矩阵特征值 开题报告
- 格式:ppt
- 大小:707.50 KB
- 文档页数:12
特征值——矩阵的本质属性——《矩阵分析》课程报告学院:数学与统计学院班级:硕2041班姓名:王彭学号:3112054028指导教师:说明本文并没有按照要求使用手写版,而是采用打印版,特此作如下说明:1.笔者采用手写版在第一部分画知识结构图时,发现由于知识点较多,框图须不停地修改;2.在进行正文书写的过程中,笔者发现课本上的前后知识点有串联,在进行后面书写的时候往往需要添加或修改前面的内容;显然,显然手写版难以满足不断修改的需要,笔者此前已写过两份手写版,但都由于无法修改不得已中途放弃,故最终采用了打印版的形式。
同时,笔者也保证,本课程教材为本文的唯一参考资料,本文无任何拷贝其他资料的内容,仅是笔者对课本知识点的整合梳理并加以自己的部分理解,望老师理解。
摘要本文以矩阵的特征值为主线,分别阐述了特征值、特征向量、相似性、酉等价、正规矩阵、Hermite矩阵和对称矩阵等矩阵的重要概念及其与矩阵特征值的关系。
关键字:特征值,矩阵的重要概念【目录】1 矩阵分析知识点框图 (3)2 特征值与特征向量 (4)2.1 特征值与特征向量 (4)2.2 谱与谱半径 (6)2.3 特征多项式 (6)2.4 小结 (7)3 相似性 (7)3.1 定义 (7)3.2 相似与特征值的关系 (7)3.3 矩阵的可对角化 (8)4 酉等价和正规矩阵 (9)4.1 酉矩阵 (9)4.2 酉等价 (9)4.3 SCHUR酉三角化定理 (10)4.4 可交换矩阵与矩阵的特征值之间的关系 (11)4.5 正规矩阵 (12)5 标准形 (13)5.1 JORDAN矩阵 (13)5.2 JORDAN标准形与矩阵特征值的关系 (13)5.3 由JORDAN表现出来的矩阵的基本性质 (14)6 HERMITE矩阵和对称矩阵 (15)6.1 HERMITE矩阵 (15)6.2 HERMITE矩阵、对称矩阵的相合与同时对角化 (16)6.3 合相似与合对角化 (17)7 总结 (18)1 矩阵分析知识点框图根据矩阵分析中出现的部分知识点的相互联系情况,作以上框图,笔者发现其几何中心为特征值,即特征值与绝大多数知识点都有直接或间接的关系,故本文中采用矩阵特征值为主线串联各知识点,以上的各种联系在下文中都会有体现。
毕业论文文献综述数学与应用数学矩阵特征值、特征向量的研究一、前言部分数学作为一种研究问题的工具,大部分同学并未真正感受到它的实用价值,往往低估了数学对于学习知识及其解决问题的重要作用,或不会灵活运用数学这一工具去理解、解决问题.许多理论、规律、计算等若能灵活而有效地借助数学方法去剖析、推演,往往会有意外的收获[]1。
矩阵就是数学中的一小部分,英文名Matrix(SAMND矩阵)本意是子宫、控制中心的母体、孕育生命的地方,同时,在数学名词中,矩阵用来表示统计数据等方面的各种有关联的数据。
这个定义很好地解释了Matrix代码制造世界的数学逻辑基础。
在科学技术和工程应用中,矩阵理论的重要性和应用的广泛性是众所周知的,尤其是有了矩阵特征值、特征向量的各种求解及计算机的广泛使用和MATLAB等数学计算软件的迅猛普及为矩阵提供了更为广阔的发展和应用前景。
矩阵特征值、特征向量运用非常的广泛,在很多方面都有涉及。
本文将先从各种矩阵的特征值、特征向量求解方法和矩阵历史入手,从几个方面综述矩阵特征值、特征向量的应用[]2。
那什么是矩阵特征值、特征向量呢?定义:设A是N阶矩阵,如果数X和N维非零列向量x,使关系式Ax=Xx成立,那么,这样的数X就称为方阵A的特征值,非零向量x称为A的对应于特征值X的特征向量。
求特征值描述正方形矩阵的特征值的重要工具是特征多项式:说λ是A的特征值等价于λ) v = 0 (其中I是恒等矩阵)有非零解 (一个特征向量),因说线性系统 (A –iλ)=0。
此等价于行列式 det(A –i第一:运用MATLAB求解矩阵特征值、特征向量。
首先,我用下面的例子,来引导我们认识MATLAB在求解矩阵特征值、特征向量上的运用。
例1:对亏损矩阵进行 Jordan 分解[]5。
A=gallery(5) %MATLAB 设置的特殊矩阵,它具有五重特征值。
[VJ,DJ]=jordan(A); % 求出准确的特征值,使 A*VJ=VJ*D 成立。
