴1<a<2或-2<a<-1. 【答案】(-2,-1)∪(1, 2)8.若“∃x0∈R ,x20+2x0+2=m ”是真命题,则实数m 的取值范围是________. 【导学号:26160023】【解析】 由于“∃x0∈R ,x20+2x0+2=m ”是真命题,则实数m 的取值集合就是二次函数f(x)=x2+2x +2的值域,即{m|m ≥1}.【答案】 [1,+∞) 三、解答题9.判断下列命题是否为全称命题或特称命题,若是,用符号表示,并判断其真假. (1)有一个实数α,使sin2α+cos2α≠1; (2)任何一条直线都存在斜率;(3)对于任意的实数a,b,方程ax+b=0恰有唯一解;(4)存在实数x0,使得x0≤0.【解】(1)是一个特称命题,用符号表示为:∃α∈R,使sin2α+cos2α≠1,假命题.(2)是一个全称命题,用符号表示为:∀直线l,l都存在斜率,假命题.(3)是一个全称命题,用符号表示为:∀a,b∈R,方程ax+b=0恰有唯一解,假命题.(4)是一个特称命题,用符号表示为:∃x0∈R,使得x0≤0,真命题.10.判断下列命题的真假,并写出这些命题的否定:(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是平行四边形.【解】(1)是全称命题且为真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形其内角和不等于180°.(2)是全称命题且为假命题.命题的否定:存在一个二次函数的图象开口不向下.(3)是特称命题且为真命题.命题的否定:任意一个四边形都是平行四边形.[能力提升]1.(·浙江高考)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( )A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0【解析】写全称命题的否定时,要把量词∀改为∃,并且否定结论,注意把“且”改为“或”.【答案】D2.(·合肥二模)已知命题p:∀x∈R,2x<3x,命题q:∃x0∈R,x30=1-x20,则下列命题中为真命题的是( )A.p∧q B.p∧(¬q)C.(¬p)∧q D.(¬p)∧(¬q)【解析】对于命题p,当x=0时,20=30=1,所以命题p为假命题,¬p为真命题;对于命题q,作出函数y=x3与y=1-x2的图象,可知它们在(0,1)上有一个交点,所以命题q为真命题,所以(¬p)∧q为真命题,故选C.【答案】C3.(·西城期末)已知命题p :∃x0∈R ,ax20+x0+12≤0.若命题p 是假命题,则实数a 的取值范围是________.【解析】因为命题p 是假命题,所以¬p 为真命题,即∀x ∈R ,ax2+x +12>0恒成立.当a =0时,x>-12,不满足题意;当a ≠0时,要使不等式恒成立,则有 ⎩⎪⎨⎪⎧a>0,Δ<0,即⎩⎪⎨⎪⎧a>0,1-4×12×a<0,解得⎩⎪⎨⎪⎧a>0,a>12,所以a>12,即实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 【答案】⎝ ⎛⎭⎪⎫12,+∞ 4.(·日照高二检测)已知p :∀x ∈R,2x>m(x2+1),q :∃x0∈R ,x20+2x0-m -1=0,且p ∧q 为真,求实数m 的取值范围.【导学号:26160024】【解】2x>m(x2+1)可化为mx2-2x +m<0. 若p :∀x ∈R,2x>m(x2+1)为真, 则mx2-2x +m<0对任意的x ∈R 恒成立. 当m =0时,不等式可化为-2x<0,显然不恒成立; 当m ≠0时,有m<0,Δ=4-4m2<0,所以m<-1. 若q :∃x0∈R ,x20+2x0-m -1=0为真, 则方程x20+2x0-m -1=0有实根, 所以Δ=4+4(m +1)≥0,所以m ≥-2. 又p ∧q 为真,故p ,q 均为真命题. 所以m<-1且m ≥-2,所以-2≤m<-1.一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣14.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣15.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.14.(5分)观察分析下表中的数据:多面体面数(F)顶点数棱数(E)(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.(几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为. (Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直.线l的方程23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (8)参考答案与试题解析一、选择题,在每小题给出的四个选项中,只有一项符合题目要求(共10小题,每小题5分,满分50分)1.(5分)函数f(x)=cos(2x﹣)的最小正周期是()A. B.π C.2π D.4π【分析】由题意得ω=2,再代入复合三角函数的周期公式求解.【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x﹣)的最小正周期是π,故选:B.【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.2.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1]D.(0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项.【解答】解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选:B.【点评】本题考查交集的运算,理解好交集的定义是解答的关键.3.(5分)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣1【分析】根据微积分基本定理计算即可.【解答】解:(2x+ex)dx=(x2+ex)|=(1+e)﹣(0+e0)=e.故选:C.【点评】本题主要考查了微积分基本定理,关键是求出原函数.4.(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()A.an=2nB.an=2(n﹣1)C.an=2nD.an=2n﹣1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式. 【解答】解:由程序框图知:ai+1=2ai,a1=2,∴数列为公比为2的等比数列,∴an=2n.故选:C.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键.5.(5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.6.(5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,∴所求概率为=.故选:C.【点评】本题考查概率的计算,列举基本事件是关键.7.(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=xB.f(x)=x3C.f(x)=()xD.f(x)=3x【分析】对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案.【解答】解:A.f(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f (y),故A错;B.f(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故B错;C.f(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f (x)在R上是单调减函数,故C错.D.f(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;故选:D.【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题.8.(5分)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假.【解答】解:根据共轭复数的定义,原命题“若z1,z2互为共轭复数,则|z1|=|z2|”是真命题;其逆命题是:“若|z1|=|z2|,则z1,z2互为共轭复数”,例|1|=|﹣1|,而1与﹣1不是互为共轭复数,∴原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,∴命题的否命题是假命题,逆否命题是真命题.故选:B.【点评】本题考查了四种命题的定义及真假关系,考查了共轭复数的定义,熟练掌握四种命题的真假关系是解题的关键.9.(5分)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a【分析】方法1:根据变量之间均值和方差的关系直接代入即可得到结论.方法2:根据均值和方差的公式计算即可得到结论.【解答】解:方法1:∵yi=xi+a,∴E(yi)=E(xi)+E(a)=1+a,方差D(yi)=D(xi)+E(a)=4.方法2:由题意知yi=xi+a,则=(x1+x2+…+x10+10×a)=(x1+x2+…+x10)=+a=1+a,方差s2=[(x1+a﹣(+a)2+(x2+a﹣(+a)2+…+(x10+a﹣(+a)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2=4.故选:A.【点评】本题主要考查样本数据的均值和方差之间的关系,若变量y=ax+b,则Ey=aEx+b,Dy=a2Dx,利用公式比较简单或者使用均值和方差的公式进行计算.10.(5分)如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为()A.y=﹣xB.y=x3﹣xC.y=x3﹣xD.y=﹣x3+x【分析】分别求出四个选项中的导数,验证在x=±5处的导数为0成立与否,即可得出函数的解析式.【解答】解:由题意可得出,此三次函数在x=±5处的导数为0,依次特征寻找正确选项:A选项,导数为,令其为0,解得x=±5,故A正确;B选项,导数为,令其为0,x=±5不成立,故B错误;C选项,导数为,令其为0,x=±5不成立,故C错误;D选项,导数为,令其为0,x=±5不成立,故D错误.故选:A.【点评】本题考查导数的几何意义,导数几何意义是导数的重要应用.二、填空题(考生注意:请在15、16、17三题中任选一题作答,如果多做,则按所做的第一题评分,共4小题,每小题5分,满分20分)11.(5分)已知4a=2,lgx=a,则x=.【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值.【解答】解:由4a=2,得,再由lgx=a=,得x=.故答案为:.【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.12.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为 x2+(y﹣1)2=1 .【分析】利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.【解答】解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.