第二章 牛顿运动定律习题
- 格式:doc
- 大小:111.50 KB
- 文档页数:4
02牛顿运动定律习题解答第二章牛顿运动定律一选择题1.下列四种说法中,正确的为:()A.物体在恒力作用下,不可能作曲线运动;B.物体在变力作用下,不可能作曲线运动;C.物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动;D.物体在不垂直于速度方向的力作用下,不可能作圆周运动;解:答案是C。
2.关于惯性有下面四种说法,正确的为:()A.物体静止或作匀速运动时才具有惯性;B.物体受力作变速运动时才具有惯性;C.物体受力作变速运动时才没有惯性;D.惯性是物体的一种固有属性,在任何情况下物体均有惯性。
解:答案是D3.在足够长的管中装有粘滞液体,放入钢球由静止开始向下运动,下列说法中正确的是:()A.钢球运动越来越慢,最后静止不动;B.钢球运动越来越慢,最后达到稳定的速度;C.钢球运动越来越快,一直无限制地增加;D.钢球运动越来越快,最后达到稳定的速度。
解:答案是D4.一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为:()A.0B.P/4C.PD.P/2解:答案是A。
简要提示:米袋和人具有相同的加速度,因此米袋作用在他肩上的力应为0。
5.有两辆构造相同的汽车在相同的水平面上行驶,其中甲车满载,乙车空载,当两车速度相等时,均关掉发动机,使其滑行,若从开始滑行到静止,甲车需时t1,乙车为t2,则有:()A.t1=t2B.t1>t2C.t1<t2D.无法确定谁长谁短解:答案是A。
简要提示:两车滑动时的加速度大小均为g,又因v0at1=v0at2=0,所以t1=t26.若你在赤道地区用弹簧秤自已的体重,当地球突然停止自转,则你的体重将:()A.增加;B.减小;C.不变;D.变为0解:答案是A简要提示:重力是万有引力与惯性离心力的矢量和,在赤道上两者的方向相反,当地球突然停止自转,惯性离心力变为0,因此体重将增加。
7.质量为m的物体最初位于某0处,在力F=k/某2作用下由静止开始沿直线运动,k为一常数,则物体在任一位置某处的速度应为()A.k112k113k11k11()B.()C.()D.()m某某0m某某0m某某0m某某0解:答案是B。
第二章 牛顿运动定律班级______________学号____________姓名________________一、选择题1、一轻绳跨过一定滑轮,两端各系一重物,它们的质量分别为1m 和2m ,且21m m > (滑轮质量及一切摩擦均不计),此时系统的加速度大小为a ,今用一竖直向下的恒力g m F 1=代替1m ,系统的加速度大小为a ',则有 ( )(A) a a ='; (B) a a >'; (C) a a <'; (D) 条件不足,无法确定。
2、如图所示,系统置于以g/2加速度上升的升降机内,A 、B 两物块质量均为m ,A 所处桌面是水平的,绳子和定滑轮质量忽略不计。
(1) 若忽略一切摩擦,则绳中张力为 ( )(A) mg ;(B) mg /2;(C) 2mg ;(D) 3mg /4。
(2) 若A 与桌面间的摩擦系数为μ (系统仍加速滑动),则绳中张力为 ( )(A )mg μ; (B) 4/3mg μ;(C) 4/)1(3mg μ+;(D) 4/)1(3mg μ-。
3、一质点沿x 轴运动,加速度与位置的关系为32x a =,且0=t 时,m 1-=x ,m /s 1=v ,则质点的运动方程为( )(A))1/(1+=t x ; (B))1/(1+-=t x ;(C)2)1/(1+=t x ; (D)2)1/(1+-=t x 。
4、三个质量相等的物体A 、B 、C 紧靠在一起,置于光滑2F ϖ水平面上,若A 、C 分别受到水平力1F ϖ、2F ϖ( F 1 > F 2 )的作用,则A 对B 的作用力大小为( )(A)F 1; (B) F 1-F 2 (C) 213132F F + (D) 213132F F -2F ϖ 5、如图所示两个质量分别为A m 和B m 的物体A 和B ,一起在水平面上沿x 轴正向作匀减速直线运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力的大小和方向分别是:( )(A)B m g μ与x 轴正方向相反;(B )B m g μ与x 轴正方向相同; (C )B m a 与x 轴正方向相同;(D )B m a 与x 轴正方向相反。
高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。
根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。
2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。
2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。
1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。
将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。
2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。
将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。
3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。
掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。
