第四章 同位素地球化学2(2012)
- 格式:ppt
- 大小:6.38 MB
- 文档页数:52
现代同位素地球化学第二讲稳定同位素分馏及其应用l2.1 同位素效应l2.2 同位素分馏l2.3 分馏系数及其应用l2.4 地质温度计l2.5 同位素平衡体系的验证2.1 同位素效应(isotope effects)•由不同的同位素组成的分子之间存在相对质量差, 这种质量差异所引起的该分子在物理和化学性质上的差异,称为同位素效应(isotope effect)。
•在不同的物理、化学和生物作用过程中,会出现不同的同位素效应,发生某种程度的同位素分馏.•氢的两个同位素(1H和2H)的相对质量差是所有元素的同位素中最大的,因此自然界中氢同位素分馏也最大.2.2 同位素分馏l同位素分馏:是指在一地质体系中,某元素的同位素以不同的比值分配到两种物质或物相中的现象l同位素分馏系数(α):两种物质或物相间同位素分馏的程度。
又称分离系数lαA-B=R A/R Bl R A和R B分别表示某一元素的两种同位素在A、B两种物质中的比值,如18O/16O、2H/1H、13C/12C等lα=1时,无分馏;α值与分馏程度成正比。
l1/2C16O2+H218O→1/2C18O2+H216OαCO2-H2O=(18O/16O)CO2/(18O/16O)H2αCO2-H2O=1.04 at 25℃同位素分馏系数α•例如CaCO 3和H 2O 之间氢同位素交换反应可写成:•则CaCO 3和H 2O 之间的分馏系数α可表示为:•在25o C 时,αCaCO3-H2O = 1.031氧同位素组成δ值l物质中一种元素的几个同位素的绝对量的测量,通常是十分困难的。
实际工作中往往采用相对测量法,即只要知道待测物质中某元素的两种稳定同位素的比值与一标准物质中同一元素的两种同位素的比值之间的差异即可。
这一差异用δ值来表示:l因此,δ值是样品与标准之间同位素比值间的相对偏差,单位用千分值(‰)表示。
δ§分馏值(∆):某同位素在不同物相中同位素组成δ之差:∆A-B=δA-δB§对含有同一元素的一系列化合物,∆具有加和性, 例如A,B,C三种化合物∆A-C= ∆A-B+∆B-C千分分馏作用(1000lna)l利用数学计算可知1000ln(1.00n) ≈n,l例如,a CaCO-H2O=1.031,则1000lna=31。
地球化学中的同位素分析地球化学是研究地球化学成分、地球化学过程、地球化学循环和地球化学环境的一门学科。
其中的同位素分析是地球化学中的重要分支之一。
同位素是指具有相同原子序数但不同质量数的单质,在自然界中广泛存在。
同位素分析可用来研究岩石、矿物、水体、大气等自然现象,也可用来解决环境、生物和人类问题。
同位素分析的原理是依据同位素在化学和物理活动中的差异性。
同一元素的同位素化学性质相同,但物理性质不同。
例如,具有同位素^12C和^13C的二氧化碳分子在光谱分析技术中可以被分辨,从而得到不同的信号。
利用这些信号,就可以分析样品中同位素的含量和同位素比值。
同位素分析的方法主要包括质谱法、光谱法、放射性测量法等。
其中,质谱法是同位素分析中最常用的方法之一。
该方法基于质谱仪的原理,利用精确的磁场和电场对离子进行分析,得出不同离子的质量-电荷比,从而测定样品中的同位素含量。
同位素分析在地球化学中有许多应用。
以下介绍几个例子:1.同位素示踪法同位素示踪法是同位素分析中使用最广泛的应用之一。
当同位素被注入到一个系统中时,同位素浓度会随着时间变化而发生变化。
通过测量不同时间点的同位素浓度,可以了解系统中各种物质的来源、分布和移动方式。
地球化学中常用的同位素示踪法包括放射性示踪法和稳定同位素示踪法。
放射性示踪法是将一种有放射性同位素标记注入样品中,通过测量标记同位素的衰变速率和产生的辐射量来示踪样品中物质的分布和运动。
稳定同位素示踪法则是利用稳定同位素测定样品中物质的来源、变化和转移。
2.同位素地球化学同位素地球化学是利用同位素在地球科学中的广泛应用,包括地质学、气候学、生物学和环境科学。
通常情况下,地球化学家使用不同的同位素分析方法来研究样品的化学成分和样品的起源。
例如,根据岩石中铀、钍、锶等放射性同位素的衰变速率,研究岩石的时代和成因;利用碳同位素分析技术,研究生物的食物链变化和生物地球化学过程;通过测量气体中气体同位素的含量和同位素比值,可以研究大气的物理和化学特性。
