五年级奥数行程问题二
- 格式:doc
- 大小:17.50 KB
- 文档页数:3
五年级奥数思维训练行程问题(二)
一、尝试练习
1.两辆汽车相距1500米,甲车在乙车前面,甲车每分钟行610米,乙车每分钟660米,乙车追上甲车需几分钟?
2.一个通讯员骑摩托车追赶前面部队乘的汽车。
汽车每小时行48千米,摩托车每小时行60千米。
通讯员出发后2小时追上汽车。
通讯员出发的时候和部队乘的汽车相距多少千米?
二、训练营地
1. 速滑队以每分钟行500米的速度从基地出发进行野外训练。
16分钟后通信员骑摩托车以每分钟900米的速度从基地出发去追速滑队,问多少分钟后通信员可以追上速滑队?
2.老王和老张从甲地到乙地开会,老张骑自行车的速度是15千米/小时,先出发2小时后,老王后出发,老王用了3小时追上老张,求老王骑车速度。
3. 兄妹两人同时离家去上学。
哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校多远?
4. 一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?。
奥数行程:多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
总之,行程问题是重点,也是难点,更是锻炼思维的好工具。
只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!奥数行程:多人行程例题及答案(一)行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
行程问题奥数题及答案行程问题奥数题及答案“奥数”是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛,接下来就由店铺带来行程问题奥数题及答案,希望对你有所帮助!行程问题奥数题及答案1甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。
现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70—45=25(分钟)即可走完一圈。
而甲行走45分钟,乙行走45分钟也能走完一圈。
所以甲行走25分钟的路程相当于乙行走45分钟的路程。
甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。
即乙走一圈的时间是126分钟。
店铺今天给同学们带来的这道奥数题是关于行程问题的五年级奥数题,希望同学们跟店铺能一起解决这从道奥数题。
更多有关奥数试题尽在。
行程问题奥数题及答案21、汽车往返于A ,B 两地,去时速度为 40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?2、。
赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?济南小学五年级奥数题答案1、解答:假设AB两地之间的距离为480÷2=240 (千米),那么总时间=480÷48=10 (小时),回来时的速度为240÷(10—240÷4)=60 (千米/时).2、解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4 小时,下山时间为12÷6=2 小时,上山、下山的平均速度为:12×2÷(4+2)=4 (千米/时),由于赵伯伯在平路上的速度也是4 千米/时,所以,在每天锻炼中,赵伯伯的平均速度为 4千米/时,每天锻炼3 小时,共行走了4×3=12 (千米)=12000 (米).行程问题奥数题及答案31、行程问题甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙。
行程问题2·速度的变化3.用比来体现速度的变化【例1】A、B两地相距7200米,甲、乙分别从A、B两地同时出发,结果在距B地2400米处相遇.如果乙的速度提高到原来的3倍,那么两人可提前10分钟相遇.甲的速度是每分钟行多少米?【例2】甲、乙二人分别从A、B两地同时出发,相向而行.出发时速度比是3:2,两人相遇后,甲的速度提高20%,乙的速度提高50%.当甲到达B地时,乙离A还有4千米.A、B两地的距离是多少千米?【例3】一辆汽车从甲地开往乙地.如果将车速提高五分之一,可以比原定时间提前半小时到达;如果以原速行驶84千米后再将车速提高三分之一,也比原定时间提前半小时到达,那么甲、乙两地相距多少千米?【例4】在微风的催送下,一艘轮船由甲港到乙港要3小时,今天这艘船照例在微风的催送下从甲地出发,当行驶到全程的13处时,突然风向变化,速度减为原来的25,行驶8千米后,又变顺风,接着以原速的2倍行完剩下的航程,结果到达乙港比往常迟36分钟.求甲港到乙港的距离.【例5】快慢二车分别以各自速度同时从甲地开往乙地,返回时各自速度都减少20%,出发1.5小时后,快车在返回途中与慢车相遇,当慢车到达乙地时,快车离甲地还有甲乙两地之间路程的25,那么快车在甲乙两地往返一次需要多少小时?【例6】一辆大货车与一辆小轿车,分别以各自的速度同时从甲地开往乙地,到乙地后立刻返回,返回时各自的速度都提高20%.出发后1.5小时,小轿车在返回的途中与大货车相遇.当大货车到达乙地时,小轿车离甲地还有甲、乙两地之间路程的15.那么,小轿车在甲、乙两地之间往返一次共用多少小时?【例7】男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B).两人同时从A 点出发.在A、B之间不停地往返奔跑.如果男运动员上坡速度是每秒3米,下坡速度是每秒5米;女运动员上坡速度是每秒2米,下坡速度是每秒3秒.那么两人第二交迎面相遇的地点离A点多少米?【例8】A、B两人同时从700米长的山坡坡底出发向上跑,跑到坡顶立即返回.他们两的上坡速度不同,下坡速度则是两人各自上坡速度的二倍.B首先到达坡顶,立即沿原路返回,并且在离坡顶70米处与A相遇.当B到达坡底(注:起点)时,A落后多少米?计算达标1.213 52x xx +--=-解:2(2)5(1)3010x x x+--=-24553010x x x+-+=-25103045x x x-+=--721x=3x=2.3251 624x xx--+=-解:2(32)12303(1)x x x-+=--6412303x x x-+=-+ 3412303x x x-+=+-1127x=2711x=3.232132 x x--=+解:2(23)63(2)x x-=+-46663x x-=+-43666x x+=++718x=187x=4.121 23x x--+=解:3(1)2(2)6x x-+-=33246x x-+-=32643x x+=++513x=135x=练习1.一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【答案】5 18【解】车速提高20%,所用时间是原来的10051206=,从甲地到乙地,以原来行驶需51166⎛⎫÷-=⎪⎝⎭(时),车速提高30%后需86(130%)413÷+=(时),应提前1813小时.