第二章课后习题答案第二章牛顿定律2-1如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A)ginθ(B)gcoθ(C)gtanθ(D)gcotθ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcotθ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止.当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A)不为零,但保持不变(B)随FN成正比地增大(C)开始随FN增大,达到某一最大值后,就保持不变(D)无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()μgR(B)必须等于μgR(C)不得大于μgR(D)还应由汽车的质量m决定(A)不得小于分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A)它的加速度方向永远指向圆心,其速率保持不变(B)它受到的轨道的作用力的大小不断增加(C)它受到的合外力大小变化,方向永远指向圆心(D)它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(mgcoθ)使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程v2FNmginθm可判断,随θ角的不断增大过程,轨道支持力FN也将不R断增大,由此可见应选(B).2-5图(a)示系统置于以a=1/4g的加速度上升的升降机内,A、B两物体质量相同均为m,A所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A)58mg(B)12mg(C)mg(D)2mg分析与解本题可考虑对A、B两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B两物体受力情况如图(b)所示,图中a′为A、B两物体相对电梯的加速度,ma′为惯性力.对A、B两物体应用牛顿第二定律,可解得FT=5/8mg.故选(A).讨论对于习题2-5这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB、a和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6图示一斜面,倾角为α,底边AB长为l=2.1m,质量为m的物体从题2-6图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?解取沿斜面为坐标轴O某,原点O位于斜面顶点,则由牛顿第二定律有mginαmgμcoαma(1)又物体在斜面上作匀变速直线运动,故有l11at2ginαμcoαt2coα22则t2l(2)gcoαinαμcoα为使下滑的时间最短,可令dt0,由式(2)有dαinαinαμcoαcoαcoαμinα0则可得tan2α1o,49μ此时t2l0.99gcoαinαμcoα2-7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00某102kg,乙块质量为m2=1.00某102kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1)两物块以10.0m·s-2的加速度上升;(2)两物块以1.0m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a上升时,有FT-(m1+m2)g=(m1+m2)a(1)FN2-m2g=m2a(2)解上述方程,得FT=(m1+m2)(g+a)(3)FN2=m2(g+a)(4)(1)当整个装置以加速度a=10m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94某103N乙对甲的作用力为F′N2=-FN2=-m2(g+a)=-1.98某103N(2)当整个装置以加速度a=1m·s-2上升时,得绳张力的值为FT=3.24某103N此时,乙对甲的作用力则为F′N2=-1.08某103N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8如图(a)所示,已知两物体A、B的质量均为m=3.0kg物体A以加速度a=1.0m·s-2运动,求物体B与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B及滑轮列动力学方程,有mAg-FT=mAa(1)F′T1-Ff=mBa′(2)F′T-2FT1=0(3)考虑到mA=mB=m,FT=F′T,FT1=F′T1,a′=2a,可联立解得物体与桌面的摩擦力Ffmgm4ma7.2N2讨论动力学问题的一般解题步骤可分为:(1)分析题意,确定研究对象,分析受力,选定坐标;(2)根据物理的定理和定律列出原始方程组;(3)解方程组,得出文字结果;(4)核对量纲,再代入数据,计算出结果来.2-9质量为m′的长平板A以速度v′在光滑平面上作直线运动,现将质量为m的木块B轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2,木块相对平板以初速度-v′作匀减速运动直至最终停止.