【点评】本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.13.(5分)设0<θ<,向量=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ=.【分析】利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出.【解答】解:∵∥,向量=(sin2θ,cosθ),=(cosθ,1),∴sin2θ﹣cos2θ=0,∴2sinθcosθ=cos2θ,∵0<θ<,∴cosθ≠0.∴2tanθ=1,∴tanθ=.故答案为:.【点评】本题考查了向量共线定理、倍角公式、同角三角函数基本关系式,属于基础题. 14.(5分)观察分析下表中的数据:棱数(E)多面体面数(F)顶点数(V)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是 F+V﹣E=2 .【分析】通过正方体、三棱柱、三棱锥的面数F、顶点数V和棱数E,得到规律:F+V﹣E=2,进而发现此公式对任意凸多面体都成立,由此得到本题的答案.【解答】解:凸多面体的面数为F、顶点数为V和棱数为E,①正方体:F=6,V=8,E=12,得F+V﹣E=8+6﹣12=2;②三棱柱:F=5,V=6,E=9,得F+V﹣E=5+6﹣9=2;③三棱锥:F=4,V=4,E=6,得F+V﹣E=4+4﹣6=2.根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:F+V﹣E=2再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.因此归纳出一般结论:F+V﹣E=2故答案为:F+V﹣E=2【点评】本题由几个特殊多面体,观察它们的顶点数、面数和棱数,归纳出一般结论,得到欧拉公式,着重考查了归纳推理和凸多面体的性质等知识,属于基础题.(不等式选做题)15.(5分)设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则的最小值为.【分析】根据柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc取等号,问题即可解决.【解答】解:由柯西不等式得,(ma+nb)2≤(m2+n2)(a2+b2)∵a2+b2=5,ma+nb=5,∴(m2+n2)≥5∴的最小值为故答案为:【点评】本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题. (几何证明选做题)16.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF= 3 .【分析】证明△AEF∽△ACB,可得,即可得出结论.【解答】解:由题意,∵以BC为直径的半圆分别交AB、AC于点E、F,∴∠AEF=∠C,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∵BC=6,AC=2AE,∴EF=3.故答案为:3.【点评】本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题.(坐标系与参数方程选做题)17.在极坐标系中,点(2,)到直线的距离是 1 .【分析】把极坐标化为直角坐标,再利用点到直线的距离公式即可得出.【解答】解:点P(2,)化为=,y=2=1,∴P.直线展开化为:=1,化为直角坐标方程为:,即=0.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标的公式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题:解答题应写出文字说明、证明过程或盐酸步骤(共6小题,满分75分)18.(12分)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.【分析】(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.【点评】此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.19.(12分)如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(Ⅰ)证明:四边形EFGH是矩形;(Ⅱ)求直线AB与平面EFGH夹角θ的正弦值.【分析】(Ⅰ)由三视图得到四面体ABCD的具体形状,然后利用线面平行的性质得到四边形EFGH的两组对边平行,即可得四边形为平行四边形,再由线面垂直的判断和性质得到AD⊥BC,结合异面直线所成角的概念得到EF⊥EH,从而证得结论;(Ⅱ)分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,求出所用点的坐标,求出及平面EFGH的一个法向量,用与所成角的余弦值的绝对值得直线AB与平面EFGH夹角θ的正弦值.【解答】(Ⅰ)证明:由三视图可知,四面体ABCD的底面BDC是以∠BDC为直角的等腰直角三角形,且侧棱AD⊥底面BDC.如图,∵AD∥平面EFGH,平面ADB∩平面EFGH=EF,AD⊂平面ABD,∴AD∥EF.∵AD∥平面EFGH,平面ADC∩平面EFGH=GH,AD⊂平面ADC,∴AD∥GH.由平行公理可得EF∥GH.∵BC∥平面EFGH,平面DBC∩平面EFGH=FG,BC⊂平面BDC,∴BC∥FG.∵BC∥平面EFGH,平面ABC∩平面EFGH=EH,BC⊂平面ABC,∴BC∥EH.由平行公理可得FG∥EH.∴四边形EFGH为平行四边形.又AD⊥平面BDC,BC⊂平面BDC,∴AD⊥BC,则EF⊥EH.∴四边形EFGH是矩形;(Ⅱ)解:解法一:取AD的中点M,连结,显然ME∥BD,MH∥CD,MF∥AB,且ME=MH=1,平面MEH⊥平面EFGH,取EH的中点N,连结MN,则MN⊥EH,∴MN⊥平面EFGH,则∠MFN就是MF(即AB)与平面EFGH所成的角θ,∵△MEH是等腰直角三角形,∴MN=,又MF=AB=,∴sin∠AFN==,即直线AB与平面EFGH夹角θ的正弦值是.解法二:分别以DB,DC,DA所在直线为x,y,z轴建立空间直角坐标系,由三视图可知DB=DC=2,DA=1.又E为AB中点,∴F,G分别为DB,DC中点.∴A(0,0,1),B(2,0,0),F(1,0,0),E(1,0,),G(0,1,0).则.设平面EFGH的一个法向量为.由,得,取y=1,得x=1.∴.则sinθ=|cos<>|===.【点评】本题考查了空间中的直线与直线的位置关系,考查了直线和平面所成的角,训练了利用空间直角坐标系求线面角,解答此题的关键在于建立正确的空间右手系,是中档题.20.(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P (x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.【分析】(Ⅰ)先根据++=,以及各点的坐标,求出点p的坐标,再根据向量模的公式,问题得以解决;(Ⅱ)利用向量的坐标运算,先求出,,再根据=m +n,表示出m﹣n=y﹣x,最后结合图形,求出m﹣n的最小值.【解答】解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),++=,∴(1﹣x,1﹣y)+(2﹣x,3﹣y)+(3﹣x,2﹣y)=0∴3x﹣6=0,3y﹣6=0∴x=2,y=2,即=(2,2)∴(Ⅱ)∵A(1,1),B(2,3),C(3,2),∴,∵=m +n,∴(x,y)=(m+2n,2m+n)∴x=m+2n,y=2m+n∴m﹣n=y﹣x,令y﹣x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,1.故m﹣n的最大值为21.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表:300 500作物产量(kg)概率0.5 0.56 10作物市场价格(元/kg)概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.【分析】(Ⅰ)分别求出对应的概率,即可求X的分布列;(Ⅱ)分别求出3季中有2季的利润不少于2000元的概率和3季中利润不少于2000元的概率,利用概率相加即可得到结论.【解答】解:(Ⅰ)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,则P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格﹣成本,∴X的所有值为:500×10﹣1000=4000,500×6﹣1000=2000,300×10﹣1000=2000,300×6﹣1000=800,则P(X=4000)=P ()P ()=(1﹣0.5)×(1﹣0.4)=0.3,P(X=2000)=P ()P(B)+P(A)P ()=(1﹣0.5)×0.4+0.5(1﹣0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,则X的分布列为:X 4000 2000 800P 0.3 0.5 0.2(Ⅱ)设Ci表示事件“第i季利润不少于2000元”(i=1,2,3),则C1,C2,C3相互独立,由(Ⅰ)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512,3季的利润有2季不少于2000的概率为P (C2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,综上:这3季中至少有2季的利润不少于2000元的概率为:0.512+0.384=0.896.【点评】本题主要考查随机变量的分布列及其概率的计算,考查学生的计算能力.23.(14分)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.【分析】(Ⅰ)由已知,,…可得用数学归纳法加以证明;(Ⅱ)由已知得到ln(1+x)≥恒成立构造函数φ(x)=ln(1+x)﹣(x≥0),利用导数求出函数的最小值即可;(Ⅲ)在(Ⅱ)中取a=1,可得,令则,n依次取1,2,3…,然后各式相加即得到不等式.【解答】解:由题设得,(Ⅰ)由已知,,…可得下面用数学归纳法证明.①当n=1时,,结论成立.②假设n=k时结论成立,即,那么n=k+1时,=即结论成立.由①②可知,结论对n∈N+成立.(Ⅱ)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)﹣(x≥0),则φ′(x)=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时取等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+x)≥恒成立,(仅当x=0时等号成立)当a>1时,对x∈(0,a﹣1]有φ′(x)<0,∴φ(x)在∈(0,a﹣1]上单调递减,∴φ(a﹣1)<φ(0)=0即当a>1时存在x>0使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,实数a的取值范围是(﹣∞,1].(Ⅲ)由题设知,g(1)+g(2)+…+g(n)=,n﹣f(n)=n﹣ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n﹣ln(n+1)证明如下:上述不等式等价于,在(Ⅱ)中取a=1,可得,令则故有,ln3﹣ln2,…,上述各式相加可得结论得证.