实际提前了1小时,所以车速提高30%行驶的路程占全程的181311318÷=,原速行驶了全程的13511818-=.2. 从上海开车去南京,原计划中午11:30到达,但出发后车速提高了17,11点名就到了.第二天返回时,同一时间从南京出发,按原速行驶了120千米后,再将车速提高16,到达上海时恰好11:10.上海、南京两市间的路程是多少千米? 【答案】288【解】从上海到南京,车速提高到原来的87,所用时间是原来的78,所以原计划行车时间为171428⎛⎫÷-= ⎪⎝⎭(时). 从南京回上海,车速提高到原来的76,所用时间是原来的67,因为到达上海提前了13小时,所以提速后行驶的时间相当于原速行驶1671373⎛⎫÷-= ⎪⎝⎭(时).两市之间相距7120442883⎛⎫÷-⨯= ⎪⎝⎭(千米 ).3. 一辆车从甲地开往乙地.如果把车减少10%,那么要比原定时间迟1小时到达.如果对原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少? 【答案】540千米【解】车速减少10%,所用时间就是原定时间的109.原定时间是101199⎛⎫÷-= ⎪⎝⎭(时).如果一开始车速就提高20%,那么应比原定时间少用9[11(220%)] 1.5⨯-÷+=(时).实际少用1小时,所以按原速行驶的路程占全程的1(1.51) 1.53-÷=,全程为11805403÷=(千米).4. 一辆汽车按计划速度行驶1小时,剩下路程用计划速度的35继续行驶到达目的地的时间比计划时间迟了2小时,如果按计划速度行驶的路程再增加60千米,那么到达目的地的时间比计划时间只迟1小时,问计划速度是多少?全程有多远? 【答案】40千米;160千米【解法1】剩下的路程行驶速度与原速度比为3:5,则时间比为5:3.2(53)33÷-⨯=(小时),314+=(小时);同样道理:31(53)32÷-⨯=(小时),36041402⎛⎫÷--= ⎪⎝⎭(千米)(计划速度)404160⨯=(千米)(全程).【解法2】设计划速度为V ,时间为t ,则有:3(1)(12)5t V V t -⨯=-+,4t =;60416014135V V V V -⨯-++=-,40V =,404160⨯=(千米).5. 甲、乙两人分别从A 、B 两地同时出发,相向而行.他们相遇时,甲比乙多跑90米,相遇后乙的速度减少50%,甲到B 后立即调头,追上乙时离A 还有90米,那么,AB 间的路程为 米. 【答案】450【解析1】如图,甲、乙相遇地点D 距离AB 中点C :90245÷=(米),那么45BD BC =-米.乙减速后行45DE =米90AC ÷-米45AC =-米45BC =-米.即乙减速前后行的路程一样.而乙减速前后的速度比为2:1,从而乙减速前后的时间比为1:2.即总时间是相遇前时间的3倍.相遇前甲行45AC +米,整个过程就应该行(45)33135AC AC +⨯=+米米,即135EC =米.所以,22(90135)450BC AC ==⨯+=(米).【解析2】因为90AD =,∴DC BC =,∴相遇到追上这个过程中,甲走了3倍的DC ,而乙走了一倍DC ,此时:3:1v v =甲乙,则原速比为3:2,则:3:2AC BC =.则3290450(m)32AB -⎛⎫=÷= ⎪+⎝⎭.6. 小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地,若车在行过丙地72千米的顶地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲、乙两地全程 千米.【解】从丙到乙正常与故障后的速度比为1:(75%)4:3=,则时间比为3:4.那么丙到乙计划用4026034(43)⎛⎫- ⎪⎝⎭⨯=-(时).所以原计划小李从甲地到乙地要走246+=(时). 从丁到乙正常与故障后的速度比为1:(75%)4:3=,则时间比为3:4.那么丁到乙计划用401.56032.5(43)-⨯=-(时),所以甲乙全程为722882 2.5166=--(千米).乙甲90DCBA。
第七讲行程问题(二)【知识概述】我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下已学过的基本数量关系:路程=速度×时间;总路程=速度和×时间;路程差=速度差×追及时间。
【例题精学】例1 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
画图如下:【分析与解答】结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。
又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。
【同步精练】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?例2甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?【分析与解答】在相同的时间内,乙行了(200-20)=180(米),丙行了200-25【同步精练】老王从甲城骑自行车到乙城去办事,每小时骑15千米,回来时改骑摩托车,每小时骑33千米,骑摩托车比骑自行车少用1.8小时,求甲、乙两城间的距离。
例3甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
五年级奥数:第25讲行程问题(二)本讲重点讲相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:追击问题:在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
例1甲车每小时行40千米,乙车每小时行60千米。
两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。
求A,B两地的距离。
分析与解:先画示意图如下:图中C点为相遇地点。
因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。
这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B 两地的距离是(40+60)×2=200(千米)。
例2小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。
有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?分析与解:因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),所以小明比平时早出门900÷60=15(分)。
例3小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。
已知火车全长342米,求火车的速度。
分析与解:在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点。
由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),从而求出火车的速度为19-2=17(米/秒)。