由运动学规律有-v′2=2a由上述各式可得木块相对于平板所移动的距离为mv22μgmm解2以木块和平板为系统,它们之间一对摩擦力作的总功为W=Ff(+l)-Ffl=μmg式中l为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有μmg由上述各式可得11mv2mmv222mv22μgmm2-10如图(a)所示,在一只半径为R的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN的分力来提供的,由于支持力FN始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示O某y坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程FNinθmanmRω2inθ(1)Rh(3)且有coθR由上述各式可解得钢球距碗底的高度为hR可见,h随ω的变化而变化.gω22-11火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m的火车,以速率v沿半径为R的圆弧轨道转弯,已知路面倾角为θ,试求:(1)在此条件下,火车速率v0为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2)如果火车的速率v≠v0,则车轮对铁轨的侧压力为多少?分析如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNinθ提供(式中θ角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0时,则会产生两种情况:如图所示,如v>v0时,外轨将会对车轮产生斜向内的侧压力F1,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解(1)以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有v2FNinθm(1)解(1)(2)两式可得火车转弯时规定速率为v0gRtanθ(2)当v>v0时,根据分析有v2FNinθF1coθm(3)RFNcoθF1inθmg0(4)解(3)(4)两式,可得外轨侧压力为v2F1mcoθginθR当v<v0时,根据分析有v2FNinθF2coθm(5)RFNcoθF2inθmg0(6)解(5)(6)两式,可得内轨侧压力为v2F2mginθcoθR2-12一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m,圆筒半径为R,演员骑摩托车在直壁上以速率v作匀速圆周螺旋运动,每绕一周上升距离为h,如图所示.求壁对演员和摩托车的作用力.分析杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1和v2两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN的水平分量FN2提供,而竖直分量FN1则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有FN1mg0(1)FN2v2m(2)Rv2vcoθv2πR2πR2h2(3)22FNFN1FN2(4)以式(3)代入式(2),得FN2m4π2R2v24π2Rmv222(5)2222R4πRh4πRh将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22FNFN1FN224π2Rv22mg4π2R2h2与壁的夹角φ为FN24π2Rv2arctanarctan222FN14πRhg讨论表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13一质点沿某轴运动,其受力如图所示,设t=0时,v0=5m·s-1,某0=2m,质点质量m=1kg,试求该质点7s末的速度和位置坐标.分析首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解由题图得0t52t,Ft5t7355t,由牛顿定律可得两时间段质点的加速度分别为a2t,0t5a355t,5t7对0<t<5s时间段,由adv得dtvtv00dvadt积分后得v5t再由v2d某得dtd某vdt某00某t积分后得某25tt将t=5s代入,得v5=30m·s-1和某5=68.7m对5s<t<7s时间段,用同样方法有133dvv0vt5a2dt得v35t2.5t82.5t再由得某=17.5t2-0.83t3-82.5t+147.87将t=7s代入分别得v7=40m·s-1和某7=142m2-14一质量为10kg的质点在力F的作用下沿某轴作直线运动,已知F =120t+40,式中F的单位为N,t的单位的s.在t=0时,质点位于某=5.0m处,其速度v0=6.0m·s-1.求质点在任意时刻的速度和位置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v(t);由速度的定义v=d某/dt,用积分的方法可求出质点的位置.解因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有2某某5d某vdt5t120t40mdvdt依据质点运动的初始条件,即t0=0时v0=6.0m·s-1,运用分离变量法对上式积分,得vv0dv12.0t4.0dt0tv=6.0+4.0t+6.0t2又因v=d某/dt,并由质点运动的初始条件:t0=0时某0=5.0m,对上式分离变量后积分,有d某6.04.0t6.0tdt某t2某00某=5.0+6.0t+2.0t2+2.0t32-15轻型飞机连同驾驶员总质量为1.0某103kg.飞机以55.0m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0某102N·s-1,空气对飞机升力不计,求:(1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离.