【点评】本题考查数学归纳法;考查构造函数解决不等式问题;考查利用导数求函数的最值,证明不等式,属于一道综合题.22.(13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为. (Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.【分析】(Ⅰ)在C1、C2的方程中,令y=0,即得b=1,设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2;(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0),设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(xp,yp),依题意,可求得点P的坐标为(,);同理可得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),利用•=0,可求得k的值,从而可得答案.【解答】解:(Ⅰ)在C1、C2的方程中,令y=0,可得b=1,且A(﹣1,0),B(1,0)是上半椭圆C1的左右顶点.设C1:的半焦距为c,由=及a2﹣c2=b2=1得a=2.∴a=2,b=1.(Ⅱ)由(Ⅰ)知上半椭圆C1的方程为+x2=1(y≥0).易知,直线l与x轴不重合也不垂直,设其方程为y=k(x﹣1)(k≠0),代入C1的方程,整理得:(k2+4)x2﹣2k2x+k2﹣4=0.(*)设点P(xp,yp),∵直线l过点B,∴x=1是方程(*)的一个根,由求根公式,得xp=,从而yp=,∴点P的坐标为(,).同理,由得点Q的坐标为(﹣k﹣1,﹣k2﹣2k),∴=(k,﹣4),=﹣k(1,k+2),∵AP⊥AQ,∴•=0,即[k﹣4(k+2)]=0,∵k≠0,∴k﹣4(k+2)=0,解得k=﹣.经检验,k=﹣符合题意,故直线l的方程为y=﹣(x﹣1),即8x+3y﹣8=0.【点评】本题考查椭圆与抛物线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查设点法、数形结合思想、函数与方程思想,属于难题.。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项: 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3. 考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据x1,x2,…,xa 的标准差 锥体体积公式13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,若集合S=}{1.0.1-,则A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈ 2.若a ∈R ,则a=2是(a1)(a2)=0的A.充分而不必要条件 B 必要而不充分条件 C.充要条件 C.既不充分又不必要条件 3.若tan α=3,则2sin 2cos aα的值等于A.2B.3C.4D.64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A.14B.13C.12 D.23 5.10⎰(e2+2x )dx 等于A.1B.e1C.eD.e+1 6.(1+2x)3的展开式中,x2的系数等于 A.80 B.40 C.20 D.10 7.设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于 A.1322或B.23或2C.12或2D.2332或8.已知O 是坐标原点,点A (1,1)若点M (x,y )为平面区域,上的一个动点,则OA ·的取值范围是A.[1.0]B.[0.1]C.[0.2]D.[1.2]9.对于函数f (x )=asinx+bx+c(其中,a,b ∈R,c ∈Z),选取a,b,c 的一组值计算f (1)和f (1),所得出的正确结果一定不可能是A.4和6B.3和1C.2和4D.1和210.已知函数f(x)=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断:①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A.①③B.①④C. ②③D.②④普通高等学校招生全国统一考试(福建卷)数 学(理工农医类)注意事项: 用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。
绵中实校寒假作业(数学01)参考答案及详细解析1、D (由频率分布直方图知在[)2,10内的频率为0.02×4+0.08×4=0.4)2、C (()sin 0y x ωω=>按向量,06a π⎛⎫=- ⎪⎝⎭平移,则得函数sin 6y x πω⎛⎫=+ ⎪⎝⎭ sin 6x ωπω⎛⎫=+ ⎪⎝⎭,由图象并结合“五点法”作图,可知73,21262πππωω⎛⎫+=∴= ⎪⎝⎭) 3、A (由题意知曲线上存在某点的导数为1,所以1231y ax x'=+-=有正根,即 22210ax x +-=有正根。
当0a ≥时,显然满足题意;当0a <时,须满足0∆≥,解得 102a -≤<,综上:12a ≥-。
故选A ) 4、B (由()()1479112324a a a a a ++++=得72,a =∴1371326S a ==。
)5、B (作出平面区域,如右图。
若z ax y =+在A 、B 两点分别取得最大、小值,必有11a -≤-≤,即11a -≤≤)6、D (由()()()4022f f f =⎧⎪⎨=-⎪⎩得4,2b c =-=,∴()()()242,02,0x x x f x x ⎧-+≥⎪=⎨<⎪⎩ ∴()()()()22517024517024x x F x f x x x x ⎧⎛⎫--≥⎪ ⎪⎪⎝⎭=-=⎨⎛⎫⎪+-< ⎪⎪⎝⎭⎩又()020F =>,∴零点的个数为4个)7、C (设)sin ,cos 2(θθB ,则).1sin ,cos 2(-=→θθAB 而||CD CD →→为直线l 的方向单位向量,如图,)1,1(22||=→→CD CD ,故AB CD CD =)1sin cos 2(22)1,1(22)1sin ,cos 2(++=⋅+θθθθ 故AB CD CD 的最小值为2210+8.81509、1;3;2(将1y x =+代入圆方程可得()221210x x x a ++-+-=,整理可得2220x a +-=;当()0820a ∆=--=,即2a =时,直线与圆相切。
绵中实校12级理补 数学备课组 2011-12-27 命题人::邓榕数学小练习(十五)1.设全集U = R ,A =⎭⎬⎫⎩⎨⎧<01x x ,则U A= ( )(A )⎭⎬⎫⎩⎨⎧>01x x (B ){x | x > 0} (C ){x | x ≥0} (D )⎩⎨⎧xx 1≥02.给定性质:①最小正周期为π②图象关于直线3x π=对称,则同时具有性质①、②的是( ) (A)sin()26x y π=+ (B)sin(2)6y x π=+ (C)sin y x = (D)sin(2)6y x π=- 3.已知△ABC 中, AB a =,AC b =,0a b ⋅<,154ABC S ∆=,3,5a b ==,则BAC ∠= (A)30 (B)150- (C) 0150 (D) 30或0150(3)在等差数列{n a }中,2a =-5,646+=a a ,则1a 等于 ( )(A )-4 (B )-5 (C )-7 (D )-84.偶函数()f x 在[1,0]-单调递减,若A B 、是锐角三角形的两个内角,则( )(A)(sin )(cos )f A f B > (B)(sin )(sin )f A f B >(C)(cos )(sin )f A f B > (D)(cos )(cos )f A f B > 5.与116922=-y x 渐近线相同,且过)23,3(-A 的双曲线的一个焦点到一条渐近线的距离是 A .42 B .22 C .423 D .26.若|2|=a ,2||=b 且(b a -)⊥a ,则a 与b 的夹角是 ( )(A )6π (B )4π (C )3π (D )π125 7.过点M (-2,0)的直线m 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为( ) A .2 B .-2 C .21 D .-21 8.设22{(,)|1},{(,)|(2)3},A x y x y B x y y t x A B =-===++若为单元素集,则t 值的个数是A .1B .2C .3D .4 9.设[]x 表示不超过x 的最大整数(例[5.5]=5,[-5.5]=-6),则,2[]5[]6x x -+≤0的解集为( )(A) (2,3) (B) [2,4) (C) [2,3] (D) [2,4]10.22x y =上两点),(),,(2211y x B y x A 关于直线m x y +=对称,且2121-=x x ,则 m= 11.已知直线1l :x – 2y + 3 = 0 ,那么直线1l 的方向向量1a 为_______________(注:只需写一个正确的);2l 过点(1,1),并且2l 的方向向量a 2与a 1满足1a ·2a = 0,则2l 的方程为__ 12.若21tan =θ,则=-θθθ22cos 2cos 2sin ___________;0x →=___________ 13.已知)(x f 是定义在(-∞,+∞)上的减函数,其图像经过A (-4,1),B (0,-1)两点,)(x f 的反函数是)(1x f -,则=-)1(1f ____;不等式1|)41(|<-xx f 的解集是_______ 14.在锐角△ABC 中,A A A A A A A f 222cos )2(sin )22(sin )22sin()2sin(]1)2[cos()(+----+--=πππππ. (I )求f (A )的最大值;(II )若7,()1,212A B f A BC π+===,求,,A B C ,AC .15.一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.求:(Ⅰ)恰好摸到2个“心”字球的概率;(Ⅱ)摸球次数X 的概率分布列和数学期望.。