例4 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。
这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。
数学奥赛起跑线五年级分册例题及答案第12讲[行程问题思考与练习(二)]1.甲、乙两人同时从A、B两地相向而行,甲骑自行车每小时行16千米,乙骑摩托车每小时行65千米,甲在离出发点62.4千米处与乙相遇,A、B两地相距多少千米?解:已知甲乙两人是同时出发的,那么他们相遇时两人行驶的时间是一样的.甲的速度为16千米每小时,他行了62.4千米与乙相遇,由此可以得出他们行驶了多少时间,在用时间乘以乙的速度则得出乙行驶了多少千米,把两者的米数相加就得AB两地相距多少千米了.62.4÷16×65+62.4=315.9(千米).答:A、B两地相距315.9千米.2.汽车往返于A、B两地,去时速度为40千米/小时,要想往返的平均速度达到48千米/小时,返回时的速度应为多少?解:总路程除以总时间等于平均速度.①设数法.假设AB两地之间的路程为120千米,则:去时的时间:240÷40=6(小时),来回总时间:240×2÷48=10(小时),回时的时间:10-6=4(小时),回来时速度:240÷4=60(千米/小时) .②代数法.设AB两地之间的路程为S千米,则:去时的时间:S/40小时,来回总时间:2S/48=S/24(小时),回时的时间:S/24-S/40=S/60(小时),回来时速度:S÷(S/60)=60(千米/小时).③巧用单位"1" ,把AB两地之间的路程看作"1" ,去时的时间:1/40小时,来回总时间:2/48=1/24(小时),回时的时间:1/24-1/40=1/60(小时),回来时速度:1÷(1/60)=60(千米/小时).答:返回时的速度应为每小时60千米.3.小张和小王同时分别从甲乙两村出发,相向而行.步行1小时15分钟后,小张走了两村间路程的一半还多0.75千米,此时恰好与小王相遇.小王的速度是每小时3.7千米,小张每小时行多少千米?解:小张比小王多走路程=0.75+0.75=1.5千米,1小时15分钟=5/4小时,小张速度=3.7+1.5÷5/4=4.9千米/小时. 答:小张每小时行4.9千米.4.兄弟俩骑自行车郊游.弟弟先出发,速度是每分钟行200米.5分钟后,哥哥带着一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟后又立即返回跑向哥哥,遇到哥哥后再立即掉头向弟弟追去,然后又返回……不断往返,直到哥哥追上弟弟,狗共跑了多少米?解:5分钟时间,弟弟行了200×5=1000米,则哥哥追上弟弟的时间为1000÷(250-200)=20 分钟,因为,狗跑的时间就是哥哥追上弟弟的时间,所以,狗共跑了300×20=6000 (米).答:不断的往返,直到哥哥追上弟弟,狗共跑了6000米.5.东、西两镇相距240千米,一辆客车上午8时从东镇开往西镇,一辆货车上午9时从西镇开往东镇,到中午12时,两车恰好在两镇间的中点相遇.如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?解:12时-8时=4时,12时-9时=3时,10时-8时=2时,240÷2=120千米,客车的速度为V1=120/4=30千米/时, 货车的速度为V2=120/3=40千米/时,开出两小时所走的路程为S=(V1+V2)×2=(30+40)×2=140千米,两车相距的距离:240-140=100(千米).答:两车还相距100千米.6.甲、乙两辆汽车同时从东村、西村之间的中点向相反方向行驶,6小时后,甲车到达东村,乙车离西村还有42千米.已知甲车的速度是乙车的两倍.东西两村之间的公路长多少千米?解:甲车速度是乙车的2倍,所以甲车的行程也是乙车的2倍,乙车没有行驶的42千米就是甲车行程的一半,同时乙车自己行驶了42千米,甲车行驶了84千米,甲乙两村公路长84×2=168(千米).答:东西两村之间的公路长168千米.7.一个学生,他家离学校30千米,他每天早晨骑自行车上学,以每小时15千米的速度行进,恰好准时到校.一天早晨,因为逆风,开始的10千米,他只能以每小时10千米的速度骑行,剩下的20千米,他应怎样的速度骑行,才能准时到校?解:家到学校应该用的时间:时间=路程÷速度=30÷15=2(小时),逆风行驶10千米所用的时间:时间=路程÷速度=10÷10=1(小时),剩下的路程需要用的时间:2-1=1(小时),剩下路程的长度:30-10=20(千米),剩下路程的速度:速度=路程÷时间=20÷1=20(千米/小时).答:剩下的20千米,他应每小时行20千米的速度骑行,才能准时到校.8.A、B两地相距60千米,甲、乙两人分别从A、B两地同时出发在两地间往返行走(到达另一地后马上返回),在出发40分钟后两人第一次相遇.乙到达A地后马上返回,在离A地2千米的地方两人第二次相遇.求甲、乙两人行走的速度?解:40分钟=2/3小时,6÷2/3=9千米/小时,40×3=120分钟=2小时, 乙的速度:(6+2)÷2=4(千米/小时), 甲的速度:9-4=5(千米/小时).答:甲每小时行5千米;乙每小时行4千米.9.甲、乙两车同时、同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米.途中甲车因故障修车用了3小时,结果甲车比乙车迟1小时到达目的地.两地间的距离是多少千米?解:3小时甲没走,乙走了105千米,甲要想追上乙需要:35×3÷(40-35)=21(小时),当甲到达目的地时还有40千米,40千米需要8小时,也就是说甲追了13小时,这13小时乙走了:[21-40÷(40-35)]×35=455(千米),再加上105千米,两地之间的距离是:455+105=560(千米).答:两地间的距离是560千米.10.客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米.两车相遇后又以原速继续前进,客车到达乙地后立即返回,货车到达甲地后也立即返回,两车在距中点108千米处再次相遇.问:甲、乙两地相距多少千米?解:客车速度较快,所以再次相遇的时候,客车行了1.5个全程加上108千米;货车行了1.5个全程减去108千米.两车第一次相遇的时候,共行了1个全程;两车第二次相遇的时候,共行了3个全程.第二次相遇时,客车比货车多行了:108×2=216千米,每小时,客车比货车多行:54-48=6千米.所以两车第二次相遇时,共用了:216÷6=36小时.那么两车共行1个全程,需要:36÷3=12小时,甲乙相距:(54+48)×12=1224(千米).答:甲、乙两地相距1224千米.。
行程问题二例题1中巴车每小时行60千米,小轿车每小时行84千米。
两车同时从相距60千米的两地同方向开出,且中巴在前。
几小时后小轿车追上中巴车?1.一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。
摩托车多长时间能够追上?2.兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。
