高中数学高考复习各章要点扫描(7个方面).doc 人教版
- 格式:doc
- 大小:3.88 MB
- 文档页数:53
人教部编版高中数学高考教材各章节必考知识详解高中数学必修课本的学习顺序及内容学校学习必修课本的主流顺序是14523、12453。
同一城市不同学校的学习顺序并不一致,这取决于相应高中的教研组的安排。
(为给大家提供更精准的学习资料,可在留言区留言你所在学校数学教材的学习顺序)个别学校的顺序为13452,那可考虑秋季必修14的课程;个别学校的顺序为13245,那可考虑秋季必修1、2的课程。
必修3课本简单。
高中数学必修课本共有5本。
高一学完4本,高二前2个月再学1本。
必修1:集合、幂指对函数必修2:立体几何、平面解析几何(直线和圆)必修3:算法、统计、概率必修4:三角函数、平面向量、三角恒等变形必修5:解三角形、数列、不等式必修1课本是高中基础,学生需要适应高中更抽象、更复杂的学习方式。
必修2课本需要学生具有良好的空间想象能力和计算能力。
必修3课本知识点简单,学好必修3难度不大。
必修4课本和必修5课本,因三角函数而联系紧密。
必修4在高考中的考题难度一般,但竞赛自招对必修4要求高。
必修5课本很有难度,对解题技巧能力要求高。
1.集合(必修1)与简易逻辑,复数(选修)。
分值在10分左右(一两道选择题,有时达到三道),考查的重点是计算能力,集合多考察交并补运算,简易逻辑多为考查“充分与必要条件”及命题真伪的判别,复数一般考察模及分式运算。
2.函数(必修1指数函数、对数函数)与导数(选修),一般在高考中,至少三个小题一个大压轴题,分值在30分左右。
以指数函数、对数函数、及扩展函数函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)以选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。
压轴题,文科以三次函数为主,理科以含有ex ,lnx的复杂函数为主,以切线问题、极值最值问题、单调性问题、恒成立零点为设置条件,求解范围或证明结论为主。
3.立体几何(必修2):分值在22分左右(两小一大),两小题以基本位置关系的判定与体积,内外截球,三视图计算为主,一大题以证明空间线面的位置关系和夹角计算为主,试题的命制载体可能趋向于不规则几何体,但仍以“方便建系”为原则。
高中数学高考复习各章要点扫描(含7个专题)函数1.函数的定义(1)映射的定义:(2) 一一映射的定义:上面中是映射的是_____________,是一一映射的是____________。
(3)函数的定义:(课本第一册上.P51) 2.函数的性质(1)定义域:(南师大P32复习目标) (2)值域:(3)奇偶性(在整个定义域内考虑) ①定义:②判断方法:Ⅰ.定义法 步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。
Ⅱ图象法 ③已知:)()()(x g x f x H =若非零函数)(),(x g x f 的奇偶性相同,则在公共定义域内)(x H 为偶函数若非零函数)(),(x g x f 的奇偶性相反,则在公共定义域内)(x H 为奇函数 ④常用的结论:若)(x f 是奇函数,且定义域∈0,则)1()1(0)0(f f f -=-=或;若)(x f 是偶函数,则)1()1(f f =-;反之不然。
(4)单调性(在定义域的某一个子集内考虑) ①定义:②证明函数单调性的方法: Ⅰ.定义法 步骤:a.设2121,x x A x x <∈且;b.作差)()(21x f x f -;(一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出)c.判断正负号。
Ⅱ用导数证明: 若)(x f 在某个区间A 内有导数, 则⇔∈≥)0)(A x x f ,(’)(x f 在A 内为增函数; ⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数。
