第六章 同位素地球化学-2
- 格式:pdf
- 大小:505.91 KB
- 文档页数:25
地球化学中的同位素研究及其应用地球化学是研究地球上各种化学现象和过程的科学学科。
同位素是元素具有相同的原子序数和化学性质,但质量数不同的不同种类的原子,其在地球化学研究中发挥着重要的作用。
本文将探讨地球化学中的同位素研究以及其在不同领域的应用。
一、同位素的定义和分类同位素是指具有相同原子序数(即原子核中质子的数量相同)但质量数(即原子核中质子和中子的数量之和)不同的原子。
同位素的存在使得地球化学研究可以根据元素的同位素组成来分析物质起源、演化和地球系统中的各种过程。
同位素一般可以分为稳定同位素和放射性同位素两类。
稳定同位素是指在地球化学研究中具有稳定存在状态的同位素,如氢的两种同位素氢-1和氢-2,氧的三种同位素氧-16、氧-17和氧-18。
放射性同位素是指具有不稳定存在状态的同位素,如铀系列的235U和238U以及镭系列的226Ra等。
二、地球化学中的同位素研究方法1. 同位素质谱法同位素质谱法是地球化学研究中常用的分析技术,它可以通过测量元素的同位素比例来获取有关地球物质起源和演化的信息。
该技术基于同位素质量分析仪器,可以对地球系统中的各种物质样品进行同位素组成的测定。
2. 同位素示踪法同位素示踪法是地球化学研究中常用的实验手段,它通过采集含有某种同位素标记的物质,并追踪其在地球系统中的传输和转化过程。
该方法可以帮助科学家们了解物质的迁移路径、生物地球化学循环等过程,为地球系统模型的构建和预测提供重要依据。
三、地球化学中的同位素研究应用1. 地质探测地球化学中的同位素研究可以用于地质探测,例如利用同位素示踪法可以追踪岩石中的放射性同位素衰变过程,从而确定岩石的年代和形成过程。
这对于研究地质构造、地壳运动以及矿床形成等具有重要意义。
2. 古气候研究同位素的组成可以反映地球气候变化的过程。
通过对冰川和海洋沉积物中的同位素比例进行分析,可以了解过去气候变化的规律和机制。
这对于预测未来气候变化趋势以及制定环境保护政策有重要意义。
第六章同位素地球化学同位素地球化学或同位素地质学是根据地球或星体的各种物质中,因稳定同位素分馏或放射性同位素衰变而造成的同位素成分的变化,来研究这些物质的来源、演化及其过程的一门学科。
利用稳定同位素分馏为基础的地球化学示踪研究,发展成为稳定同位素地球化学;而利用放射性同位素衰变进行地质年龄研究,发展成为同位素地质年代学。
第一节同位素地质年代学同位素是指原子核内质子数相同而中子数不同的一类原子。
在元素周期表中占据一个位置。
由于质子数相同,它们属于同一元素的一簇原子,所以它们的基本化学性质相同,但质量有所不同。
根据原子核的稳定性,可以分为稳定同位素和放射性同位素。
如果把每一种原子核称为核素,那么在已知的近1700种核素中,只有约260种是稳定的,而大部分已知的核素是不稳定的或称为放射性的,它们会自发地分解(衰变或裂变)直到成为稳定的核素为止(Faure, 1986)。
由于与太阳系年龄相比,大部分的放射性核素的衰变速率非常快,因此它们在自然界已不实际存在,但可以在实验室人工合成。
同位素地质年代学所感兴趣的,是自然存在的为数不多的一些放射性同位素核素,主要包括那些具有非常慢的衰变速率的(如238U, 235U, 232Th, 147Sm, 40K等)、由长寿命放射性母体衰变产生的(如234U, 230Th, 226Ra等)、由天然核反应产生的(如14C, 10Be等)、以及由人工核试验产生的放射性同位素。
一、放射性衰变原理不稳定的原子会自发地发射出粒子和能量而转变为另一种原子,这一过程称为放射性衰变,发射出粒子和能量的现象即所谓放射性。
各种不稳定原子的衰变有几种不同的方式,一些原子可以同时以2-3种方式衰变,但多数原子以一种特有的方式衰变。
衰变的结果是原子核的质子数和/或中子数发生变化,从某一元素的同位素(母体)转变为另一元素的同位素(子体)。
子体同位素若仍是放射性的,则将进一步衰变直至转变为稳定的原子为止。