分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有dvαtdtvtαtdvv00mdtα2t得vv02mFmam因此,飞机着陆10s后的速率为v=30m·s-1又tα2d某vdt某0002mt某故飞机着陆后10s内所滑行的距离某某0v0tα3t467m6m2-16质量为m的跳水运动员,从10.0m高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2,其中b为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求:(1)运动员在水中的速率v与y的函数关系;(2)如b/m=0.40m-1,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解(1)运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P-Ff-F=ma由题意P=F、Ff=bv2,而a=dv/dt=v(dv/dy),代入上式后得-bv2=mv(dv/dy)考虑到初始条件y0=0时,v0t2gh,对上式积分,有vdvmdy0v0vbvv0eby/m2gheby/m(2)将已知条件b/m=0.4m-1,v=0.1v0代入上式,则得ymvln5.76mbv0某2-17直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136kg,长l=3.66m.求当它的转速n=320r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解设叶片根部为原点O,沿叶片背离原点O的方向为正向,距原点O为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有dFTFTrFTrdr由于r=l时外侧FT=0,所以有m2ωrdrltFTrdFTlrmω2rdrlmω2222πmn222FTrlrlr2ll上式中取r=0,即得叶片根部的张力FT0=-2.79某105N负号表示张力方向与坐标方向相反.2-18一质量为m的小球最初位于如图(a)所示的A点,然后沿半径为r 的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.分析该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mginα,而与法向加速度an相对应的外力是支持力FN和重力的法向分量mgcoα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man.由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解小球在运动过程中受到重力P和圆轨道对它的支持力FN.取图(b)所示的自然坐标系,由牛顿定律得Ftmginαmdv(1)dtmv2FnFNmgcoαm(2)R由vdrdαrdα,得dt,代入式(1),并根据小球从点A运动到点Cdtdtv的始末条件,进行积分,有vv0vdvα90orginαdα得v则小球在点C的角速度为2rgcoαωv2gcoα/rrmv2mgcoα3mgcoα由式(2)得FNmr由此可得小球对圆轨道的作用力为FN3mgcoαFN负号表示F′N与en反向.2-19光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0,求:(1)t时刻物体的速率;(2)当物体速率从v0减少到12v0时,物体所经历的时间及经过的路程.解(1)设物体质量为m,取图中所示的自然坐标,按牛顿定律,有mv2FNmanRFfmatdvdt由分析中可知,摩擦力的大小Ff=μFN,由上述各式可得v2dvμRdt取初始条件t=0时v=v0,并对上式进行积分,有t0dtRvdvμv0v2vRv0Rv0μt(2)当物体的速率从v0减少到1/2v0时,由上式可得所需的时间为t物体在这段时间内所经过的路程Rμv0vdt0tt0Rv0dtRv0μtRln2μ2-20质量为45.0kg的物体,由地面以初速60.0m·s-1竖直向上发射,物体受到空气的阻力为Fr=kv,且k=0.03N/(m·s-1).(1)求物体发射到最大高度所需的时间.(2)最大高度为多少?分析物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解(1)物体在空中受重力mg和空气阻力Fr=kv作用而减速.由牛顿定律得mgkvmdv(1)dt某2-25如图(a)所示,电梯相对地面以加速度a竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1和m2的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1>m2,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.分析如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B作受力分析,其中F1=m1a,F2=m2a分别为作用在物体A、B上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有m1gm1aFT1m1ar(1)m2gm2aFT2m2ar(2)FT2FT2(3)由上述各式可得arm1m2gam1m22m1m2gam1m2FT2FT2由相对加速度的矢量关系,可得物体A、B对地面的加速度值为a1aram1m2g2m2am1m22m1am1m2gm1m2a2araa2的方向向上,a1的方向由ar和a的大小决定.当ar<a,即m1g-m2g-2m2a>0时,a1的方向向下;反之,a1的方向向上.某2-26如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m的滑块B放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.