③求单调区间的方法:a.定义法:b.导数法:c.图象法:d.复合函数[])(x g f y =在公共定义域上的单调性:若f 与g 的单调性相同,则[])(x g f 为增函数; 若f 与g 的单调性相反,则[])(x g f 为减函数。
注意:先求定义域,单调区间是定义域的子集。
2024年高考数学第一轮复习知识点总结一、函数与方程(约占25%)1. 函数的概念与性质:定义域、值域、单调性、奇偶性、周期性等。
2. 一次函数与二次函数:斜率、截距、图像特征、解析式、三要素表示法。
3. 指数函数与对数函数:性质、特征、解析式。
4. 三角函数:正弦函数、余弦函数、正切函数的性质、图像、周期与频率等。
5. 幂函数与反比例函数:性质、图像、变化规律。
6. 组合与复合函数:定义、性质、计算方法。
7. 方程与不等式:一元一次方程、一元二次方程、一元高次方程的解法、根的判别、关系式、二次函数与方程。
二、空间与向量(约占15%)1. 点、直线与平面:空间几何图形的基本概念、关系与性质。
2. 空间向量:向量的表示、运算、模与单位向量、数量积与向量积的意义与计算。
3. 空间直线与平面的方程:点线面关系、夹角与距离、平面投影问题。
4. 空间几何证明:基本证明方法与技巧。
三、导数与微分(约占15%)1. 函数的导数:导数的定义与性质、基本导数公式、导数的几何意义、高阶导数。
2. 导数的计算:四则运算法则、链式法则、乘法法则、常见函数的导数。
3. 函数的微分:微分的定义与计算、微分与导数的关系、微分中值定理。
4. 导数应用:切线、法线、函数的极值与最值、函数的单调性、函数的凹凸性与拐点、不定积分、定积分等。
四、概率与统计(约占15%)1. 随机事件与概率:事件的概念、样本空间、事件的运算、概率的定义与性质、基本事件、条件概率与乘法定理。
2. 随机变量:离散型与连续型随机变量、分布函数、概率分布列、概率密度函数、期望与方差。
3. 概率分布:离散型随机变量的分布、二项分布、泊松分布、连续型随机变量的分布、均匀分布、正态分布。
4. 统计与抽样:参数与统计量、抽样方法与数据处理、样本均值与总体均值的关系、抽样分布与中心极限定理。
五、数列与数列极限(约占13%)1. 数列与数列极限:数列的概念与性质、数列极限的定义与性质、等差数列、等比数列、收敛性判定、数列极限的性质。
人教版高三数学复习知识点总结高中数学是一门关于数与形的科学,是培养学生逻辑思维和分析问题能力的重要学科。
在高三阶段,数学的学习内容相对较多,需要对前几年的数学知识进行深入的复习和巩固。
接下来,我将对人教版高三数学的复习知识点进行总结,帮助学生们进行整理和复习。
一、函数与方程1. 二次函数- 二次函数的概念与性质- 图像的性质(开口方向、对称轴等)- 平移、伸缩与翻折- 二次函数的一般式、顶点式、交点式- 判别式与根的性质- 解二次不等式- 二次函数与其他函数的关系(函数的复合、反函数等)2. 指数和对数函数- 指数函数和对数函数的概念与性质- 指数函数和对数函数的图像特点- 指数幂的性质和运算法则- 对数运算的性质和运算法则- 指数方程和指数不等式的解法- 对数方程和对数不等式的解法3. 三角函数- 弧度制与角度制的换算- 三角函数的图像与周期性- 三角函数的基本关系式与恒等式- 三角函数的运算性质与运算法则- 三角函数方程与三角函数不等式的解法- 解三角形的实际问题4. 高次方程和不等式- 一元高次方程的解法- 二元高次方程的解法- 一元高次不等式的解法- 二元高次不等式的解法- 高次方程和不等式的应用(实际问题的建立和解决)二、数列与数学归纳法1. 等差数列- 等差数列的概念与性质- 等差数列的通项公式和前n项和公式- 等差数列特殊求和公式的推导和应用- 等差数列简单应用(等差中项、等差平均项等)2. 等比数列- 等比数列的概念与性质- 等比数列的通项公式和前n项和公式- 等比数列特殊求和公式的推导和应用- 等比数列简单应用(等比中项、等比平均项等)3. 