分馏系数分馏系数表示同位素的分馏程度,反映了两种物质或两种物相之间同位素相对富集或亏损程度。
在自然界,分馏系数是指两种矿物或两种物相之间的同位素比值之商。
其表达式为:□ A-B=RA/RB式中A和B表示两种物质(物相),R代表重同位素对轻同位素的比值,如18O/16O,13C/12C等。
□ 值偏离1愈大,说明两种物质之间的同位素分馏程度也就愈大;□=1时,物质间没有同位素分馏。
δ值稳定同位素组成常用δ值表示,δ值指样品中某元素的稳定同位素比值相对标准(标样)相应比值的千分偏差。
其公式为□δ值能清楚地反映同位素组成的变化,样品的δ值愈高,反映重同位素愈富集。
样品的δ值总是相对于某个标准而言的,同一个样品,对比的标准不同得出的δ值各异。
所以必须采用同一标准;或者将各实验室的数据换算成国际公认的统一标准,这样获得的δ值才有实际应用价值。
比较普遍的国际公认标准为:①SMOW,即标准平均海洋水,作为氢和氧的同位素的国际统一标准;② PDB,是美国南卡罗来纳州白垩系皮狄组地层内的似箭石,一种碳酸钙样品,用作碳同位素的国际统一标准,有时也作为沉积碳酸盐氧同位素的标准;③CDT,是美国亚利桑纳州迪亚布洛峡谷铁陨石中的陨硫铁,用作硫同位素的国际统一标准。
稳定同位素实验研究表明,大多数矿物对体系(矿物-矿物)或矿物-水体系,在有地质意义的温度范围内,103ln□ 值与T 2成反比,T为绝对温度。
103ln□ 值可以近似地用两种物质的δ差值表示,即δ-δB=ΔA-B≈103ln□A-B。
因此,只要测得样品的δ值,就可直接计算出103ln□值。
它同样表示物质间同位素分馏程度的大小,利用它可绘制同位素分馏曲线,拟合同位素分馏方程式和计算同位素平衡温度(见地质温度计)。
在稳定同位素地球化学研究中,H、C、O、S等研究较深入。
它们在天然物质中分布广泛,可形成多种化合物,由于它们的同位素质量数都比较小,相对质量差别大,因而同位素分馏更明显,这对确定地质体的成因及其物质来源和判明地质作用特征具有重要意义。
地球化学中的同位素分析技术与应用地球化学是一门涉及地球上化学元素存在及其变化的学科。
它涵盖了从大气、海洋、陆地到生物体内的各种化学元素分布及其分异规律。
同位素分析技术是地球化学研究中的重要分析手段之一。
同位素是同一元素在原子核结构上相同,但质量不同的不同种型态的元素。
同位素分析指的是通过测定地质、生物、环境样品中同位素的相对丰度及其分馏效应,通过同位素地球化学模型的分析,揭示地球物质系统的演化规律和探测自然过程的机制。
同位素分析技术在地球化学研究中的应用十分广泛,例如:地球物质的起源和演化,地球和生物圈中各种元素的循环,环境污染监测与评价,矿床成因及矿物勘探,气候变化及构造变形等方面。
下面分别介绍同位素分析技术在这些领域中的应用。
1. 地球物质的起源和演化同位素地球化学研究的源头可以追溯到20世纪50年代,美国科学家克劳索和因格兰首次把“同位素地球化学”从行星地球上解释到“星际空间”上,即从揭示地球元素组成及其演化历史的角度开始探索整个宇宙元素演化的规律。
他们利用气体中稀有同位素的分馏,揭示了太阳燃烧出氢-氦核合成所需的温度和压力条件,确立了太阳核合成模型,初步推断了太阳气体来自于行星际物质的良好证据。
同位素分析技术也被广泛地应用于探索地球内部物质的演化历史,例如岩石的年代测定、地壳-地幔对流模式、深部地幔和核的物质组成等研究领域。
2. 地球和生物圈中各种元素循环地球是一个自然系统,其中包含气候、水文、生态、地质等多个子系统,而这些子系统之间通过物质与能量的交流得以相互作用。
同位素分析技术应用于各元素的循环研究中,可以揭示出这些过程的动力学过程及其模式,从而更加深入地了解地球子系统之间的关联性。
例如氧同位素分析技术,在全球范围内广泛应用于大气水文学、地表水文学、地下水文学等领域的研究,从而精细地了解各种水在自然界中的循环、水文循环和大气水分平衡的关系。
稳定硫同位素、碳同位素技术在生态学研究领域中的应用也非常广泛,可揭示生态系统中各种生物类群之间、生物与环境之间的物质循环途径及过程,并进一步推断其生态学和环境学意义。