分析这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:(1)参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA的运动,这时,滑块沿斜面的加速度aBA,不再是它相对于地面的加速度aB了.必须注意到它们之间应满足相对加速度的矢量关系,即aB=aA+aBA.若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F=maA.(2)坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3)在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcoα,事实上只有当aA=0时,正压力才等于mgcoα.解1取地面为参考系,以滑块B和三棱柱A为研究对象,分别作示力图,如图(b)所示.B受重力P1、A施加的支持力FN1;A受重力P2、B施加的压力FN1′、地面支持力FN2.A的运动方向为O某轴的正向,Oy轴的正向垂直地面向上.设aA为A对地的加速度,aB为B对的地加速度.由牛顿定律得FN1inαmaA(1)FN1inαmaB某(2)FN1coαmgmaBy(3)FN1FN1(4)设B相对A的加速度为aBA,则由题意aB、aBA、aA三者的矢量关系如图(c)所示.据此可得aB某aAaBAcoα(5)aByaBAinα(6)解上述方程组可得三棱柱对地面的加速度为aAmginαcoα2mminαmginαcoαmmin2α滑块相对地面的加速度aB在某、y轴上的分量分别为aB某aBymmgin2αmmin2α则滑块相对地面的加速度aB的大小为aBaa2B某2Bym22mmm2in2αginαmmin2α其方向与y轴负向的夹角为amcotαθarctanB某arctanaBymmA与B之间的正压力FN1mmgcoα2mminα解2若以A为参考系,O某轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B的动力学方程分别为mginαmaAcoαmaBA(1)mgcoαFN1maAinα0(2)又因FN1inαmaA0(3)FN1FN1(4)由以上各式可解得aAaBAmginαcoαmmin2αmmginαmmin2α由aB、aBA、aA三者的矢量关系可得m22mmm2in2αaBginαmmin2α以aA代入式(3)可得FN1mmgcoαmmin2α。
第二章牛顿运动定律一、填空题(本大题共16小题,总计48分)1.(3分)如图所示,一个小物体A靠在一辆小车的竖直前壁上,A和车壁间静摩擦系数是丛,若要使物体A不致掉下来,小车的加速度的最小值应为1=.J Ai 疽3.(3分)如果一个箱子与货车底板之间的静摩擦系数为〃,当这货车爬一与水平方向成。
角的平缓山坡时,若不使箱了在车底板上滑动,车的最大加速度%域=.4.(3分)质量m = 40kg的箱子放在卡车的车厢底板上,巳知箱子与底板之间的静摩擦系数为从=0.40,滑动摩擦系数为角=0.25,试分别写出在下列情况下,作用在箱了上的摩擦力的大小和方向.(1)卡车以。
=2m/s2的加速度行驶,/ =,方向.(2)卡车以a = -5m/s2的加速度急刹车,/ =,方向・5.(3分)一圆锥摆摆长为/、摆锤质量为在水平面上作匀速圆周运动,摆线与铅直线夹角。
,则(1)摆线的张力§=2 (3分)质量相等的两物体A和B,分别固定在弹簧的两端,竖直放在光滑水平支持面C 上,如图所示.弹簧的质量与物体A、B的质量相比,M以忽略不计.若把支持面C迅速移走,则在移开的一瞬间,A的加速度大小心= ,B的加速度的大小% = .⑵ 摆锤的速率V=I6.(3分)质量为m的小球,用轻绳AB. BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比F T:E;=.7.(3分)有两个弹簧,质量忽略不计,原长都是10 cm,第一个弹簧上端固定,下挂一个质量为m的物体后,长为11 cm,而第二个弹簧上端固定,下挂一质量为m的物体后,R为13 cm,现将两弹簧串联,上端固定,下面仍挂一质量为〃,的物体,则两弹簧的总长为.8.(3分)如图,在光滑水平桌面上,有两个物体A和B紧靠在一起.它们的质量分别为= 2kg , = 1kg .今用一水平力F = 3N推物体B,则B推A的力等于.如用同样大小的水平力从右边推A,则A推B的力等于・9.(3分)一物体质量为M,置于光滑水平地板上.今用一水平力斤通过一质量为m的绳拉动物体前进,贝U物体的加速度但=,绳作用于物体上的力.10.(3分)倾角为30°的一个斜而体放置在水平桌面上.一个质量为2 kg的物体沿斜面下滑, 下滑的加速度为3.0m/s2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力11.(3分)假如地球半径缩短1%,而它的质量保持不变,则地球表面的重力加速度g增大的百分比是・12.(3分)一小珠可以在半径为R的竖直圆环上作无摩擦滑动.今使圆环以角速度切绕圆环竖直直径转动.要使小珠离开环的底部而停在环上某一点,则角速度刃最小应大于13.(3分)一块水平木板上放一砍码,秩码的质量"7 = 0.2kg,手扶木板保持水平,托着徒码使之在竖直平面内做半径R = 0.5m的匀速率圆周运动,速率〃 = lm/s.当祛码与木板一起运动到图示位置时,萩码受到木板的摩擦力为,砥码受到木板的支持力为14.(3分)一质量为M的质点沿x轴正向运动,假设该质点通过坐标为x的位苴时速度的大小为kx(k为正值常量),则此时作用于该质点上的力「=,该质小从x = x0点出发运动到x =心处所经历的时间△ t =15.(3分)质量为0.25 kg的质点,受力F = ti(SI)的作用,式中t为时间.f = 0时该质点以y = 2j(SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是.16.