一、选择题(共15小题,每小题3分,满分45分)1.(3分)(•海淀区一模)的值等于()A .1B.﹣1C.i D.﹣i2.(3分)设圆M的方程为(x﹣3)2+(y﹣2)2=2,直线L的方程为x+y﹣3=0,点P的坐标为(2,1),那么()A .点P在直线L上,但不在圆M上B.点P在圆M上,但不在直线L上C .点P既在圆M上,又在直线L上D.点P既不在直线L上,也不在圆M上3.(3分)集合{1,2,3}的子集共有()A .7个B.8个C.6个D.5个4.(3分)已知双曲线方程,那么双曲线的焦距是()A .10B.5C.D.5.(3分)在的展开式中,x6的系数是()A .﹣27C106B.27C104C.﹣9C106D.9C1046.(3分)(•北京模拟)函数y=cos4x﹣sin4x的最小正周期是()A .B.πC.2πD.4π7.(3分)方程的解集是()A .B .C .D .8.(3分)极坐标方程所表示的曲线是()A .圆B.双曲线右支C.抛物线D.椭圆9.(3分)如图,正四棱台中,A'D'所在的直线与BB'所在的直线是()A .相交直线B.平行直线C .不互相垂直的异面直线D.互相垂直的异面直线10.(3分)的值等于()A .4B.C.D.811.(3分)设命题甲:△ABC的一个内角为60°,命题乙:△ABC的三内角的度数成等差数列.那么()A.甲是乙的充分条件,但不是必要条件B甲是乙的必要条件,但不是充分条件.C.甲是乙的充要条件D.甲不是乙的充分条件,也不是乙的必要条件12.(3分)在复平面内,若复数z满足|z+1|=|z﹣i|,则z所对应的点Z的集合构成的图形是()A .圆B.直线C.椭圆D.双曲线13.(3分)如果曲线x2﹣y2﹣2x﹣2y﹣1=0经过平移坐标轴后的新方程为x'2﹣y'2=1,那么新坐标系的原点在原坐标系中的坐标为()A .(1,1)B.(﹣1,﹣1)C.(﹣1,1)D.(1,﹣1)14.(3分)(•杭州一模)假设在200件产品中有3件次品,现在从中任意抽取5件,其中至少有2件次品的抽法有()A .C32C1973种B.C32C1973+C33C1972种C .C﹣C1975种D.C﹣C31C1974种15.(3分)已知二面角α﹣AB﹣β的平面角是锐角,C是平面α内一点(它不在棱AB上),点D是点C在面β上的射影,点E是棱AB上满足∠CEB为锐角的任一点,那么()A .∠CEB>∠DEBB.∠CEB=∠DEBC .∠CEB<∠DEBD.∠CEB与∠DEB的大小关系不能确定二、解答题(共5小题,满分0分)16.(20分)四棱锥S﹣ABCD的底面是边长为1的正方形,侧棱SB垂直于底面,并且SB=,用α表示∠ASD,求sinα的值.17.(10分)已知tgx=a,求的值.18.(10分)如图,正三棱锥S﹣ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.19.(12分)给定实数a,a≠0,且a≠1,设函数y=(x∈R,且x≠).证明:(1)经过这个函数图象上任意两个不同的点的直线不平行于x轴;(2)这个函数的图象关于直线y=x成轴对称图形.20.(12分)某中学在一次健康知道竞赛活动中,抽取了一部分同学测试的成绩,绘制的成绩统计图如图所示,请结合统计图回答下列问题:(1)本次测试中,抽取了的学生有多少人?(2)若这次测试成绩80分以上(含80分)为优秀,则请你估计这次测试成绩的优秀率不低于百分之几?.21.(11分)21、设的大小,并证明你的结论.全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.(3分)(•海淀区一模)的值等于()A .1B.﹣1C.i D.﹣i考点:复数代数形式的混合运算.专题:计算题.分析:根据复数的计算方法,可得的值,进而可得=(﹣i)2,可得答案.解答:解:根据复数的计算方法,可得==﹣i,则=(﹣i)2=﹣1,故选B.点评:本题考查复数的混合运算,解本题时,注意先计算括号内,再来计算复数平方.2.(3分)设圆M的方程为(x﹣3)2+(y﹣2)2=2,直线L的方程为x+y﹣3=0,点P的坐标为(2,1),那么()A .点P在直线L上,但不在圆M上B.点P在圆M上,但不在直线L上C .点P既在圆M上,又在直线L上D.点P既不在直线L上,也不在圆M上考点:点与圆的位置关系.分析:点P代入直线方程和圆的方程验证即可.解答:解:点P坐标代入直线方程和圆的方程验证,点P的坐标为(2,1),适合L的方程,即2+1﹣3=0;点P 的坐标为(2,1),满足圆M的方程,即(2﹣3)2+(1﹣2)2=2.显然A、B、D不正确.选项C正确.故选C.点评:本题是基础题,考查点的坐标适合方程.3.(3分)集合{1,2,3}的子集共有()A .7个B.8个C.6个D.5个考点:子集与真子集.分析:集合{1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集.解答:解:集合{1,2,3}的子集有:∅,{1},{2},{3},{1,2}…{1,2,3}共8个.故选B.点评:本题考查集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个.4.(3分)已知双曲线方程,那么双曲线的焦距是()A .10B.5C.D.考点:双曲线的简单性质.专题:计算题.分析:根据题设条件求出c2,然后求出c,就能得到双曲线的焦距2c.解答:解:c2=25,c=5,∴双曲线的焦距2c=10.故选A.点评:本题比较简单,解题时注意不要和椭圆弄混了.5.(3分)在的展开式中,x6的系数是()A .﹣27C106B.27C104C.﹣9C106D.9C104考点:二项式定理的应用.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令x的指数为6求出x6的系数.解答:解:展开式的通项为令10﹣r=6得r=4∴展开式中x6的系数是9C104故选项为D点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(3分)(•北京模拟)函数y=cos4x﹣sin4x的最小正周期是()A .B.πC.2πD.4π考点:同角三角函数基本关系的运用.分析:观察题目条件,思路是降幂,先用平方差公式,再逆用二倍角公式,式子变为能判断周期等性质的形式,即y=Asin(ωx+φ)的形式.解答:解:∵y=cos4x﹣sin4x=cos2x﹣sin2x=cos2x,∴T=π,故选B点评:对于和式的整理,基本思路是降次、消项和逆用公式,本题就是逆用余弦的二倍角公式.另外还要注意切割化弦,变量代换和角度归一等方法.7.(3分)方程的解集是()A .B .C .D .考点:正弦函数的图象.分析:令t=cosx代入后转化为一元二次方程后即可解.解答:解:令t=cosx则可转化为:4t2﹣4t+3=0∴t=∴cosx=∴x=±故选C.点评:本题主要考查解关于三角函数的二次方程问题.一般通过换元法转化为一元二次方程的问题后再处理.8.(3分)极坐标方程所表示的曲线是()A .圆B.双曲线右支C.抛物线D.椭圆考点:简单曲线的极坐标方程.分析:圆锥曲线的统一的极坐标方程是,其中e表示曲线的离心率,欲判断极坐标方程所表示的曲线,只须将它化成统一的形式后看其离心率即可.解答:解:∵,∴,∴其离心率e=,是椭圆.故选D.点评:本题主要考查了圆锥曲线的统一的极坐标方程,属于基础题.9.(3分)如图,正四棱台中,A'D'所在的直线与BB'所在的直线是()A .相交直线B.平行直线C .不互相垂直的异面直线D.互相垂直的异面直线考点:空间中直线与直线之间的位置关系.分析:首先由“直线平行于平面,则该直线与平面内任一直线异面”判定A'D'与BB′异面;然后通过A'D'与BB′的夹角是等腰梯形的内角,确定A'D'与BB′不垂直.解答:解:在正四棱台中,A'D'∥B′C′,又A'D'⊄平面BCC′B′,所以A'D'∥平面BCC′B′,又BB′⊂平面BCC′B′,所以A'D'与BB′异面;又因为四边形BCC′B′是等腰梯形,所以BB′与B′C′不垂直,即BB′与A'D'不垂直.故选C.点评:本题考查异面直线的定义及其夹角.10.(3分)的值等于()A .4B.C.D.8考点:反三角函数的运用.专题:计算题.分析:应用两角和的正切公式直接化简,以及公式tg(arctgx)=x直接求解即可.解答:解:=故选D.点评:本题考查反三角函数的运算,两角和的正切公式,是基础题.11.(3分)设命题甲:△ABC的一个内角为60°,命题乙:△ABC的三内角的度数成等差数列.那么()A.甲是乙的充分条件,但不是必要条件B.甲是乙的必要条件,但不是充分条件C.甲是乙的充要条件D.甲不是乙的充分条件,也不是乙的必要条件考点:等差关系的确定.分析:根据三角形内角和180°,△ABC的一个内角为60°,另外两个角的和是120°,满足等差中项的特点,△ABC的三内角的度数成等差数列,等差中项是60°.解答:解:∵△ABC的一个内角为60°,∴另外两个角的和是120°,∴三个角满足等差数列;∵△ABC的三内角的度数成等差数列,∴等差中项是60°,故选C点评:本小题主要考查等差数列、充要条件等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.可以列表复习等差数列和等比数列的概念、有关公式和性质.以便利于区分等差和等比.12.(3分)在复平面内,若复数z满足|z+1|=|z﹣i|,则z所对应的点Z的集合构成的图形是()A .圆B.直线C.椭圆D.双曲线考点:复数的代数表示法及其几何意义.分析:本题考查的是复数的模的几何意义.|z1﹣z2|表示点Z1到Z2距离.先明确几何意义,再数形结合就可以给出解答.解答:解:|z+1|,|z﹣i|的几何意义分别是点Z到﹣1所对应的点A(﹣1,0)和点Z到i所对应的点B(0,1)的距离.由|ZA|=|ZB|,则点Z的轨迹是线段AB的垂直平分线.点评:本题考查的是复数的模的几何意义.注意掌握|z1﹣z2|表示点Z1到Z2距离.13.(3分)如果曲线x2﹣y2﹣2x﹣2y﹣1=0经过平移坐标轴后的新方程为x'2﹣y'2=1,那么新坐标系的原点在原坐标系中的坐标为()A .(1,1)B.(﹣1,﹣1)C.(﹣1,1)D.(1,﹣1)考点:函数的图象与图象变化.分析:先将方程x2﹣y2﹣2x﹣2y﹣1=0配方,再看此方程可由什么样的平移方式得到新方程为x'2﹣y'2=1,从而新坐标系的原点在原坐标系中的坐标.解答:解:将方程x2﹣y2﹣2x﹣2y﹣1=0配方得:(x﹣1)2﹣(y+1)2=1,其中心在(1,﹣1),故新坐标系的原点在原坐标系中的坐标为(1,﹣1),故选D.点评:本题主要考查了函数的图象的图象变化,属于基础题.14.(3分)(•杭州一模)假设在200件产品中有3件次品,现在从中任意抽取5件,其中至少有2件次品的抽法有()A .C32C1973种B.C32C1973+C33C1972种C .C﹣C1975种D.C﹣C31C1974种考点:组合及组合数公式.专题:计算题;压轴题.分析:根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,由组合数公式分别求得两种情况下的抽法数,进而相加可得答案.解答:解:根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,“有2件次品”的抽取方法有C32C1973种,“有3件次品”的抽取方法有C33C1972种,则共有C32C1973+C33C1972种不同的抽取方法,故选B.点评:本题考查组合数公式的运用,解题时要注意“至少”“至多”“最少”“最少”等情况的分类讨论.15.(3分)已知二面角α﹣AB﹣β的平面角是锐角,C是平面α内一点(它不在棱AB上),点D是点C在面β上的射影,点E是棱AB上满足∠CEB为锐角的任一点,那么()A .∠CEB>∠DEBB.∠CEB=∠DEBC .∠CEB<∠DEBD.∠CEB与∠DEB的大小关系不能确定考点:三垂线定理.专题:作图题;综合题;压轴题.分析:作出图形,利用三垂线定理和直角三角形,推出∠CEB、∠DEB的正切值的大小,推出结论.解答:解:过C向AB做垂线交AB于F,连接DF,因为CD⊥AB又CF⊥AB,所以AB⊥面CDF,所以CF垂直于AB在直角三角形CDF中,CF为斜边DF为直角边,所以CF>DF易知tan∠CEF=tan∠DEB=由CF>DF知,∠CEB>∠DEB故选A.点评:本题考查三垂线定理,考查学生逻辑思维能力,是基础题.二、解答题(共5小题,满分0分)16.(20分)四棱锥S﹣ABCD的底面是边长为1的正方形,侧棱SB垂直于底面,并且SB=,用α表示∠ASD,求sinα的值.考点:三垂线定理.专题:作图题;证明题.分析:利用三垂线定理说明DA⊥SA,求出SD,解三角形SAD,即可得到sinα的值.解答:解:因为SB垂直于底面ABCD,所以斜线段SA在底面上的射影为AB,由于DA⊥AB所以DA⊥SA从而连接BD,易知BD=由于SB⊥BD,所以因此,点评:本题考查三垂线定理,考查学生分析问题解决问题的能力,是基础题.17.(10分)已知tgx=a,求的值.考点:三角函数中的恒等变换应用.