几分钟后哥哥追上弟弟?3.甲乙两人以每分钟60米的速度同时同地步行出发,走15分钟后甲返回原地取东西,而乙继续前进。
甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙,甲汽车多少分钟才能追杀乙?一辆汽车从甲地开往乙地,要行360千米。
开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
汽车是在离甲地多远处修车的?1.小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。
有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。
小王是在离工厂多远处遇到熟人的?2.一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。
这辆汽车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。
为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。
加油站离乙地多少千米?3.汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地。
汽车出发1小时后原路返回甲地取东西,然后立即从甲地出发。
为了能在原来时间内到达乙地,汽车必须以每小时多少千米的速度驶向乙地?甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。
出发后10分钟,甲便从乙身后追上了乙。
已知二人的速度和是每分钟700米,求甲、乙二人的速度各是多少?1.爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步。
爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问:至少经营几分钟爸爸从小明身后追上小明?2.在300米长的环形跑道上,甲、乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米。
第七讲行程问题(一)1.小王、小李从相距50千米的两地相向而行,小王下午2时出发步行,每小时行4.5千米。
小李下午3时半骑自行车出发,、经过2.5小时两人相遇。
小李骑自行车每小时行多少千米?2.A、B两地相距60千米。
两辆汽车同时从A地出发前往B地。
甲车比乙车早30分到达B地。
当甲车到达B地时,乙车离B地还有10千米。
甲国君从A地到B地共行了几小时?3.一辆公共汽车和一辆面包车同时从相距255千米的两地相向而行,公共汽车每小时行33千米,面包车每小时行35千米。
行了几小时后两车相距51千米?再行几小时两车又相距51千米?4.甲、乙两人同时从A、B两地相对而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。
甲离出发点62.4千米处与乙相遇。
A、B两地相距多少千米?5.小张的小王同时分别从甲、乙两村出发,相向而行。
步行1小时15分后,小张走了两村间路程的一半还多0.75千米,此时恰好与小王相遇。
小王的速度是每小时3.7千米,小张每小时行多少千米?6.东、西两镇相距240千米,一辆客车上午8时从东镇开往西镇,一辆货车上午9时从西镇开往东镇,到中午12时,两车恰好在两镇间的中点相遇。
如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?7.甲、乙两车同时从东、西两地相向开出,甲车每小时行40千米,经过3小时已驶过中点25千米,这时乙车与甲车还相距7千米。
求乙车的速度。
8.甲、乙两车同时同地同向行进,甲车每小时行30千米,乙车每小时行的路程是甲车的1.5倍。
当乙车行到90千米的地方时立即按原路返回,又行了几小时和甲车相遇?9.A、B两地相距20千米,甲、乙两人同时从A地出发去B地。
甲骑车每小时行10千米,乙步行每小时行5千米。
甲在途中停了一段时间修车。
乙到达B地时,甲比乙落后2千米。
甲修车用了多少时间?10.A、B两地相距1000千米,甲列车从A地开出驶往B地,2小时后,乙列车从B 地开出驶往A地,经过4小时与甲列车相遇。
第24讲行程问题(一)路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度时间=路程÷速度,速度=路程÷时间。
这一讲就是通过例题加深对这三个基本数量关系的理解。
例1 一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?例2骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?例3 划船比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?例4 小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用3.9时。
问:小明往返一趟共行了多少千米?例5一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)÷2,水流速度=(顺流速度-逆流速度)÷2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
例6两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
求这条河的水流速度。
练习241.小燕上学时骑车,回家时步行,路上共用50分钟。
若往返都步行,则全程需要70分钟。
求往返都骑车需要多少时间。
2.某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时。
小学五年级数学思维能力(奥数)行程问题训练题(二)
小学五年级数学思维能力(奥数)行程问题训练题(二)1、甲、乙两个车站相距550千米,两列火车同时由两站相向开出,5小时相遇。
快车每小时行60千米。
慢车每小时行多少千米?
2.A和B相距380公里。
公共汽车和卡车同时从这两个城市出发,4小时后会合。
卡
车每小时比公共汽车快五公里。
这两列火车每小时行驶多少公里?
3、甲、乙两个城市相距980千米,两列火车由两城市同时相对开出,经过10小时相遇。
快车每小时行50千米,比慢车每小时多行多少千米?
4.甲乙双方相距486公里。
快车和慢车同时从甲方和乙方出发,6小时后见面。
据了解,快车与慢车的速度比为5:4。
快车和慢车每小时有多少公里?
5、两辆汽车同时从相距465千米的两地相对开出,4.5小时后两车还相距120千米。
一辆汽车每小时行37千米。
另一辆汽车每小时行多少千米?
6.甲乙双方从两地出发,相距40公里。
步行,每小时步行5公里,先开始0.8小时。
B骑自行车。
两小时后,他们在某处相遇。
B骑自行车每小时走多少公里?
7、甲、乙二人从相距50千米的两地相对而行。
甲先出发,每小时步行5千米。
1小
时后乙骑自行车出发,骑了2小时,两人相距11千米。
乙每小时行驶多少千米?