本科毕业论文( 2010 届)题目矩阵特征值及特征多项式问题探讨学院数学与信息工程学院专业数学与应用数学摘要矩阵的特征值和逆特征值问题一直是基础数学的一个研究方向.在高等代数的学习当中, 对学生来说熟练掌握矩阵特征值的一些重要结论是非常必要的. 本文记录了高等代数学习中学生提出的一些有趣问题, 概括了有关矩阵特征值的重要结论, 并对矩阵特征值问题进行探讨, 得到和总结了一些重要结果. 这些结果可以纠正学生关于矩阵特征值问题的一些错误认识, 从而提高高等代数和相关课程教与学的质量.关键词特征多项式; 特征根; 特征值; 正交矩阵AbstractThe problem of matrix eigenvalue and matrix inverse eigenvalue is a prospect to study in pure mathematics. In the study of higher algebra, it is necessary for students to master some important conclusions of matrix eigenvalue skillfully. The paper shows some interesting problems proposed by students in the study of higher algebra. Furthermore, t he problem of matrix eigenvalue is studied and some important conclusions of matrix eigenvalue are summarized in this paper. Those results can rectify the misleading understanding of matrix eigenvalue and improve the teaching and studying quality of the higher algebra and some related courses.Keywordscharacteristic polynomial; characteristic root; eigenvalue; Orthogonal Matrices目录1.引言 (5)1.1 有关于矩阵特征值的重要结果 (5)1.2 关于矩阵特征多项式的几个重要命题 (6)1.3 矩阵特征值的理论及应用 (7)2.一种改进的求矩阵特征值的方法 (8)3.同时求出特征值和特征向量的一种方法 (13)4.针对特殊矩阵的特征多项式的求法 (14)4.1 秩为1的矩阵的特征多项式 (14)4.2 正交矩阵的特征多项式 (16)4.3 求三对角矩阵特征多项式的一种简便方法 (19)参考文献 .............................................. 错误!未定义书签。
安徽建筑大学毕业设计(论文)开题报告题目矩阵特征值与特征向量求解及其应用专业信息与计算科学姓名张浩班级10信息(2)班学号10207010233指导教师宫珊珊提交时间2014年3月4号一、综述本课题的研究动态,说明选题的依据和意义矩阵的特征值与特征向量是线性代数的重要组成部分,通过对矩阵特征值与特征向量的性质介绍,以及对矩阵特征值与特征向量理论的分析,有助于我们更好地认识线性代数,同时也有利于我们利用矩阵特征值与特征向量来解决实际问题。
随着社会的发展和科技的进步,特征值与特征向量的重要性得以显现,越来越被人们所重视。
物理、力学、工程技术中的许多问题在数学上都归结为求矩阵的特征值与特征向量问题。
因此对于矩阵特征值与特征向量的理论分析及求解方法探索是很有必要的,本课题深入研究矩阵特征值与特征向量的定义和性质,对于矩阵特征值与特征向量的两种求解方法的原理进行了思考和分析,重点研究特征值与特征向量的应用探索,在应用方面主要分析了矩阵特征值与特征向量在Google搜索引擎上的应用并提出了自己的想法,进一步将自己的想法进行推广应用。
二.课题研究的基本内容,拟解决的主要问题和难点问题研究的主要内容:特征值与特征向量的相关理论及其应用主要问题和难点问题:1、在矩阵特征值与特征向量基本性质的基础上,了解矩阵特征值与特征向量的理论及其应用。
2、在搜集有关矩阵特征值与特征向量应用实例上对矩阵特征值与特征向量相关问题进行思考推广。
3、矩阵特征值与特征向量的性质推广来解决生活中的实际问题。
三、研究步骤、方法及措施:1、介绍矩阵特征值与特征向量的研究现状,以及研究矩阵特征值与特征向量的实际意义。
2、介绍矩阵特征值与特征向量的定义及其基本性质,并对矩阵特征值与特征向量的理论及应用进行分析。
3、阅读大量文献资料,找出与该课题有关的问题及结论,对问题加以分析和总结。
4、在熟悉有关性质和定义的基础上对特征值与特征向量的应用进行深入研究和探索,加以整理,从而形成自己的研究成果。