同位素地球化学
同位素地球化学是以同位素的分布特征为研究对象,研究地球内部和表面形成过程和变化的一门重要的地学分支。
它利用稳定同位素的比值来研究地球的演化及其在时空尺度上的变化。
同位素地球化学既是一门独立的学科,也是地球科学中的多学科交叉学科。
它将地球科学、核物理学、化学和生物学等多学科有机地结合在一起,研究地球中某种物质的原始成分,以及它们在地球内部、大气中等不同环境中的运动、改变和转化过程,以及由此引起的地球演化过程。
同位素地球化学的研究方法有多种,其中最重要的是测量和分析地球表面、地壳、地幔和地球内部的同位素比例。
它的研究重点是地球作为一个整体的演化过程,以及地球内部物质的原始成分、流动性和转化过程,以及它们如何影响地球表面和大气环境的演变。
一般而言,同位素地球化学的研究不仅要研究地球表面和内部的同位素含量,还要研究其分布特征。
通常情况下,同位素的分布特征受到地壳、地幔和地球内核的影响,它们的分布特征各不相同。
在同位素地球化学的研究中,要根据地球的特定环境对同位素的分布特征进行分
析,可以深入地理解地球的演化过程、结构特征以及其影响因素。
在实际应用中,同位素地球化学已经成为地质勘查、矿物开采、矿产评价以及环境保护等领域的重要手段之一。
人们可以利用同位素地球化学的结果,对潜在的矿产资源进行定量评估,进而提高地质勘查的准确性和效率。
此外,同位素地球化学还可以用来研究地表微生物的活动、空气污染的源头和扩散趋势,以及地表水的污染特征等。
总之,同位素地球化学是地球科学研究的一个重要分支,它结合了多学科的知识,为地质勘查、矿产开发、环境保护和其他领域的实践活动提供了有效的技术支持。
同位素地球化学研究进展同位素地球化学是研究不同元素同位素组成及其在地球化学过程中的应用的学科领域。
随着科技的进步和研究方法的不断发展,同位素地球化学研究取得了许多重要进展。
本文将从同位素分馏、同位素示踪、同位素定年等方面介绍同位素地球化学研究的进展。
同位素分馏是指同一元素的不同同位素在地球化学过程中有选择地分离的现象。
同位素分馏的研究对于地球和行星的演化过程以及地球内部和外部物质循环过程有着重要的指示意义。
过去几十年,同位素分馏的研究主要集中在稳定同位素(如氢、氧、碳、氮等)和放射性同位素(如铀、钍、铅等)上。
研究表明,同位素分馏与地球化学过程密切相关,如同位素分馏可以揭示地球的形成和演化过程、大气和海洋中的物质循环过程、生物地球化学循环等。
近年来,随着新技术的发展,研究范围不断扩大,涵盖了更多的元素和同位素体系。
同位素示踪是利用同位素在地球化学过程中的特殊性质来追踪地球系统中的物质的流动和转化过程。
同位素示踪技术被广泛应用于环境、气候、生态、地质等领域的研究中。
近年来,同位素示踪研究的进展主要集中在气候变化、水资源和环境污染等方面。
例如,氧同位素和氢同位素广泛应用于追踪水体起源和循环过程,碳同位素和氮同位素用于研究气候变化和生物地球化学循环等。
同时,同位素示踪技术在环境和地质工程中的应用也得到了广泛关注。
同位素定年是利用一些具有放射性衰变性质的同位素来确定岩石、矿物和古代生物的年代。
同位素定年是地质学和考古学研究中非常重要的手段之一、传统的同位素定年方法主要包括放射性同位素定年(如铀-铅、钍-铅、锶-锶等)和稳定同位素定年(如碳-14、氚、钾-锶等)。
近年来,随着加速器质谱技术的发展,同位素定年的精确性和应用范围不断扩大。
例如,放射性同位素铀-铅定年可用于确定火山岩和古岩石的年代,碳-14定年可用于确定古代文物和化石的年代。
总的来说,同位素地球化学研究在过去几十年取得了许多重要进展,涉及的领域不断扩大。
现代同位素地球化学第二讲稳定同位素分馏及其应用l2.1 同位素效应l2.2 同位素分馏l2.3 分馏系数及其应用l2.4 地质温度计l2.5 同位素平衡体系的验证2.1 同位素效应(isotope effects)•由不同的同位素组成的分子之间存在相对质量差, 这种质量差异所引起的该分子在物理和化学性质上的差异,称为同位素效应(isotope effect)。