分析:先用和差化积公式再根据二倍角公式即可化简求值.解答:解:==点评:本题主要考查三角函数的和差化积公式和二倍角公式.三角函数中公式比较多,一定要熟练记忆,能够灵活运用.19.(12分)给定实数a,a≠0,且a≠1,设函数y=(x∈R,且x≠).证明:(1)经过这个函数图象上任意两个不同的点的直线不平行于x轴;(2)这个函数的图象关于直线y=x成轴对称图形.考点:反函数.专题:证明题.分析:(1)欲证经过这个函数图象上任意两个不同的点的直线不平行于x轴,设M1(x1,y1),M2(x2,y2)是这个函数图象上任意两个不同的点,可通过证明任意两个不同的点的直线的斜率恒不为0得到;(2)要证这个函数的图象关于直线y=x成轴对称图形,设点P(x',y')是这个函数图象上任意一点,证明其对称点(y',x')也在此函数的图象上即可.解答:解:(1)设M1(x1,y1),M2(x2,y2)是这个函数图象上任意两个不同的点,则x1≠x2,且=,∵a≠1,且x1≠x2,∴y2﹣y1≠0.从而直线M1M2的斜率,因此,直线M1M2不平行于x轴.(2)设点P(x',y')是这个函数图象上任意一点,则x'≠,且y'=(1)易知点P(x',y')关于直线y=x的对称点P'的坐标为(y',x')由(1)式得y'(ax'﹣1)=x'﹣1,即x'(ay'﹣1)=y'﹣1,(2),即ax'﹣a=ax'﹣1,由此得a=1,与已知矛盾,∴这说明点P'(y',x')在已知函数的图象上,因此,这个函数的图象关于直线y=x成轴对称图形.点评:本题主要考查了等价转化能力和数式的运算能力,属于中档题.对(1)也可用反证法或考查平行x轴的直线y=c与所给函数的图象是否相交及交点数目的情况.由其无交点或恰有一交点,从而得证.对(2)也可先求反函数,由反函数与原函数相同证明其图象关于y=x对称).20.(12分)某中学在一次健康知道竞赛活动中,抽取了一部分同学测试的成绩,绘制的成绩统计图如图所示,请结合统计图回答下列问题:(1)本次测试中,抽取了的学生有多少人?(2)若这次测试成绩80分以上(含80分)为优秀,则请你估计这次测试成绩的优秀率不低于百分之几?.考点:频率分布直方图.专题:压轴题;图表型.分析:(1)由频数直方图的意义,将各组人数相加可得共抽取的学生人数,即答案;(2)读直方图可得:这次测试成绩80分以上的人数,除以总人数即可得优秀率,即答案.解答:解:(1)由频数直方图可知:本次测试中,抽取了的学生有2+3+41+4=50人;(2)这次测试成绩80分以上(含80分)的人数为41+4=45,则优秀率为=90%.故答案为:(1)50人;(2)90%.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(11分)21、设的大小,并证明你的结论.考点:对数的运算性质;对数值大小的比较.专题:压轴题.分析:先判断与的大小,再由对数函数的单调性可得到答案.解答:解:当t>0时,由基本不等式可得,当且仅当t=1时取“=”号∴t≠1时,当0<a<1时,y=logax是单调减函数,∴,即当a>1时,y=logax是单调增函数,∴>,即>点评:本题主要考查对数函数的单调性,即当底数大于1时函数单调递增,当底数大于0小于1时函数单调递减.18.(10分)如图,正三棱锥S﹣ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.考点:旋转体(圆柱、圆锥、圆台);棱锥的结构特征.专题:计算题.分析:连接AE,说明ED⊥SA,作DF⊥SE,交SE于点F.所求的旋转体的体积是以DF为底面半径,分别以SF和EF为高的两个圆锥的体积的和,求出DF,然后求出几何体的体积.解答:解:连接AE,因为△SDE和△ABC都是边长为a的正三角形,并且SE和AE分别是它们的中线,所以SE=AE,从而△SEA为等腰三角形,由于D是SA的中点,所以ED⊥SA.作DF⊥SE,交SE于点F.考虑直角△SDE的面积,得到,所以,,.所求的旋转体的体积是以DF为底面半径,分别以SF和EF为高的两个圆锥的体积的和,即.点评:本题是基础题,考查空间想象能力,圆锥的体积的求法,考查计算能力以及发现问题解决问题的能力.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB 的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:D.【点评】本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【分析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.2【分析】由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.【解答】解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D.【点评】本题考查的知识点是数量积表示两个向量的夹角,难度中档.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]【分析】由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.【解答】解:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.【点评】本题考查了正方体的性质和直角三角形的边角关系、线面角的求法,考查了推理能力,属于中档题.9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②【分析】根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.【解答】解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正确;f()=ln(1+)﹣ln(1﹣)=ln()﹣ln()=ln ()=ln[()2]=2ln()=2[ln(1+x)﹣ln(1﹣x)]=2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)﹣2x≥0,令g(x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))∵g′(x)=+﹣2=≥0,∴g(x)在[0,1)单调递增,g(x)=f(x)﹣2x≥g (0)=0,又f(x)≥2x,又f(x)与y=2x为奇函数,所以|f(x)|≥2|x|成立,故③正确;故正确的命题有①②③,故选:A.【点评】本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档.10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO═×2×(y1﹣y2)+×y1,=.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.【点评】求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数= ﹣2i .【分析】利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.【解答】解:复数===﹣2i,故答案为:﹣2i.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= 1 .【分析】由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.【解答】解:∵f(x)是定义在R上的周期为2的函数,。
一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1.【绵阳南山中学高三12月月考数学(理)】已知四棱锥ABCDP-的三视图如图,则四棱锥ABCDP-的全面积为()A.5 3+B. 52+ C. 5D. 4【答案】A【解析】根据三视图可得其表示的几何体如下图,表面积为1112122153522S=+⨯⨯⨯+⨯⨯⨯=+ CDB2.如图所示,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的表面积为( )A.15+3 3 B.9 3C .30+6 3D .18 3[答案] C3.设一个球的表面积为S1,它的内接正方体的表面积为S2,则S1S2的值等于( )A.2πB.6πC.π6D.π2 【答案】D【解析】设球的半径为R ,其内接正方体的棱长为a ,则易知R2=34a2,即a =233R ,则S1S2=4πR26×⎝ ⎛⎭⎪⎫233R 2=π2. 4.某几何体的三视图如图所示,则其表面积为( )A .38+πB .38+2πC .40+πD .40+2π 【答案】B【解析】由三视图可知,该组合体下方是一个长方体,上方是一个半圆柱,所以表面积为2(4×2+4×2+2×2)-2+12×2π×1+π=38+2π.5.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高之比为( )A .1 2B .12πC .21 D .1π【答案】C6.【邯郸市高三上学期第二次模拟考试】某几何体的三视图如图所示,则该几何体的体积为( ) A .2π B .π22 C .3πD .23π【答案】D【解析】由三视图还原图像,得原图是两个一样的圆锥底面对在一起了, 所以212[(1)1]233V ππ=⨯⨯⨯⨯=. 7.与正方体各面都相切的球,它的表面积与正方体表面积之比为( ) A.π2B.π3C.π4D.π6 【答案】D【解析】设正方体的棱长为a ,依题意知内切球的直径为a ,∴球的表面积S 球=4π⎝ ⎛⎭⎪⎫a 22=πa2,正方体的表面积S 正=6a2. ∴S 球:S 正=π6.8.【韶关市高三调研考试】已知某几何体的三视图如图所示,则该几何体的体积为( ) A .12B .1C .32D .3【答案】C【解析】由三视图易知,该几何体是底面积为32,高为3的三棱锥,由锥体的体积公式得1333322V=⨯⨯=.选C9. 正六棱锥PABCDEF中,G为PB的中点,则三棱锥DGAC与三棱锥PGAC的体积之比为()A.1∶1 B.1∶2C.2∶1 D.3∶2【答案】C10. 如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )A.23 B.33 C.43D.32【答案】A11. 【玉溪市第一中学高三月考、理、10】三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,1AC BC ==,3PA =,则该三棱锥外接球的表面积为( )A .π5B .π2C .π20D .π4 【答案】A【解析】分析可知球心在PB 的中点. 因为AC BC ⊥,1AC BC ==,所以2AB =.所以225PB PA AB =+=球的半径5R =.所以此球的表面积为245S R ππ==.故A 正确. 12. 【高考天津,理10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .1侧视图俯视图正视图11112111111【答案】83二、填空题(本大题共4小题,每小题5分,共20分。
一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