8、甲乙双方同时向同一方向出发,相距六公里。
B在前面,每小时5公里;在a之后,每小时的速度是B的1.2倍。
a能赶上B多少小时?。
第六讲行程问题(二)知识要点:相遇问题两个物体由于相向运动而相遇。
解答此类问题的关键是求出两个运动物体的速度和。
基本关系式有:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和相遇路程:两个运动物体从两地同时相向运动所行的路程.例题精讲:【例1】一辆客车和一辆货车同时从A、B两城相对开出.客车的速度是62每小时千米,货车的速度是50千米每小时,经过4小时相遇,A、B两城相距多远?每小时62千米每小时50千米客车货车?千米小结:这是一道典型的相遇问题,还可以尝试直接套用相遇问题的公式:速度和×相遇时间=相遇路程进行解答。
【例2】解放军某部通讯兵在一次演习中,摩托车每小时行60千米,汽车每小时行40千米,汽车出发1.5小时后,摩托车沿同路去追赶汽车,需要几小时追上?小结:这是典型的求追及时间的问题:可根据公式速度差×追及时间=追及距离进行求解。
【例2】运动场的跑道400米,王芳和陈月两名运动员从起跑线同时出发,王芳每分钟跑390米,陈月每分钟跑310米,求多少分钟后王芳超过陈月一周?小结:本题是典型的环形跑道问题追及问题的综合。
基础巩固:1、小亚和小巧同时从自己家里走向学校。
小亚每分钟走65米,小巧每分钟走70米,经过4分钟两人在校门相遇,他们两家相距多少米?2、客车和货车同时从甲、乙两地相向开出,客车每小时行40千米,货车每小时行32千米,4小时后两车相遇,甲、乙两地相距多少千米?3、甲、乙两地相距288千米,客车和货车同时从甲、乙两地相向开出,客车每小时行40千米,货车每小时行32千米,几小时后两车相遇?4、一辆拖拉机要去拉货,每小时走30千米,出发30分钟后,家中有事派一辆小轿车50千米/小时的速度去追拖拉机,问小轿车用多少时间可以追上拖拉机?5、一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?6、客车和货车同时从丙地开出,向相反方向开出,客车每小时行40千米,货车每小时行32千米,开出4小时后,两车相距多少千米?7、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行,环形公路的一周是360米。
升五年级思维数学第十一讲行程问题(二)学习目标思维目标:进一步学会掌握路程、速度、时间,这三者之间的关系,并利用它进行问题的解决。
数学知识:探究因数与积之间的大小关系的规律。
知识梳理思维:通过画出线段图来分析路程、速度、时间之间的关系,找到解题的策略。
数学:如果两个因数都大于0,当一个因数>1时,积>另一个因数;当一个因数<1时,积<另一个因数;当一个因数=1时,积=另一个因数。
精讲精练例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。
东西两地相距多少千米?金钥匙:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米。
由于货车比客车速度快,当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。
因为货车每小时比客车多行48-42=6千米,这样货车多行36千米需要36÷6=6小时,即两车相遇的时间。
所以,两地相距90×6=540千米。
点金术:本题的关键在于,通过线段图来发现:当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。
试金石:1,甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米。
两人相遇时距全程中点3千米,求全程长多少千米。
2,甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇。
东西两城相距多少千米?3,快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米,这时和慢车还相距7千米。
慢车每小时行多少千米?例2:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B 地同时出发相向而行,丙遇乙后10分钟和甲相遇。
五年级奥数第八讲——-行程问题(二) 教学目标:1、 能够利用以前学习的知识理清变速变道问题的关键点;2、 能够利用线段图、算术、方程方法解决变速变道等综合行程题;3、 变速变道问题的关键是如何处理“变”;4、 掌握寻找等量关系的方法来构建方程,利用方程解行程题.知识精讲:比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了.比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
行程问题常用的解题方法有⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.例题精讲:模块一、时间相同速度比等于路程比【例 1】甲、乙二人分别从A、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 :3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以A、B两地相距2301057÷=(千米).【例 2】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。
行程问题一邹玉芳例1:甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米;两车在距中点32千米处相遇;东西两地相距多少千米思路导航:两车在距中点32千米处相遇,由于甲车的速度大于乙车的速度,所以相遇时,甲车应行了全程的一半多32千米,乙车行了全程的一半少32千米,因此,两车相遇时,甲车比乙车共多行了32×2=64千米;两车同时出发,又相遇了,两车所行的时间是一样的,为什么甲车会比乙车多行64千米因为甲车每小时比乙车多行56-48=8千米;64÷8=8时,所以两车各行了8小时,求东西两地的路程只要用56+48×8=832千米练习:1.