(3分)在半径为R的定滑轮上跨一细绳,绳的两端分别挂着质量为叫和%的物体,旦m} >m2.若滑轮的角加速度为”,则两侧绳中的张力分别为,& =二、单选题(本大题共30小题,总计90分)1.(3分)在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度坊上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?[]A^ 2a}B、2(q+g)C、2q+gD、仅i+g2.(3分)下列说法中哪个是正确的?[ ]A、合力一定大于分力B、物体速率不变,所以合力为零C、速度很大的物体,运动状态不易改变D、质量越大的物体,运动状态越不易改变3.(3分)用细绳系一小球使之在竖直平面内作圆周运动,当小球运动到最高点时,它】]A、将受到重力、绳的拉力和向心力的作用B、将受到重力、绳的拉力和离心力的作用C、绳子的拉力可能为零D、小球可能处于受力平衡状态4.(3分)水平公路转弯处的轨道半径为R,汽车轮胎与路面间的摩擦系数为日,要使汽车不致于发生侧向打滑,汽车在该处行驶速率[ ]A、不得小于B、不得大亍如而C、必须等于加RgD、应由汽车质量决定5.(3分)两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂丁•天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为[ ]A、丹a2=gB、a A = 0,仅2 = gC^ 坊=g, = 0D^ a x = 2g, a2 =06.(3分)水平地面上放一物体A,它与地面间的滑动摩擦系数为现加一恒力/如图所示.欲使物体A有最大加速度,则恒力户与水平方向央角0应满足[ ]11—Ax sin 3 ="B、cos( ="C^ tanB 、C 、D 、 M + m M-m SE 、M-mM 7. (3分)一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突 然断开,小猴则沿杆子赂直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为8. (3分)如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜 面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为[ ]A 、 gsin 。
7-2 图第二章 牛顿定律一、选择题:1、如图2-1所示,滑轮、绳子的质量均忽略不计,忽略一切摩擦阻力,物体A 的质量A m 大于物体B 的质量B m 。
在A 、B 运动过程中弹簧秤的读数是:[ ](A )g m m B A )(+ (B )g m m B A )(- (C )g m m m m B A B A -4 (D )g m m m m BA BA +42、在升降机的天花板上拴一轻绳,其下端系有一重物。
当升降机以加速度a 上升时,绳中的张力正好等于所能承受的最大张力的一半;当绳子刚好被拉断时升降机上升的加速度为:[ ] (A )a 2 (B ))(2g a + (C )g a +2 (D )g a +3、如图2-7所示,一竖立的圆筒形转笼,其半径为R ,绕中心轴o o '轴旋转,一物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使A 不落下,则圆筒旋转的角速度ω至少应为:[ ](A )Rgμ (B )g μ (C )Rgμ (D )R g4、如图2-8所示,质量为m作用力的大小为:[ ](A )θsin mg (B )θcos mg(C )θcos mg (D )θsin mg5、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2 .今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有 (A) N =0. (B) 0 < N < F .(C) F < N <2F. (D) N > 2F. [ ]6、质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加.(B) 减少. (C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°.Bm 1-2 图A8-2 图9-2 图 [ ]7、水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. [ ] 8、在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rgs μω≤. (B) Rgs 23μω≤. (C) R gs μω3≤. (D)Rg s μω2≤. [ ]9、一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为 (A)g l. (B) gl θcos . (C) g l π2. (D) gl θπcos 2 . [ ]10、光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为 (A) 10 rad/s . (B) 13 rad/s .(C) 17 rad/s (D) 18 rad/s . [ ]二、填空题:1、已知质量为m 的质点沿x 轴受力为)2(+=x k F ,其中k 为常数。