) 1.已知x ∈),2(ππ,cos2x =a ,则cosx =()A.1-a2B .-1-a2C. 1+a2D .-1+a2【答案】D【解析】依题意得cos2x =1+cos2x 2=1+a2;又x ∈),2(ππ,因此cosx =-1+a2. 2. 【成都七中数学阶段性测试题,理8】已知10,2sin cos 2a R αα∈-=,则tan(2)4πα-=( ) A .43B .7-C .34-D .17【答案】B3. 【皖南八校高三第一次联考,理6】函数()cos 22sin f x x x =+的最小值与最大值的和等于( ) A.2 B.0 C.32- D.12- 【答案】C4.已知1sin 23α=,则2cos ()4πα-=( ) A .13B .13- C .23D .23-【答案】C【解析】22sin 1222cos 14cos 2απαπα+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-322311=+=,故选C. 5. 已知53cos()25+=πα,02-<<πα,则sin 2α的值是( ) (A )2425 (B )1225 (C )1225- (D )2425-【答案】D【解析】由已知,sinα=-35,又02-<<πα,故cosα=45 ∴sin2α=2sinαcosα=2×(-35)×45=-24256. 已知tan 222α=-,且满足42ππα<<,则⎪⎭⎫⎝⎛+--απαα4sin 21sin 2cos 22值( )A .2B .-2C .223+-D .223- 【答案】C22cos sin 1cos sin 222sin cos cos sin 444ααααπππααα---=⎛⎫⎫++ ⎪⎪⎝⎭⎭cos sin cos sin cos cos sin cos sin cos αααααααααα--==++1tan 22231tan 12αα-===++.故C 正确.7. 若,2παπ⎛⎫∈ ⎪⎝⎭,则3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α的值为( ) A .118B .118- C .1718 D .1718- 【答案】D .8. 已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+=( )A .B .C .D .【答案】C9.设a R ∈,函数2()cos (sin cos )cos ()2f x x a x x x π=-+-满足()(0)3f f π-=.则()f x 的单调递减区间为( ) A. )Z ](65,3[∈+-k k k ππππ B. )Z ](65,6[∈++k k k ππππ C. )Z ](3,65[∈--k k k ππππ D.)Z ](65,3[∈++k k k ππππ 【答案】D10. 已知ABC ∆中,83sin ,cos 175A B ==,则cos C 等于 A .1385-或7785 B .7785 C .7785- D .1385-【答案】D11.已知函数23()3sin cos 3cos 2f x x x x ωωω=+-,其中0ω>.若()f x 在区间[,]36ππ-上为增函数,则ω的最大值为( ) A .23 B .1 C .32D .2 【答案】B【解析】因为sin y x =在每个区间[2,2]()22k k k Z ππππ-+∈上为增函数,故23()3sin cos 3cos 3sin(2)(0)6f x x x x x πωωωωω=+-=+>在每个闭区间[,]()36k k k Z ππππωωωω-+∈上为增函数,依题意知:[,][,]3636k k ππππππωωωω-⊆-+对某个k Z ∈成立,此时必有0k =,于是3366ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得1ω≤,故ω的最大值为1. 12. 【高考重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( )A 、1B 、2C 、3D 、4 【答案】C二、填空题(本大题共4小题,每小题5分,共20分。
第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1设集合}4,3,2,1,0{=M ,}2|||{〈∈=x Z x N ,则M N 为A.)2,1(-B.)1,0(C.{1,0,1}D.}1,0{ 2.已知f (2x )=x 2则f (x )=( ) A .2x B . 4xC . xD .2x 3.已知复合命题“P 或Q”为真,“非P”为假,则必有( ) A P 真Q 假 B 、P 真Q 真 C P 真Q 可真可假 D P 假Q 真 4.已知集合M={x|x 1},N={x|x>}a ≤-,若MN ≠∅,则有( )A .1a <-B .1a >-C .1a ≤-D .1a ≥-5.下面四个条件中,使a b >成立的充分而不必要的条件是( )(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >6.曲线C :y = x2 + x 在 x = 1 处的切线与直线 ax -y + 1 = 0 互相垂直,则实数 a 的值为 A.3B. -3 C.31 D. -31 7、函数2()ln(2)f x x x=--的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)8、函数y=3sin (2x60°)的图象可由函数y=3sin2x 的图象经过下列那种变换得到( )A 、向左平移60°B 、向左平移30°C 、向右平移60°D 、向右平移30°9、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a <<10、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>11、设函数()f x (x ∈R )满足()()f x f x -=,(2)()f x f x +=,则函数()y f x =的图像是12、.观察243()2,()4,(cos )sin x x x x x x '''===-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -等于 ( )A.()f xB.()f x -C.()g xD.()g x -第Ⅱ卷(非选择题)二、填空题 (本大题共4小题, 每小题5分)13.若集合22{,1,3},{3,1,21}A a a B a a a =+-=-+-,且{3}A B =-,则A B =_____.14.已知函数)]91(f [f ,)0x (20)(x x log )x (f x3则,,⎩⎨⎧≤>=的值为 15.函数f (x)log (3x 2)2a =-+恒过定点 16.命题“任意x R ∈,2240x x -+≤”的否定为。
一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1. 【高考原创预测卷】若函数3()3f x x x =-在2(,6)a a -上有最小值,则实数a 的取值范围是()A .(5,1)- B .[5,1)-C .[)2,1-D .(2,1)-2.【定兴第三中学月考】当时,不等式恒成立,则实数的取值范围为 ( )A .B .C .D . 3.【高三期中备考总动员四川卷】已知函数有两个极值点,,且,则( )A .B .C .D .4.【沈阳二中期末测试】函数的图象如图所示,则导函数的图象可能是( )5.已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为( ) A.3B.52C.2D.326.【嘉兴市高三3月教学测试(一)】已知函数()f x 的导函数的图象如图所示,若△ABC 为锐角三角形,则下列不等式一定成立的是())3,2(∈x 0922<+-m x x m 9m >9=m 9≤m 9m <()221ln f x x x a x=-++1x 2x 12x x <()212ln 24f x +<-()212ln 24f x -<()212ln 24f x +>()212ln 24f x ->()y f x =()'y f x =A. (sin )(sin )f A f B >B. (sin )(cos )f A f B >C. (cos )(cos )f A f B <D. (sin )(cos )f A f B <7.【高考原创预测卷(浙江)】已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是 ( )A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞8.【高考湖南卷文第9题】若1201x x <<<,则() A.2121ln ln xxe e x x ->-B.2121ln ln x xe e x x -<-C.1221xxx e x e >D.1221xxx e x e <9.【山东高三数学预测卷】函数2ln(23)(xy ae x a e =-+-为自然对数的底数)的值域是实数集R ,则实 数a 的取值范围是( ) A .(],e -∞B .(],1-∞C .[0,]eD .[0,1]10.【漳州市普通高中毕业班质量检查】已知)(x f 为R 上的可导函数,且R x ∈∀,均有)()(x f x f '>,则以下判断正确的是()A .2013(2013)(0)f e f > B .2013(2013)(0)f e f <C .2013(2013)(0)f ef = D .2013(2013)(0)f e f 与大小无法确定11.【原创题】若函数2()3ln (0)f x x x a x a =-+>,当1a =时,函数()f x 的单调减区间和极小值分别为()A. 1(0,)2,2-B. (1,)+∞,2-C. 1(,1)2,2-D. 1(,1)2,5ln 24-- 12. 【威海市高三第二次模拟考试】设为函数的导函数,已知 ,则下列结论正确的是 ( )()f x '()f x 21()()ln ,()x f x xf x x f e e '+==(A )在单调递增 (B )在单调递减 (C )在上有极大值 (D )在上有极小值二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.对恒成立,则的取值范围是. 14.【改编自成都七中高三3月高考模拟考试数学(理)】已知存在正数,,a b c 满足12ce a≤≤,ln ln ,c b a c c =+则lnba的取值范围是 . 15.,当时函数的极值为 .16. 【襄阳四中高三下学期第三次四校联考】若对区间D 上的任意都有成立,则称为到在区间D 上的“任性函数”,已知,若是到在“任性函数”,则的取值范围是三、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.【黄冈市高三5月适应性考试】已知函数2()ln f x x x ax =+-(a 为常数).(1)若1x =是函数()f x 的一个极值点,求a 的值; (2)当02a <≤时,试判断()f x 的单调性;(3)若对任意的0(1,2),[1,2]a x ∈∈,使不等式0()ln f x m a >恒成立,求实数m 的取值范围.18..(1)求函数的单调区间;(2)若当时恒成立,求的取值范围19.【新课标1备考总动员期中测试】(本题满分18分)()f x (0,)+∞()f x (0,)+∞()f x (0,)+∞()f x (0,)+∞),0(+∞∈∀x c 1x =-()f x (2)f =x 12()()()f x f x f x ≤≤()f x 1()f x 2()f x ()f x x a =+1()f x 2()f x a ()f x []1,2x ∈-()f x m<m已知函数(1)求函数的单调区间;(2时,,求实数的取值范围 20.