甲、乙两汽车同时从两地出发,相向而行;甲汽车每小时行50千米,乙汽车每小时行55千米,两车在距中点15千米相遇;求两地之间的路程是多少千米2、一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行60千米,摩托车每小时行70千米,当摩托车行到两城中点处时,与汽车还相距30千米,求A、B两城之间的距离3、下午放学时,小红从学校回家,每分钟走100米,同时,妈发也从家里出发到学校去接小红,每分钟走120米,两人在距中点100米的地方相遇,小红家到学校有多少米例2:快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时快车已驶过中点25千米,这时快车与慢车还相距7千米;慢车每小时行多少千米思路导航:快车3小时行驶40×3=120千米,这时快车已驶过中点25千米,说明甲乙两地间路程的一半是120-25=95千米;此时,慢车行了95-25-7=63千米,因此慢车每小时行63÷3=21千米练习:1、兄弟二人同时从学校和家中出发,相向而行;哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距 30米;弟弟每分钟行多少米2、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地3、学校运来一批树苗,五1班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵;如果这批树苗全部给五1班的同学去植,平均每人植多少棵树例4甲乙两队学生从相距18千米的两地同时出发,相向而行;一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络;甲队每小时行5千米,乙队每小时行4千米;两队相遇时,骑自行车的同学共行多少千米思路导航;要求骑自行车的同学一共行多少千米,就要知道他的速度和时间;骑自行车同学的速度是每小时14千米,而他所行的时间就是甲、乙两队学生从出发到相遇这段时间;因此用18÷(5+4)=2时14×2=28千米答:练习:1、两支队伍从相距55千米的两地相向而行;通讯员骑马以每小时16千米的速度在两支队伍之间不断往返联络;已知一支队伍每小时行5千米,另一支队伍每小时行6千米,两队相遇时,通迅员共行多少千米2、甲、乙两人同时从两地出发,相向而行,距离是100千米;甲每小时行6千米,乙每小时行4千米;甲带着一只小狗,狗每小时行10千米;这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇时;这只狗一共走了多少千米例5:甲、乙两车早上8时分别从A、B两地同时相向出发,到10时两车相距千米; 两车继续行驶到下午1时,两车相距还是千米 ;A、B两地间的距离是多少千米思路导航:从10时到下午1时共经过3小时,3小时里,甲、乙两车从相距千米到又相距千米,共行112.5×2=225千米;两车的速度和是每小时行225÷3=75千米;从早上8时到10时共经过2小时,2小时共行75×2=150千米因此,A、B两地间的距离是150+=千米练习;1、甲、乙两车同时从A、B两地相向出发,3小时后,两车还相距120千米,又行3小时,两车又相距120千米;A、B两地相距多少千米2、快、慢两车早上6时同时从甲、乙两地相向开出,中午12时两车还相距50千米继续行驶到14时,两车又相距170千米;甲、乙两地相距多少千米3、甲、乙两车分别从A、B两地同时相向而行,8小时后相遇,相遇后两车继续行驶,3小时后两车相距360千米,求A、B两地的距离;行程问题二追及问题的基本数量关系是:速度差×追及时间=追及路程例1:中巴车每小时行60千米,小轿车每小时行84千米,两车同时从相距60千米的两地同方向开出,且中巴车在前,求几小时后小轿车追上中巴车思路导航:原来小轿车落后于中巴车60千米,但由于小轿车的速度比中巴车快,每小时比中巴车多行84-60=24千米,也就是每小时小轿车能追中巴车24千米;60÷24=时,所以小时后,小轿车追上中巴车;练习:1、兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米,哥哥在后,每分钟跑140米,几分钟后哥哥追上弟弟2、甲骑自行车从A地到B地,每小时行16千米,1小时后,乙也骑自行车从A地到B地,每小时行20千米 ,结果两人到时到达B地;A、B两地相距多少千米3、甲、乙两人以每分钟60米的速度同时、同地、同向步行出发;走15分钟后甲返回原地取东西,而乙继续前进,甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙,甲骑车多少分钟能追上乙例2、一辆汽车从甲地开往乙地要行360千米,开始按计划以每小时45千米的速度行驶,途中因汽车出故障修车2小时;因为要按时到达乙地,修好后必须每小时多行30千米;问汽车是在离甲地多远处修车的思路导航:途中修车用了2小时,汽车就少行了45×2=90千米,修车后,为了按时到达乙地,每小时多行30千米;90千米里面包含有3个30千米,也就是说,再行3小时就能把修车少行的90千米行完;因此修车后再行45+30×3=225千米就能到达乙地;汽车是在离甲地360-225=135千米处修车的;练习:1、小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂;有一天,他出了几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米,求小王是在离工厂多远处遇到熟人的2、一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达;这辆车以每小时36千米的速度行驶一段时间后,因排除加油用去了15分钟;为了能在8小时内到达乙地,加油后每小时必须多行千米;加油站离乙地多少千米3、汽车以每小时30千米的速度从甲地出发,6小时后能到过乙地;汽车出发1小时后原路返回甲地取东西,然后立即从甲地出发,为了能在原定时间到达乙地,汽车必须以每小时多少千米的速度从甲地驶向乙地例3、甲骑车,乙慢跑,二人同时从一点出发沿着长4千米的环形公路同方向进行晨练;假设两人速度一直不变,出发后10分钟,甲便从乙身后追上了乙,已知两人的速度和是每分钟行700米,求甲乙二人的速度各是多少思路导航:出发10分钟后,甲从乙身后追上了乙,也就是10分钟内甲比乙多行了一圈;因此,甲每分钟比乙多行4000÷10=400米;知道了两人的速度差是每分钟400米,速度和是每分钟700米,就能算出骑车的速度是700+400÷2 =550米/分,乙跑步的速度是700-550=150米/分练习:1、爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步;爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问至少经过几分钟爸爸从小明身后追上小明2、在300米长的环形跑道上,甲乙两人同时同地同向跑步;甲每秒跑5米,乙每秒跑米;两人起跑后的第一次相遇点在起跑线前多少米3、环湖一周共400米,甲乙二人同时从同一点同方向出发,甲过10分钟第一次从乙身后追上乙,若二人同时从同一地点反向而行,只要2分钟就相遇,求甲乙的速度各是多少行程问题三列方程解稍复杂的行程应用题例:一辆汽车从甲地开往乙地,平均每小时行20千米;到乙地后又以每小时30千米的速度返回甲地,往返一次共用7、5小时;求甲乙两地间的路程;思路导航:如果设汽车从甲地开往乙地时用了X小时,则返回时用了7、5-X小时;由于往、返的路程是一样的,我们可以通过这个等量关系列出方程,求出值,就可以计算出甲、乙两地间的路程;设去时用X小时,则返回时用7、5-X小时;20 