地球化学中的同位素示踪和分析地球化学是研究地球化学元素地球内部和表层分布、地球化学过程及其规律的学科。
而同位素则是一种在化学和物理方面都具有重要意义的存在。
地球化学中的同位素示踪和分析,是通过同位素不同的浓度和比例来逐步研究地球物质的来源、演化和变化的过程。
在此过程中,地球化学家们可以获取大量有关地球构造、生物演化、古气候、古环境等重要信息。
本文将会探讨地球化学中的同位素示踪和分析的基本原理及其应用。
一、基本原理同位素是指具有相同原子序数(Z)但质量数(A)不同的原子。
同种元素的不同同位素,因为质量的差异而具有不同的化学特性和物理特性。
地球化学中,多数同位素其存在量非常稀少,可以利用现代分析技术对其进行测定,进而对地球物质进行示踪和分析。
在地球科学中,同位素示踪和分析的主要原理是利用同位素存在量不同的特性,对化学和地质过程进行追踪和研究。
具体而言,同位素示踪和分析是在分析样品中不同同位素存在量的基础上,研究样品来源、演化、变化等方面的科学方法。
地球化学中的同位素示踪可以分为两类,一种是稳定同位素示踪,另一种则是放射性同位素示踪。
稳定同位素示踪主要是利用稳定同位素在地球化学过程中不同的分馏效应,来推测样品中的某些地球化学过程,如元素演化,矿物相变,物种演化等。
放射性同位素示踪,则主要是利用放射性同位素的不同半衰期,来推测样品中年代和历史上某些事件的发生时间。
在同位素示踪的过程中,通常采用同位素比值的方法来获得与分析对象相关的信息。
同位素比值(R)是指两个同种元素不同同位素的存在量之比,可以根据比值的变化来推测样品中与分析对象相关的信息。
例如,碳同位素示踪就是利用炭素同位素比值中稳定同位素^13C和^12C的存在量差异,来推测样品中元素演化,动植物来源等信息。
二、应用地球化学中的同位素示踪和分析在地质学、生物学、气候学等领域都有着广泛的应用。
以下是一些常见的应用:1. 地球内部物质循环及元素分馏模型研究地球内部物质循环及元素分馏模型研究需要大量的岩石和矿物样品,利用稳定同位素的存在量差异,可以推测出岩石、矿物的成因和演化历史。
地球化学解析地球岩石中的同位素组成地球岩石是地球上最庞大的自然资源之一,通过对其同位素组成的分析,可以深入了解地球历史、地质构造、岩石形成过程等方面的信息。
同位素是具有相同质子数,但中子数不同的同一元素的不同形式,其稳定性和放射性在地球化学中发挥重要作用。
本文将介绍地球化学中解析地球岩石中的同位素组成的方法和应用。
一、同位素的基本概念同位素是指同一元素中,质子数相同而中子数不同的核。
同位素的质量数等于其质子数与中子数之和。
同位素在化学性质上具有相似性,但在物理性质上存在差异,其中最常见的性质就是其放射性。
同位素按照其放射性可分为稳定同位素和放射性同位素两类。
二、同位素分析方法在地球化学研究中,常用的同位素分析方法包括质谱法和同位素地球化学方法。
1. 质谱法质谱法是一种利用质谱仪对元素、化合物或物质所含的同位素进行分析的方法。
常见的质谱法包括质谱质谱法(MS-MS)、电感耦合等离子体质谱法(ICP-MS)等。
2. 同位素地球化学方法同位素地球化学方法主要利用同位素的物理性质,通过对岩石、矿物或水样品中同位素组成的测定,解析地球系统中的物质循环、地质历史和地球环境等。
常见的同位素地球化学方法包括稳定同位素地球化学和放射性同位素地球化学。
三、同位素地球化学的应用1. 稳定同位素地球化学的应用稳定同位素地球化学广泛应用于水文地球化学、岩石地球化学、大气环境等领域。
例如,利用氢氧同位素可以探究地球水循环过程、水源区的划分和水资源的管理。
利用碳同位素可以追踪地球上的碳循环和生物地球化学循环过程。
利用氧同位素可以研究古气候变化和古环境演化等。
2. 放射性同位素地球化学的应用放射性同位素地球化学主要应用于地质年代学和地下水资源勘探等领域。
例如,利用铀-铅同位素测年方法可以确定岩石和矿石的年龄。
利用钾-氩同位素方法可以测定火山岩的年龄。
利用同位素示踪技术可以研究地下水流动路径和补给来源等。
综上所述,地球岩石中的同位素组成是地球化学研究的重要内容之一,通过同位素的分析可以获取丰富的地质、地质历史和地球环境信息。