•在不同的物理、化学和生物作用过程中,会出现不同的同位素效应,发生某种程度的同位素分馏.•氢的两个同位素(1H和2H)的相对质量差是所有元素的同位素中最大的,因此自然界中氢同位素分馏也最大.2.2 同位素分馏l同位素分馏:是指在一地质体系中,某元素的同位素以不同的比值分配到两种物质或物相中的现象l同位素分馏系数(α):两种物质或物相间同位素分馏的程度。
又称分离系数lαA-B=R A/R Bl R A和R B分别表示某一元素的两种同位素在A、B两种物质中的比值,如18O/16O、2H/1H、13C/12C等lα=1时,无分馏;α值与分馏程度成正比。
l1/2C16O2+H218O→1/2C18O2+H216OαCO2-H2O=(18O/16O)CO2/(18O/16O)H2αCO2-H2O=1.04 at 25℃同位素分馏系数α•例如CaCO 3和H 2O 之间氢同位素交换反应可写成:•则CaCO 3和H 2O 之间的分馏系数α可表示为:•在25o C 时,αCaCO3-H2O = 1.031氧同位素组成δ值l物质中一种元素的几个同位素的绝对量的测量,通常是十分困难的。
实际工作中往往采用相对测量法,即只要知道待测物质中某元素的两种稳定同位素的比值与一标准物质中同一元素的两种同位素的比值之间的差异即可。
这一差异用δ值来表示:l因此,δ值是样品与标准之间同位素比值间的相对偏差,单位用千分值(‰)表示。
δ§分馏值(∆):某同位素在不同物相中同位素组成δ之差:∆A-B=δA-δB§对含有同一元素的一系列化合物,∆具有加和性, 例如A,B,C三种化合物∆A-C= ∆A-B+∆B-C千分分馏作用(1000lna)l利用数学计算可知1000ln(1.00n) ≈n,l例如,a CaCO-H2O=1.031,则1000lna=31。
地球化学中的同位素分析地球化学是研究地球化学成分、地球化学过程、地球化学循环和地球化学环境的一门学科。
其中的同位素分析是地球化学中的重要分支之一。
同位素是指具有相同原子序数但不同质量数的单质,在自然界中广泛存在。
同位素分析可用来研究岩石、矿物、水体、大气等自然现象,也可用来解决环境、生物和人类问题。
同位素分析的原理是依据同位素在化学和物理活动中的差异性。
同一元素的同位素化学性质相同,但物理性质不同。
例如,具有同位素^12C和^13C的二氧化碳分子在光谱分析技术中可以被分辨,从而得到不同的信号。
利用这些信号,就可以分析样品中同位素的含量和同位素比值。
同位素分析的方法主要包括质谱法、光谱法、放射性测量法等。
其中,质谱法是同位素分析中最常用的方法之一。
该方法基于质谱仪的原理,利用精确的磁场和电场对离子进行分析,得出不同离子的质量-电荷比,从而测定样品中的同位素含量。
同位素分析在地球化学中有许多应用。
以下介绍几个例子:1.同位素示踪法同位素示踪法是同位素分析中使用最广泛的应用之一。
当同位素被注入到一个系统中时,同位素浓度会随着时间变化而发生变化。
通过测量不同时间点的同位素浓度,可以了解系统中各种物质的来源、分布和移动方式。
地球化学中常用的同位素示踪法包括放射性示踪法和稳定同位素示踪法。
放射性示踪法是将一种有放射性同位素标记注入样品中,通过测量标记同位素的衰变速率和产生的辐射量来示踪样品中物质的分布和运动。
稳定同位素示踪法则是利用稳定同位素测定样品中物质的来源、变化和转移。
2.同位素地球化学同位素地球化学是利用同位素在地球科学中的广泛应用,包括地质学、气候学、生物学和环境科学。
通常情况下,地球化学家使用不同的同位素分析方法来研究样品的化学成分和样品的起源。
例如,根据岩石中铀、钍、锶等放射性同位素的衰变速率,研究岩石的时代和成因;利用碳同位素分析技术,研究生物的食物链变化和生物地球化学过程;通过测量气体中气体同位素的含量和同位素比值,可以研究大气的物理和化学特性。
地球化学中的元素和同位素地球化学地球化学是一个研究地球物质中元素、同位素分布和演化的学科。
元素是构成地球物质的基本物质,同位素则是同一元素中质量数不同的不同原子核。