【四川卷期中备考总动员】已知函数R ,曲线在点处的切线方程为. (Ⅰ)求的解析式;(Ⅱ)当时成立,求实数的取值范围;高考模拟复习试卷试题模拟卷()sin xf x e x =()f x ()f x kx ≥k ()ln (,f x a x bx a b =+∈)()y f x =()()1,1f 220x y --=)(x f 1x >k一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.(5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱2.(5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.144.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.406.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.610.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为.12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是(单位:元)14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (2)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱【分析】直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状,即可. 【解答】解:圆柱的正视图为矩形,故选:A.【点评】本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.2.((5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i【分析】直接由复数代数形式的乘法运算化简z,则其共轭可求.【解答】解:∵z=(3﹣2i)i=2+3i,∴.故选:C.【点评】本题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题.3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.14【分析】由等差数列的性质和已知可得a2,进而可得公差,可得a6【解答】解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2,∴a6=a1+5d=2+5×2=12,故选:C.【点评】本题考查等差数列的通项公式和求和公式,属基础题.4.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.【分析】由题意可得a=3,由基本初等函数的图象和性质逐个选项验证即可.【解答】解:由题意可知图象过(3,1),故有1=loga3,解得a=3,选项A,y=a﹣x=3﹣x=()x单调递减,故错误;选项B,y=x3,由幂函数的知识可知正确;选项C,y=(﹣x)3=﹣x3,其图象应与B关于x轴对称,故错误;选项D,y=loga(﹣x)=log3(﹣x),当x=﹣3时,y=1,但图象明显当x=﹣3时,y=﹣1,故错误.故选:B.【点评】本题考查对数函数的图象和性质,涉及幂函数的图象,属基础题.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.40【分析】算法的功能是求S=21+22+…+2n+1+2+…+n的值,计算满足条件的S值,可得答案. 【解答】解:由程序框图知:算法的功能是求S=21+22+…+2n+1+2+…+n的值,∵S=21+22+1+2=2+4+1+2=9<15,S=21+22+23+1+2+3=2+4+8+1+2+3=20≥15.∴输出S=20.故选:B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.6.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件【分析】根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则圆心到直线距离d=,|AB|=2,若k=1,则|AB|=,d=,则△OAB的面积为×=成立,即充分性成立.若△OAB的面积为,则S==×2×==,即k2+1=2|k|,即k2﹣2|k|+1=0,则(|k|﹣1)2=0,即|k|=1,解得k=±1,则k=1不成立,即必要性不成立.故“k=1”是“△OAB的面积为”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【分析】由三角函数和二次函数的性质,分别对各个选项判断即可.【解答】解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D.【点评】本题考查分段函数的性质,涉及三角函数的性质,属基础题.8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)【分析】根据向量的坐标运算,,计算判别即可.【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能. 选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B.【点评】本题主要考查了向量的坐标运算,根据列出方程解方程是关键,属于基础题.9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.6【分析】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【解答】解:设椭圆上的点为(x,y),则∵圆x2+(y﹣6)2=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6.故选:D.【点评】本题考查椭圆、圆的方程,考查学生分析解决问题的能力,属于基础题.10.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)【分析】根据“1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来”,分别取红球蓝球黑球,根据分步计数原理,分三步,每一步取一种球,问题得以解决.【解答】解:从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a+a2+a3+a4+a5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+c+c2+c3+c4+c5=(1+c)5,根据分步乘法计数原理得,适合要求的所有取法是(1+a+a2+a3+a4+a5)(1+b5)(1+c)5.故选:A.【点评】本题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题.二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为 1 .【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值. 【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A(0,1)时,直线y=﹣3x+z的截距最小,此时z最小.此时z的最小值为z=0×3+1=1,故答案为:1【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于 2.【分析】利用三角形中的正弦定理求出角B,再利用三角形的面积公式求出△ABC的面积. 【解答】解:∵△ABC中,A=60°,AC=4,BC=2,由正弦定理得:,∴,解得sinB=1,∴B=90°,C=30°,∴△ABC的面积=.故答案为:.【点评】本题着重考查了给出三角形的两边和其中一边的对角,求它的面积.正余弦定理、解直角三角形、三角形的面积公式等知识,属于基础题.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 160 (单位:元)【分析】此题首先需要由实际问题向数学问题转化,设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.【解答】解:设池底长和宽分别为a,b,成本为y,则∵长方形容器的容器为4m3,高为1m,故底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,∵a+b≥2=4,故当a=b=2时,y取最小值160,即该容器的最低总造价是160元,故答案为:160【点评】本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题.14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.【分析】利用定积分计算阴影部分的面积,利用几何概型的概率公式求出概率.【解答】解:由题意,y=lnx与y=ex关于y=x对称,∴阴影部分的面积为2(e﹣ex)dx=2(ex﹣ex)=2,∵边长为e(e为自然对数的底数)的正方形的面积为e2,∴落到阴影部分的概率为.故答案为:.【点评】本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是 6 .【分析】利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论.【解答】解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;a=4时,b=1,c=3,d=2;∴符合条件的有序数组(a,b,c,d)的个数是6个.【点评】本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.【分析】(1)根据题意,利用sinα求出cosα的值,再计算f(α)的值;(2)化简函数f(x),求出f(x)的最小正周期与单调增区间即可.【解答】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.【点评】本题考查了三角函数的化简以及图象与性质的应用问题,是基础题目.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.【分析】(1)利用面面垂直的性质定理即可得出;(2)建立如图所示的空间直角坐标系.设直线AD与平面MBC所成角为θ,利用线面角的计算公式sinθ=|cos|=即可得出.【解答】(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD.(2)解:建立如图所示的空间直角坐标系.∵AB=BD=CD=1,AB⊥BD,CD⊥BD,∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M.∴=(0,1,﹣1),=(1,1,0),=.设平面BCM的法向量=(x,y,z),则,令y=﹣1,则x=1,z=1.∴=(1,﹣1,1).设直线AD与平面MBC所成角为θ.则sinθ=|cos|===.【点评】本题综合考查了面面垂直的性质定理、线面角的计算公式sinθ=|cos|=,考查了推理能力和空间想象能力,属于中档题.