牛顿运动定律一、选择题1.下列说法中,正确的是()A.某人推原来静止的小车没有推动是因为这辆车的惯性太大B.运动得越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大C.竖直上抛的物体抛出后能继续上升,是因为物体受到一个向上的推力D.物体的惯性与物体的质量有关,质量大的惯性大,质量小的惯性小2.关于牛顿第二定律,正确的说法是()A.合外力跟物体的质量成正比,跟加速度成正比B.加速度的方向不一定与合外力的方向一致C.加速度跟物体所受合外力成正比,跟物体的质量成反比;加速度方向与合外力方向相同D.由于加速度跟合外力成正比,整块砖自由下落时加速度一定是半块砖自由下落时加速度的2倍3.关于力和物体运动的关系,下列说法正确的是()A.一个物体受到的合外力越大,它的速度就越大B.一个物体受到的合外力越大,它的速度的变化量就越大C.一个物体受到的合外力越大,它的速度的变化就越快D.一个物体受到的外力越大,它的加速度就越大4.在水平地面上做匀加速直线运动的物体,在水平方向上受到拉力和阻力的作用,如果要使物体的加速度变为原来的2倍,下列方法中可以实现的是() A.将拉力增大到原来的2倍1B.阻力减小到原来的2C.将物体的质量增大到原来的2倍D.将物体的拉力和阻力都增大原来的2倍5.竖直起飞的火箭在推力F的作用下产生10 m/s2 的加速度,若推动力增大到2F,则火箭的加速度将达到(g取10 m/s2,不计空气阻力)()A.20 m/s2B.25 m/s2C.30 m/s2D.40 m/s26.向东的力F 1单独作用在物体上,产生的加速度为a 1;向北的力F 2 单独作用在同一个物体上,产生的加速度为a 2。
则F 1和F 2同时作用在该物体上,产生的加速度( )A .大小为a 1-a 2B .大小为2221+a a C .方向为东偏北arctan 12a aD .方向为与较大的力同向7.物体从某一高处自由落下,落到直立于地面的轻弹簧上,如图所示。
第二章牛顿运动定律一、选择题1.关于惯性有下面四种说法,正确的为()。
A.物体静止或作匀速运动时才具有惯性B.物体受力作变速运动时才具有惯性C.物体受力作变速运动时才没有惯性D.惯性是物体的一种固有属性,在任何情况下物体均有惯性1.【答案】D。
解析:本题考查对惯性的正确理解。
物体的惯性是物体的自然固有属性,与物理的运动状态和地理位置没有关系,只要有质量的物体都有惯性,质量是一个物体惯性大小的量度,所以本题答案为D。
2.下列四种说法中,正确的为()。
A.物体在恒力作用下,不可能作曲线运动B.物体在变力作用下,不可能作曲线运动C.物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动D.物体在不垂直于速度方向的力作用下,不可能作圆周运动2.【答案】C。
解析:本题考查的是物体运动与受力的关系物体的运动受初始条件和受力共同影响,物体受恒力作用但仍然可以作曲线运动,比如平抛运动.对于圆周运动需要有向心力,向心力是改变物体速度方向,当一个物体只受向心力作用时则作匀速圆周运动,所以C选项是正确的。
3.一质点从t=0时刻开始,在力F1=3i+2j(SI单位)和F2=-2i-t j(SI单位)的共同作用下在Oxy平面上运动,则在t=2s时,质点的加速度方向沿()。
A.x轴正向B.x轴负向C.y轴正向D.y轴负向3.【答案】A。
解析:合力F=F1+F2=i+(2-t)j,在t=2s时,力F=i,沿x轴正方向,加速度也沿同一方向。
4.一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为()。
A.0B.P/4C.PD.P/24.【答案】A。
解析:米袋和人具有相同的加速度,因此米袋作用在他肩上的力应为0。
5.质量分别为m1、和m2的两滑块A和B通过一轻弹簧水平连接后置于水平桌面上,滑块与桌面间的滑动摩擦因数均为μ,系统在水平拉力F作用下匀速运动,如图2-1所示。
如突然撤销拉力,则撤销后瞬间,二者的加速度a A和a B,分别为()。
第二章牛顿运动定律习题参考答案第二章牛顿运动定律习题参考答案一、选择题1、如图2-12所示,一轻绳跨过一个定滑轮,两端m 1和m 2的重物,且m 1>m 2。
滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a 。
今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a2、如图2-14,物体A 、B 质量相同,B 在光滑水平桌面上.滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计.系统无初速地释放,则物体A下落的加速度是 (A) g. (B)4g /5 .3、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断? (A) 2a 1. (B) 2(a 1+g ).再用一细绳悬挂于天花板上,球1和球2的加速度分别,a 2=g.(C) a 1=g,a 2=0.(D) a 1=2g,a 2=0.原处于平衡,T=mg+f,f=mg,剪断时,2球未变,a 2=0,a 1=2g .二、填空题5、质量为m 的小球,用轻绳AB 、BC 连接,如图2-18,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比T : T ′= 1:2cos θ.图2-12图2-14图2-23A图2-18cos T mgθθ=平衡时:剪短时,质点作圆周运动:T'=mgcos6、一小珠可以在半径为R 的竖直圆环上作无摩擦滑动,如图2-28.今使圆环以角速度ω绕圆环竖直直径转动.要使小珠离开环的底部停在环上.三、计算题7、质量为m 的小球,在水中受的浮力为常力F ,当它从静止开始沉降时,受到水的粘滞阻力大小为f =k v (k 为常数).证明小球在水中竖直沉降的速度v 与时间t 的关系为),e 1(/m kt k Fmg ---=v 式中t 为从沉降开始计算的时间。
第二章 牛顿运动定律习题
(一) 教材外习题 一、选择题:
1.质量为M 的斜面原来静止于光滑水平面上,将一质量为m 的木块轻轻放于斜面上,如图。
当木块沿斜面加速下滑时,斜面将 ( )
(A )保持静止. (B )向右加速运动.