元素和同位素的地球化学分析可以帮助我们了解地球的演化历史、地球环境变化、地质过程等多个方面。
一、元素的地球化学元素是地球化学研究的基本单位,地球上的元素分布受制于地球的演化历史和物质组成。
总体而言,地球表层分布的元素可以分为地壳元素、海洋元素和大气元素。
地壳元素是地壳中丰富的元素,包括氧、硅、铝、铁、钙等等,它们占到地壳质量的99%以上。
其中最丰富的是氧元素,它占地壳中质量的46.6%,其次是硅元素,占28.2%。
地壳元素的绝大部分都是宇宙尘埃在地球形成过程中沉积下来的,也有部分来自于岩浆的分异作用和地球内部的物质漏失。
海洋元素主要包括钠、氯、镁、钙等,以及微量元素如铬、钴、铜、锌、铅等。
这些元素常常被沉积在海洋底部的海底泥中,它们的含量一般很低且难以采集分析。
大气元素包括氢、氧、氮、碳以及其他的惰性气体。
其中氧和氮占了大气元素的绝大部分,占比分别为21%和78%。
大气元素是通过地球大气层的物理、化学和生物过程不断循环传输的,它们对地球环境的影响也很大。
二、同位素地球化学同位素是同一元素中质量数不同的不同原子核,同位素地球化学就是研究地球物质中同位素分布和演化的学科。
同位素地球化学的核心是同位素分析技术,它包括同位素质谱分析、放射性同位素年代学和同位素示踪技术。
同位素质谱分析是一种高精度的技术手段,它可以对地球物质中同位素的含量进行精确定量分析。
例如,氧同位素的分析可以用来研究古气候变化,硫同位素的分析可以用来追踪地球物质的来源和演化历史,铅同位素的分析可以用来研究地球内部物质演化和大气污染状况等。
放射性同位素年代学是利用放射性同位素的半衰期来测定物质年龄的技术手段。
不同放射性同位素的半衰期不同,因此可以用来测定不同时间尺度的物质年龄,例如,碳-14同位素可以用来测定古代有机物的年代,铀-铅同位素可以用来测定地球地质历史上的时间尺度。
第六章同位素地球化学——稳定同位素第一节基本概念一、同位素的定义核素:是由一定数量的质子(P)和中子(N)构成的原子核。
核素具有质量、电荷、能量、放射性和丰度5中主要性质。
元素:具有相同质子数和中子数的核素.同位素:原子核内质子数相同而中子数不同的一类原子叫做同位素(isotope),他们处在周期表上的同一位置二、同位素的分类– 放射性同位素(radioactive isotope):原子核是不稳定的,它们能够白发地衰变成其他的同位素。
最终衰变为稳定的放射性成因同位素。
目前已知的放射性同位素达1200种左右,由于大部分放射性同位素的半衰期较短,目前已知自然界中存在的天然放射性同位素只有60种左右。
放射性同位素例子:238U→234Th+4He(α)+Q→206Pb;235U→207Pb;232Th→208Pb– 稳定同位素(stable isotope):原子核是稳定的,迄今还未发现它们能够自发衰变形成其他的同位素。
自然界中共有1700余种同位素,其中稳定同位素有260余种。
z轻稳定同位素,又称天然的稳定同位素,是核合成以来就保持稳定。
其特点是①原子量小,同—元素的各同位素间的相对质量差异较大;②轻稳定同位素变化主要原因是同位素分馏作用所造成的,其反应是可逆的。
如氢同位素(1H和2H)、氧同位素(16O和18O)、碳同位素(12C和13C)等。
z重稳定同位素,又称放射成因同位素(radiogenic isotope):稳定同位素中部分是由放射性同位素通过衰变后形成的稳定产物。
其特点是①原子量大,同—元素的各同位素间的相对质量差异小(0.7%~1.2%)环境的物理和化学条件的变化通常不导致重稳定同位素组成改变;②重稳定同位素变化主要原因是放射性同位素衰败引起,这种变化是单向的不可逆的。
如87Sr是由放射性同位素87Rb衰变而来的;三、同位素的丰度和原子量1.同位素丰度(isotope abundance) :可分为绝对丰度和相对丰度绝对丰度是指某一同位素在所有各种稳定同位素总量中的相对份额,常以该同位素与1H(取1H=1012)或28Si(取28Si=106)的比值表示。