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【分析】(1)根据古典概型的概率计算公式计算顾客所获的奖励额为60元的概率,依题意得X得所有可能取值为20,60,分别求出P(X=60),P(X=20),画出顾客所获的奖励额的分布列求出数学期望;(2)先讨论,寻找期望为60元的方案,找到(10,10,50,50),(20,20,40,40)两种方案,分别求出数学期望和方差,然后做比较,问题得以解决.【解答】解:(1)设顾客所获取的奖励额为X,①依题意,得P(X=60)=,即顾客所获得奖励额为60元的概率为,②依题意得X得所有可能取值为20,60,P(X=60)=,P(X=20)=,即X的分布列为X 60 20P所以这位顾客所获的奖励额的数学期望为E(X)=20×+60×=40(2)根据商场的预算,每个顾客的平均奖励额为60元,所以先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以数学期望不可能为60元,如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以数学期望也不可能为60元,因此可能的方案是(10,10,50,50)记为方案1,对于面值由20元和40元的组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2,以下是对这两个方案的分析:对于方案1,即方案(10,10,50,50)设顾客所获取的奖励额为X1,则X1的分布列为 X1 60 20 100PX1 的数学期望为E(X1)=.X1 的方差D(X1)==,对于方案2,即方案(20,20,40,40)设顾客所获取的奖励额为X2,则X2的分布列为 X2 40 60 80PX2 的数学期望为E(X2)==60,X2 的方差D(X2)=差D(X1)=. 由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1小,所以应该选择方案2.【点评】本题主要考查了古典概型、离散型随机变量的分布列、数学期望、方差等基础知识,考查了数据处理能力,运算求解能力,应用意识,考查了必然与或然思想与整合思想.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.【分析】(1)依题意,可知=2,易知c=a,从而可求双曲线E的离心率;(2)由(1)知,双曲线E的方程为﹣=1,设直线l与x轴相交于点C,分l⊥x轴与直线l不与x轴垂直讨论,当l⊥x轴时,易求双曲线E的方程为﹣=1.当直线l不与x轴垂直时,设直线l的方程为y=kx+m,与双曲线E的方程联立,利用由S△OAB=|OC|•|y1﹣y2|=8可证得:双曲线E的方程为﹣=1,从而可得答案.【解答】解:(1)因为双曲线E的渐近线分别为l1:y=2x,l2:y=﹣2x,所以=2.所以=2.故c=a,从而双曲线E的离心率e==.(2)由(1)知,双曲线E的方程为﹣=1.设直线l与x轴相交于点C,当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,所以|OC|•|AB|=8,因此a•4a=8,解得a=2,此时双曲线E的方程为﹣=1.以下证明:当直线l不与x轴垂直时,双曲线E的方程为﹣=1也满足条件.设直线l的方程为y=kx+m,依题意,得k>2或k<﹣2;则C(﹣,0),记A(x1,y1),B(x2,y2),由得y1=,同理得y2=,由S△OAB=|OC|•|y1﹣y2|得:|﹣|•|﹣|=8,即m2=4|4﹣k2|=4(k2﹣4).由得:(4﹣k2)x2﹣2kmx﹣m2﹣16=0,因为4﹣k2<0,所以△=4k2m2+4(4﹣k2)(m2+16)=﹣16(4k2﹣m2﹣16),又因为m2=4(k2﹣4),所以△=0,即直线l与双曲线E有且只有一个公共点.因此,存在总与直线l有且只有一个公共点的双曲线E,且E的方程为﹣=1.【点评】本题考查双曲线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、分类讨论思想、函数与方程思想.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 【分析】(1)利用导数的几何意义求得a,再利用导数的符号变化可求得函数的极值;(2)构造函数g(x)=ex﹣x2,求出导数,利用(1)问结论可得到函数的符号,从而判断g(x)的单调性,即可得出结论;(3)首先可将要证明的不等式变形为x2<ex,进而发现当x>时,x2<x3,因此问题转化为证明当x∈(0,+∞)时,恒有x3<ex.【解答】解:(1)由f(x)=ex﹣ax,得f′(x)=ex﹣a.又f′(0)=1﹣a=﹣1,解得a=2,∴f(x)=ex﹣2x,f′(x)=ex﹣2.由f′(x)=0,得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增;∴当x=ln2时,f(x)有极小值为f(ln2)=eln2﹣2ln2=2﹣ln4.f(x)无极大值.(2)令g(x)=ex﹣x2,则g′(x)=ex﹣2x,由(1)得,g′(x)=f(x)≥f(ln2)=eln2﹣2ln2=2﹣ln4>0,即g′(x)>0,∴当x>0时,g(x)>g(0)>0,即x2<ex;(3)首先证明当x∈(0,+∞)时,恒有x3<ex.证明如下:令h(x)=x3﹣ex,则h′(x)=x2﹣ex.由(2)知,当x>0时,x2<ex,从而h′(x)<0,h(x)在(0,+∞)单调递减,所以h(x)<h(0)=﹣1<0,即x3<ex,取x0=,当x>x0时,有x2<x3<ex.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<cex.【点评】该题主要考查导数的几何意义、导数的运算及导数的应用等基础知识,考查学生的运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、化归与转化思想.属难题.21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.【分析】(1)利用AA﹣1=E,建立方程组,即可求矩阵A;(2)先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.【解答】解:(1)设A=,则由AA﹣1=E得=,解得a=,b=﹣,c=﹣,d=,所以A=;(2)矩阵A﹣1的特征多项式为f(λ)==(λ﹣2)2﹣1,令f(λ)=(λ﹣2)2﹣1=0,可求得特征值为λ1=1,λ2=3,设λ1=1对应的一个特征向量为α=,则由λ1α=Mα,得x+y=0得x=﹣y,可令x=1,则y=﹣1,所以矩阵M的一个特征值λ1=1对应的一个特征向量为,同理可得矩阵M的一个特征值λ2=3对应的一个特征向量为.【点评】本题考查逆变换与逆矩阵,考查矩阵特征值与特征向量的计算等基础知识,属于基础题.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.【分析】(1)由绝对值不等式|a|+|b|≥|a﹣b|,当且仅当ab≤0,取等号;(2)由柯西不等式:(a2+b2+c2)(d2+e2+f2)≥(ad+be+cf)2,即可证得.【解答】(1)解:∵|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,当且仅当﹣1≤x≤2时,等号成立,∴f(x)的最小值为3,即a=3;(2)证明:由(1)知,p+q+r=3,又p,q,r为正实数,∴由柯西不等式得,(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=32=9,即p2+q2+r2≥3.【点评】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算求解能力,考查化归与转化思想.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.【分析】(1)消去参数,把直线与圆的参数方程化为普通方程;(2)求出圆心到直线的距离d,再根据直线l与圆C有公共点⇔d≤r即可求出.【解答】解:(1)直线l的参数方程为,消去t可得2x﹣y﹣2a=0;圆C的参数方程为,两式平方相加可得x2+y2=16;(2)圆心C(0,0),半径r=4.由点到直线的距离公式可得圆心C(0,0)到直线L的距离d=.∵直线L与圆C有公共点,∴d≤4,即≤4,解得﹣2≤a≤2.【点评】熟练掌握点到直线的距离公式和直线与圆有公共点的充要条件是解题的关键.。
作业03----完成时间:12年1月25日 星期三 正月初三 今天距离高考还有134天
家长签字:
1.若复数()()211z x x i =-+-为纯虚数,则实数x 的值为( ) A. 1-
B. 0
C. 1
D. 1-或1
2.函数()(),,00,sin x y x x
ππ=
∈- 的图象可能是下列图象中的( )
3. 与向量7117,,,222
2a b ⎛⎫⎛⎫
==- ⎪ ⎪⎝⎭⎝⎭ 的夹解相等,且模为1的向量是
(A) ⎪⎭⎫-
⎝⎛53,5
4 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭
⎫
⎝⎛-53,54 (C )⎪⎭⎫-
⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝
⎛-31,322 4.从0、2、4中取一个数字,从1、3、5中取两个数字,组成无重复数字的三位数,则所有
不同的三位数的个数是( )
A 、36
B 、48
C 、52
D 、54
5.连掷两次骰子得到的点数分别为m 和n ,记向量(),a m n = 与向量()1,1b =-
的夹角为θ,
则0,2πθ⎛⎤
∈ ⎥⎝
⎦
的概率是( )
A.
512
B. 12
C. 712
D. 56
6. 数列{}n
a
中,)(231++∈+=N n a a n n ,且810=a ,则=4a ( )
.
A 81
1 .B 81
80- .
C 27
1
.D 27
26-
7.P 是△ABC 内的一点,()
13
A P A
B A
C =+
,则△ABC 的面积与△ABP 的面积之比为( )
A. 2
B. 3
C. 1.5
D. 6
7. 若l :(2m+1)x+(1-m )y -(4m+5)=0, 则点P (7,0)到直线l 的距离d 的取值范围是__________
8. ①已知,1,=>ab b a 则
b
a b
a
-+2
2
的最小值是 .②若等比数列{}n a 中,
131,4,a a ==则12231n n a a a a a a ++++ = _____________
10、给出以下几个命题,正确的是____________ ①函数()121
x f x x -=
+对称中心是11,2
2⎛⎫-
-
⎪⎝
⎭
;②已知n S 是等差数列{}n a ,*
n N ∈的前n 项和,若75S S >,则93S S >;③函数()()f x x x px q x R =++∈为奇函数的充要条件是
0q =;④已知a ,b ,m 均是正数,且a b <,则
a m a
b m
b
+>
+
11.已知过点()4,0A -的动直线l 与抛物线()2
:20C x py p =>相交于B ,C 两点,当l 的斜率是
12
时,4AC AB = 。
(1)求抛物线C 的方程;
(2)设BC 的中垂线在y 轴上的截距为b ,求b 的取值范围。
12. 等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数
(0x
y b r b =+>且1,,b b r ≠均为常数)的图像上.
(1)求r 的值; (2)当b=2时,记 1()4n n
n b n N a +
+=
∈ 求数列{}n b 的前n 项和n T。