X=30 ×-X20 X=30 ×-30X50 X=225X=20×=90千米练习:1、汽车从甲地-开往乙地送货,去时每小时行30千米,返回时每小时行40千米;往返一次共用8小时45分,求甲、乙两地间的路程;2、一架飞机所带燃料最多可用9小时,飞机去时顺风,每小时可飞1500千米,返回时逆风,每小时可飞1200千米;这架飞机最多飞出多少千米就要往回飞3、师徒两人加工一批零件,师傅每小时加工35个,徒弟每小时加工28个;师傅先加工了这批零件的一半后,剩下的由徒弟去加工,二人共用18小时完成了加工任务;问这批零件共多少个例2:一个通讯员骑自行车需要在规定时间内把信件送到某地,如果他每小时走15千米可早到小时,如果他每小时走12千米就要迟到小时,他去某地有多远设规定时间为X小时;15X-=12 X +练习:1、小李由乡里到县城办事,每小时行4千米,到预定到达的时间时,离县城还有1、5千米;如果小李每小时走千米,到预定到达的时间时,又会多走千米,乡里距县城多少千米2、小王骑摩托车从B地到A地去开会;如果每小时行50千米,就要迟到小时,如果每小时行60千米,就会早到1小时,求A、B两地的距离;3、玲玲从家到县城上学,她以每分钟50米的速度走了2分钟后,发现按这个速度走下去要迟到8分钟,于是她加快了速度,每分钟多走了10米,结果到学校时,离上课还有5分钟,玲玲家到学校的路程是多少米例3、东西两地相距5400米,甲、乙从东地,丙从西地同时出发,相向而行;甲每分钟行55米,乙每分钟行60米,丙每分钟行70米,多少分钟后乙正好走到甲、丙两人之间的中点处分析:设行了X分钟;这时甲行55 X米,乙行60 X米,丙行70X米;甲和乙之间的距离可用60 X-55 X表示,乙和丙之间的距离可用5400-70 X-60 X 来表示;由于这两个距离相等,所以有60 X-55 X=5400-70 X-60 X5 X=5400-130 X135X=5400X=40练习:1、A、B、C三点在一条直线上,如图所示:A、B两地相距2千米,甲、乙两人分别从A、B两地同时向C地行走,甲每分钟走35米,乙每分钟走45米,经过几分钟B地在甲、乙两人之间的中点处2、东西两镇相距60千米,甲骑车行全程要4小时,乙骑车行全程要5小时;现在两人同时从东镇到西镇去,经过多少小时后,乙剩下的路程是甲剩下路程的4倍3、老师今年32岁,学生今年8岁;再过几年老师的年龄是学生年龄的3倍例4、快、慢两车同时从A地到B地,快车每小时行54千米,慢车每小时行48千米;途中快车因故停留3小时;结果两车同时到达B地;求A、B两地的距离;分析:可以设快车行驶了 X小时,那么,慢车行驶了X+3小时,利用快、慢两车所行驶的路程相等这一关系,可以列出方程,通过解方程求出快车所行驶的时间,最后用“速度×时间=路程”这一关系求出A、B两地间的距离;练习:1、甲每分钟行120米,乙每分钟行80米,二人同时从A店出发去B店,当乙到达B店时,甲已在B店停留了2分钟,A店到B店的路程是多少米2、甲、乙两人同时从学校骑车出发去江边,甲每小时行15千米,乙每小时行20千米;途中乙因修车停留了24分钟,结果二人同时到达江边;从学校到江边要行多少千米3、兄弟二人同时从家往学校走,哥哥每分钟走90米,弟弟每分钟走70米,出发1分钟后,哥哥发现忘带了铅笔盒,则原路返回,取后立即出发,结果与弟弟同时到达学校;问他们家离学校多远例5、一位同学在360米长的环形跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米;求他后一半路程用了多少时间分析:因为这一位同学前一半时间跑步的速度大于后一半时间跑步的速度,所以前一半时间所跑的路程一定大于半圈180米,即在跑前半圈的速度是每秒5米,跑前半圈要用180÷5=36秒;如果再求出跑一圈的时间,就能求出跑后半圈的时间了为了方便计算,我们假设他按题中跑法跑了2圈;设跑1圈用X秒,则跑2圈共跑了720米;5 X+4 X=720X=8080-36=44秒练习:1、小明在420米的环形跑道上跑了一圈,已知他前一半时间每秒跑8米,后一半时间每秒跑6米;求他后一半路程用了多少时间2、小华在240米长的跑道上跑了一个来回,已知他前一半时间每秒跑6米,后一半时间每秒跑4米,求他返回时用了多少时间3、甲、乙两地相距205千米,小王开汽车从甲地出发,计划5小时到达乙地;他前一半时间每小时行36千米,为了按时到达乙地,后一半时间必须每小时行多少千米行程问题四行程问题大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间(3)同向而行:追及时间=追及距离÷速度差例1:甲、乙两地相距420千米,一辆汽车从甲地开到乙地共用了8小时,途中,有一段路在整修路面,汽车行驶这段路时每小时只能行20千米,其余时间每小时行60千米;求正在整修路面的一段路长多少千米分析:假如这8小时都是在每小时行60千米,就比实际行的路程我出了60×8-420=60千米;在8小时里,只要有1小时行驶在整修路面的公路上,汽车就少60-20=40千米,60里面有个40,因此,汽车在整修路面的公路上行驶了小时,路长×=30千米练习:1、一辆汽车从甲城到乙城共行驶395千米,用了5小时;途中一部分公路是高速公路,另一部分是普通公路;已知汽车在高速公路上每小时行105千米,在普通公路上每小时行55千米,求汽车在高速公路上行驶了多少千米2、小明家离体育馆2300米,有一天,他以每分钟100米的速度去体育馆看球赛,出发几分钟后发现,如果以这样的速度走下去一定要迟到,他马上改用每分钟180米的速度跑步前进,途中共用15分钟准时到达了体育馆;问小明是在离体育馆多远的地方开始跑步的3、龟、兔进行10000米赛跑,兔子的速度是龟的速度的5倍;当它们从起点一起出发后,龟不停地跑,兔子跑到某一地点开始睡觉;兔子醒来时,龟已经领先它5000米;兔子奋起直追,但龟到达终点时,兔子仍落后100米;那么兔子睡觉期间龟跑了多少米例2、客货两车同时从甲、乙两站相对开出,客车每小时行54千米,货车每小时行48千米 ,两车相遇后又以原速前进;到达对方站后立即返回;两车再次相遇时客车比货车多行千米;甲、乙两站间的路程是多少千米分析:客货两车从出发到第二次相遇,一共行了三个全程;而第二次机遇时客车比货车多行了千米,说明两车已行了÷54-48=时用速度和×所行的时间就得到了三个路程的和,再除以3就得到了甲、乙两站间的路程;即54+48×÷=千米练习:1、快、慢两车同时从甲、乙两地相对开出并往返行驶,快车每小时行80千米,慢车每小时行45千米;两车第二次相遇时,快车比慢车多行了210千米;求甲、乙两地之间的路程;2、甲、乙两地相距216千米,客、货两车同时从甲、乙两地相向而行;已知客车每小时行58千米,货车每小时行50千米,到达对方出发点后立即返回,两车第二次相遇时,客车比货车多行多少千米3、甲、乙两车同时从相距160千米的两站相向开出,到达对方站后立即返回,经过4小时两车在途中第二次相遇;相遇时甲车比乙车多行120千米,求两车的速度;例3、两地相距460千米,甲列车开出2小时后,乙列车与甲列车相向开出,经过4小时与甲列车相遇;已知甲列车每小时比乙列车多行10千米;求甲列车每小时行多少千米分析:甲列车4小时比乙列车4小时多行10×4=40千米;因此,甲列车先行2小时,又行4小时,如果再行4小时就一共行了460+40=500千米;所以,甲列车的速度是每小时行500÷2+4+4=50千米/时练习:1、甲、乙两地相距680千米,快车从甲地向乙地开出,2小时后,慢车从乙地与快车相向开出,并经过5小时与快车相遇;已知快车每小时比慢车多行8千米,求快车每小时行多少千米2、师徒二人合做264个零件,徒弟先做4小时后又和师傅合做了8小时才完成了任务;已知徒弟每小时比师傅少做3个,师傅每小时做多少个零件3、兄弟二人的家离学校2300米,哥哥从家中出发,5分钟后弟弟从学校出发,二人相向而行;弟弟出发10分钟后与哥哥相遇,如果哥哥每分钟比弟弟多行20米,他们每分钟各行多少米例4、小明和小军同时从学校和少年宫出发,相向而行,小明每分钟走90米,两人相遇后,小明再走4分钟到达少年宫,小军再走270米到达学校;小军每分钟走多少米分析:两人相遇后,小军再走的270米就是相遇前小明走的路程;因此,二人同时出发经过270÷90=3分相遇的;相遇后小明再走的90×4=360米到达少年宫,而这360米又是相遇前小军3分钟走的路程,因此,小军每分钟走360÷3=120米/分练习:1、小强和小东同时从甲、乙两地出发,相向而行,小强每小时行15千米;两人相遇后,小强再走2小时到达乙地,小东再走45千米到达甲地;小东每小时行多少千米2、甲、乙两车同时从A、B两地出发相向而行;甲车每小时行45千米;两相遇后,乙车再行135千米到达A地,甲车再行2小时到达B地,求乙车行完全程共用了几小时3、快、慢两车同时从甲、乙两地相向而行,4小时相遇;已知快车每小时行65千米,慢车每小时行25千米,求电车行完全程共用了多少小时例5、甲、乙两地相距48千米,其中一部分是上坡路,其余是下坡路;某人骑自行车从甲地到乙地后沿原路返回,去时用了4小时12分,返回时用了3小时48分;已知自行车上坡时每小时行10千米,求自行车下坡时每小时行多少千米分析:首先求出往返一共用的时间:4小时12分+3小时48分=8小时;由于去时的上坡路就是返回时的下坡路,因此在8小时内,正好是行48千米的上坡路和48千米的下坡路;行上坡路共用了48÷10=时,因此,下坡路共行了8-=时,每小时行÷=15千米练习:1、某学生乘车上学,步行回家,途中共用小时;如果往返都坐车,途中只需30分钟;如果往返都步行,途中共需多少时间2、一辆汽车把货物众商场运往小区,往返共用15小时,去时所用的时间是返回的倍,去时比回来时每小时慢12千米;这辆汽车往返共行了多少千米3、南、北两镇之间全是山路,某人上山每小时走2千米,下山时每小时走5千米,从南镇到北镇要走38小时,从北镇到南镇要走32小,两镇之间的路程是多少千米从南镇到北镇的上山路和下山路各是多少千米。
学生课程讲义
行程问题(二)
例1.中巴车每小时行60千米,小轿车每小时行84千米,两车同时从相距60千米的两地同方向开出,且中巴车在前。
求几小时后小轿车追上中巴车?
练习1.兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分跑120米;哥哥在后,每分跑140米。
几分钟后哥哥追上弟弟?
练习2.甲乙两人以每分60米的速度同时、同地、同向不行出发。
走15分钟后甲返回原地取东西,而乙继续前进。
甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙,甲骑车多少分才能追上乙?
例2.一辆汽车从甲地开往乙地,要行360千米,开始按计划以每小时45千米的速度行驶,途中因汽车出故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
问:汽车是在离甲地多远处修车的?
练习3.小王家离工厂3千米,他每天骑车以每分200米的速度上班,正好准时到工厂。
有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。
求小王是在离工厂多远处遇到熟人的?
练习4.汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地。
汽车出发1小时后原路返回甲地取东西,然后立即从甲地出发,为了能在原来时间内到达乙地,汽车必须以每小时多少千米的速度从甲地驶向乙地?
例3.甲骑车,乙跑步,二人同时从一点出发沿着长4千米的环形公路方向进行晨练。
出发后10分钟,甲便从乙身边追上了乙,已知两人的速度和是每分钟行700米,求甲、乙二人的速度各是多少?
练习5.爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步。
爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问至少经过几分钟爸爸从小明身后追上小明?
练习6.环湖一周共400米,甲、乙二人同时从同一点同方向出发,甲过10分钟第一次从乙身后追上乙,若二人同时从同一点反向而行,只要2分钟就相遇,求甲、乙的速度。
例4.甲、乙、丙三人都从A地到B地,早晨六点钟,甲、乙两人一起从A
地出发,甲每小时走5千米,乙每小时走4千米。
丙上午八时才从A地出发,傍晚六点,甲和丙同时到达B地,问丙什么时候追上乙?
练习7.客车、货车、小轿车都从A地到B地,货车和客车一起从A地出发,货车每小时行50千米,客车每小时行60千米,2小时后,小轿车才从A地出发,12小时后,小轿车追上了客车,问小轿车在出发几小时追上了货车?
练习8.甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米,甲、乙两人在B地同时同向出发,丙从A地同时同向出发去追赶甲、乙,丙追上甲以后又过了10分钟才追上乙,求A、B两地的路程。
例5.甲、乙、丙三人步行的速度分别是每分钟100米、90米、75米。
甲在公路上A处,乙、丙同在公路上B处,三人同时出发,甲与乙、丙相向而行。
甲和乙相遇3分钟后,甲和丙又相遇了。
求A、B之间的距离。
练习9.甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米。
甲、乙两人在B地。
丙在A地与甲、乙二人同时同向而行,丙和乙相遇后,又过2分钟和甲相遇。
求A、B两地的路程。
练习10.AB两地相距1800米,甲乙二人从A地出发,丙同时从B地出发与甲乙二人相向而行,已知甲乙丙三人的速度分别是每分钟60米、80米、100米,当乙和丙相遇时,甲落后与乙几米?。