天水师范学院数学与统计学院实验报告实验项目名称 所属课程名称 实验类型 实验日期矩阵的特征值与特征向量 数学实验 线性代数 2011.12.14班级 学号 姓名 成绩一、实验概述: 【实验目的】学习掌握利用 Mathematica(4.0 以上版本)命令求方阵的特征值 和特征向量;利用特征值求二次型的标准形.【实验原理】(1)命令 Eigenvalues[M]给出方阵 M 的特征值. (2)命令 Eigenvectors[M]给出方阵 M 的特征向量.但有时输出中 含有零向量其中的非零向量才是真正的特征向量. (3)命令 Eigensystem[M]给出方阵 M 的特征值和特征向量.同样有 时输出的向量中含有零向量. (4)调用“线性代数.向量组正交化”软件包命令是<<LinearAlgebra\Orthogonalization.m 现在对向量组施行正交单位化的命令 GramSchmidt 就可以使用 了.命令 GramSchmidt[A]给出与矩阵 A 的行向量组等价的且已正交化 的单位向量组.【实验环境】Mathematic 4二、实验内容: 【实验方案】1.求方阵的特征值与特征向量; 2.矩阵的相似变换;【实验过程】(实验步骤、记录、数据、分析)1.求方阵的特征值与特征向量1用 命 令 Eigenvalues[M] 立 即 求 得 方 阵 M 的 特 征 值 命 令Eigenvectors[M]立即求得方阵 M 的特征向量命令 Eigensystem[M]立即求得方阵的特征值和特征向量.例 14.11 2求方阵M 2 31 333 6 的特征值和特征向量.Clear[M];M={{1,2,3},{2,1,3},{3,3,6}};Eigenvalues[M]Eigenvectors[M]Eigensystem[M]例 14.21 31 31 2 M1 511 3 求方阵 612 的特征值和特征向量.(*Example14.2*)G={{1/3,1/3,-1/2}{1/5,1,-1/3}{6,1,-2}};Eigensystem[G]例 14.33 0 0A 1t3 已 知 2 是 方 阵 1 2 3 的 特 征 值 , 求t.(*Example14.3*)Clear[Aq];A={{2-3,0,0}{-1,2-t,-3}{-1,-2,2-3}};2q=Det[A];,t] 2 1 2 例 14.4已知x(1,1,1)是方阵A= 5 1a b32 的一个特征向量,求参数 a,b 及特征向量x所属的特征值.(*Example14.4*)设特征值为t,输入Clear[A,B,v,a,b,t];A={{t-2,1,-2},{-5,t-a,-3},{1,-b,t+2}};v={1,1,-1};B=A.v;,,,{a,b,t}]2.矩阵的相似变换若 n 阶方阵 A 有 n 个线性无关的特征向量,则 A 与对角阵相似.实对称阵总与对角阵相似,且存在正交阵 P,使 P1AP 为对角阵.命令EigenVectors[A]与 Eigensystem[A]给出还未经过正交化和单位化的特征向量.因此要对特征向量进行正交化和单位化,所用的命令是GramSchmidt[ ].不过首先要输入调用软件包<<LinearAlgebra\Orthogonalization.m 的命令.例 14.54 1 22设方阵 A= 2 212 2 ,求一可逆阵 P,使 P-1AP 为对角阵.Clear[A,p];A={{4,1,1},{2,2,2},{2,2,2}};3Eigenvalues[A];p=Eigenvectors[A]//Transpose为了验证 P-1AP 为对角阵,输入Inverse[p].A.p解法二 直接用 JardanDecomposition[A]jor=JordanDecomposition[A]jor[[1]]jor[[2]]例 14.6方阵A 1 201 是否与对角阵相似?Clear[A];A={{1,0},{2,1}};Eigensystem[A] 2 0 0 1 0 0 例 14.7A 2已知方阵 3x 12 1 与B 0 02 00 y 相似,求x,y.Clear[x,v];v={{4,0,0},{-2,2-x,-2},{-3,-1,1}};,x]40 1 1 0A 1010 1 1 0 0例 14.8 对实对称矩阵 0002 ,求一个正交阵P,使P-1AP 为对角阵.<<LinearAlgebra\Orthogonalization.mClear[a,p];A={{0,1,1,0},{1,0,1,0},{1,1,0,0},{0,0,0,2}};Eigenvalues[A]Eigenvectors[A]p=GramSchmidt[Eigenvectors[A]]//Transpose例 14.9 求一个正交变换,化二次型 f 2x1x2 2x1x3 2x2 x3 2x42 为标准型 二次型的矩阵为0 1 1 0A 1010 1 1 0 0 0002 f=Table[x[j],{j,4}].A.Table[x[j],{j,4}]//Simplify【实验结论】(结果)根据程序的编辑,实验很成功。
毕业论文开题报告数学与应用数学矩阵特征值、特征向量的研究一、选题的背景、意义(1)选题的背景、意义“矩阵(Matrix)”术语是由西尔维斯特创用并由凯莱首先明确其概念的。
19世纪50年代,西尔维斯特引入“矩阵”一词来表示“一项由几行H列元素组成的矩形阵列”或“各种行列式组”,凯莱作为矩阵理论的创立者,首先为简化记法引进矩阵,然后系统地阐述了矩阵的理论体系。
随后,弗罗伯纽斯等人发展完善了矩阵的理论体系形成了矩阵的现代理论。
然而,矩阵思想的萌芽由来已久,早在公元前l世纪中国的《九章算术》就已经用到类似于矩阵的名词。