(C )向右匀速运动. (D )如何运动将由斜面倾角θ 决定.
2
.如图,滑轮、绳子质量忽略不计。
忽略一切摩擦阻力,物体A 的质量m A 大于物体B 的质量m B 。
在A 、B 运动过程中弹簧秤的读数是
(A
)(m 1+m 2)g. (B )(m 1-m 2)g .
(C ).22121g m m m m +. (D )g m m m m 2
1214+.
3.水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ。
现加一恒力F 如图所示。
欲使物体A 有最大加速度,则恒力F 与
水平方向夹角θ 应满足 ( )
(A )sin θ = μ.
(B )cos θ = μ.
(C )tg θ = μ. (D )ctg θ = μ.
二、填空题:
1.沿水平方向的外力F 将物体A 压在竖直墙上,由于物体与墙之间有摩擦力,此时物体保持静止,并设其所受静摩擦力为f 0,若外力增至2F ,则此时物体所受静摩擦力为____________________。
2.在如图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,绳子不可伸长,则在外力F 的作用下,物体m 1和m 2的加速度为a=________________________,m 1和m 2间绳子的张力T =__________________________ ________________________。
F
三、计算题: 1.如图所示,质量为m 的摆球A 悬挂在车架上。
求在上述各种情况下,摆线与竖直方向的夹角α 和线中的张力T :
(1)小车沿水平方向作匀速运动 (2)小车沿水平方向作加速度为a 的运动。
2.一质量为60kg 的人,站在质量为30kg 的底板上,用绳和滑轮连接如图。
设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长。
欲使人和底板能以1m /s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大?(取g = 10m /s 2)
(二) 教材内习题
2-4 图示一斜面,倾角为α,底边AB 长为l =2.1m ,质量为m 的物体从斜面顶端由静止开始向下滑动,斜面的摩擦因数为14.0=μ. 试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?
2-6 如图所示,已知两物体A 、B 的质量均为m =3.0kg ,物体A 以加速度a =1.0m ·s -2
运动,求物体B 与桌面间的摩擦力. (滑轮与连接绳的质量不计. )
2-9 在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?
2-10 一质量为m 的小球最初位于如图所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑. 试求小球到达点C 时的角速度和对圆轨道的作用力.
2-11 光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ. 开始时物体的速率为v 0,求:(1)t 时刻物体的速率;(2)当物体速率从
v 0减少到02
1v 时,物体所经历的时间及经过的路程. 2-12 一质量为10kg 的质点在力F=(120N ·s -1) t + 40N 作用下,沿x 轴作直线运动. 在
t =0时,质点位于x =5.0m 处,其速度0.60=v m ·s -
1. 求质点在任意时刻的速度和位置. 2-17 一物体自地球表面以速率0v 竖直上抛,假定空气对物体阻力的值为F r =kmv 2,其中m 为物体的质量,k 为常量. 试求:(1)该物体能上升的高度;(2)物体返回地面时速度的值. (设重力加速度为常量).
2-20 在光滑水平面上,放一质量为m ′的三棱柱A ,它的斜面的倾角为α. 现把一质量为m 的滑块B 放在三棱柱的光滑斜面上. 试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.。