但那时矩阵仅是用来作为一种矩形阵列解决实际问题,并没有建立起独立完善的矩阵理论。
18世纪末到19世纪中叶,这种排列形式在线性方程组和行列式计算中应用日益广泛,行列式等理论的发展提供了矩阵发展的条件,矩阵概念由此产生,矩阵理论得到系统的发展。
20世纪初,无限矩阵理论得到进一步发展[]1。
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。
线性代数的理论已被泛化为算子理论。
由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中[]2。
由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。
直到十八世纪末,线性代数的领域还只限于平面与空间。
十九世纪上半叶才完成了到n维向量空间的过渡矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。
1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。
托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中.线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。
不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。
毕业论文开题报告信息与计算科学矩阵方程的数值解法一、选题的背景、意义1.选题的背景在科学、工程计算中,求解矩阵方程的任务占相当大的份额。
这是因为,矩阵方程不仅能以完整的形式作为许许多多实际问题的模型之一,而且还能作为不少其他数值方法处理过程中转化而成的组成部分。
例如,在电路网络、弹性力学、潮流计算、热传导、振动等领域,其基本模型就是矩阵方程,而求微分方程边值问题的差分法和有限元法等数值计算本身,也导致求解某些矩阵方程。
在系统控制等工程研究领域经常遇到矩阵方程的求解问题。
自动控制系统最重要的一个特征是稳定性问题,它表示系统能妥善地保持预定工作状态,耐受各种不利因素的影响,因此矩阵方程在系统的稳定性理论,极点配置等方面具有重要的意义。
在常微分方程的定性研究以及数值求解常微分方程的隐式Rung-kwtta方法和块方法中,也需要求解矩阵方程。
此外,在广义特征值问题的摄动研究中及隐式常微分方程的数值解中,经常遇到矩阵方程的求解问题。
1.1.2选题的意义随着科学技术的迅速发展,矩阵方程越来越多地出现在科学与工程计算领域,关于这类问题的研究也日益受到人们的高度重视.对矩阵方程的研究具有很重要的理论意义和很高的应用价值.所以,学会如何更好的解矩阵方程就显得非常重要。
本文主要介绍了解矩阵方程的高斯消元法、Jacobi迭代法、Gauss-Seidcl迭代法和SOR迭代方法。
在这些方法的基础上,利用matlab软件,快速求出矩阵方程的解。
通常熟练使用这些工具或编写程序,而这通常是一项入门缓慢、熟练精通时间较长的工作。
MATLAB在提供强大的计算功能,也为我们用数值方法求解矩阵方程提供了很大的方便。
1.1.3求解线性方程组由于线性方程组是矩阵方程的一个特例,所以本文试图将解线性方程组的一些经典方法推广用来解矩阵方程。
记线性方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛ22112222212********* (1)这里ij a (n j i ,,2,1,Λ=)为方程组的系数,i b (n i ,,2,1Λ=)为方程组自由项。
四元数矩阵特征值计算的开题报告
一、选题背景
矩阵特征值计算是一项十分重要的数学问题,至关重要的应用包括机器学习、图像处理、信号处理、物理学、化学以及化学工程等领域。
在四元数数学中,四元数矩阵特征值的计算是研究的重点之一。
它的研究对于四元数数学在实际中的应用有十分重要的作用。
二、研究目的
本文的研究目的是探讨四元数矩阵特征值计算问题,对于这一问题的研究可以进一步完善四元数数学的应用基础,为其应用提供更加可靠的理论基础。
三、主要内容
1. 四元数数学基础理论概述
2. 四元数矩阵特征值的定义与基本性质讨论
3. 四元数矩阵特征值计算方法的探讨与比较
4. 四元数矩阵特征值计算应用实例分析
四、研究方法
本文将以文献资料的调研与分析为主要的研究方法。
通过收集和阅读相关文献,加深对四元数数学的理解,学习四元数矩阵特征值计算的方法和基本性质。
五、研究意义
四元数数学在实际中的应用越来越广泛,如何在实际中准确、高效地计算四元数矩阵特征值是十分重要的。
本文研究的结果不仅可以为四元数数学的应用提供更加可靠的理论基础,同时也为四元数数学学习者提供了一种学术探讨的思路。
六、预期成果
本文预计可以全面深入地分析四元数矩阵特征值的基本性质和计算方法,提供实际应用的案例,为四元数数学的教育和应用提供新的思路和方法。