等差数列与等比数列的综合应用- 等差数列与等比数列的综合应用(数列的运算、数列的混合应用)4. 数学归纳法- 数学归纳法的基本思想与步骤- 数学归纳法与数列的联系- 数学归纳法的简单应用(证明不等式、性质等)三、三角恒等变换1. 三角函数的基本关系式与恒等式- 三角函数的基本关系式(同角三角函数值之间的关系)- 三角函数的恒等变换(三角函数的和差化积、积化和差等)2. 三角恒等式的证明- 三角恒等式的证明方法和技巧- 三角恒等式的应用(证明不等式、求解方程等)四、数学推理与解题方法1. 数学证明- 数学证明的基本思路和方法- 数学证明的常用技巧(对称性、反证法、递推关系等)2. 数学建模与解题方法- 数学建模的基本流程和方法- 数学建模中的常用工具(函数图像、数列和方程)3. 解决问题的思维方法与策略- 解决数学问题的思维方法(逻辑推理、归纳演绎等)- 解决数学问题的策略(抽象化、归纳思考、逆向思维等)以上是人教版高三数学复习知识点的总结,希望能够对同学们的复习提供帮助。
高中数学必修 + 选修知识点概括必修 1 数学知识点第一章:会合与函数观点1、会合三因素:确立性、互异性、无序性。
2、常有会合:正整数会合:N*或N,整数会合:Z ,有理数会合: Q,实数会合: R.3、并集 . 记作:A B.交集.记作: A B.全集、补集C U A { x | x U ,且 x A}(C U A)∩( C U B) = C U(A∪B) (C U A)∪( C U B) = C U(A∩B);A B B B A;简略逻辑:或:有真为真,全假为假。
且:有假为假,全真为真。
非:真假相反原命题互逆逆命题若 p则 q互若 q 则 p否为互逆互否为逆否否互否命题逆否命题若┐q则┐p若┐p则┐q互逆原命题:若 P则 q;抗命题:若q 则 p;否命题:若┑ P 则┑q;逆否命题:若┑ q 则┑ p。
常用变换:① f ( x y) f ( x) f ( y) f ( x y) f ( x).f ( y)证f ( x y)f ( y)f( )[()]() ( )f ( x)x f x y y f x y f y② f (x) f ( x) f (y) f (x y) f ( x) f ( y)y证:x xf()f()f() f (y)yy4、设 A、B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合A中的随意一个数 x ,在会合B中都有唯一确立的数 f x和它对应,那么就称 f : A B 为会合A到会合B的一个函数,记作: y f x , x A .分母不等于零5、定义域被开方大于等于零对数的幂大于零,底大于零不等于1值域:利用函数单一性求出所给区间的最大值和最小值,6、函数单一性:(1)定义法:设x1、x2[ a, b], x1 x2那么f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是增函数;f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是减函数.步骤:取值—作差—变形—定号—判断(2)导数法:设函数 y f ( x) 在某个区间内可导,若f (x) 0 ,则f ( x)为增函数;若f ( x)0 ,则 f ( x)为减函数 .7、奇偶性f x 为偶函数:f x f x 图象对于y 轴对称.函数 f x 为奇函数f x f x 图象对于原点对称 .若奇函数y f x 在区间0,上是递加函数,则y f x 在区间,0 上也是递加函数.若偶函数 yf x 在区间 0,上是递加函数,则yf x 在区间 ,0 上是递减函数.函数的几个重要性质:① 如 果 函 数 yf x 对 于 一 切 x R , 都 有f ax f ax 或 f ( 2a-x ) =f ( x ),那函数 y f x 的图象对于直线 x a 对称 .②函数 yf x 与函数 y fx 的图象对于直线x 0对称;函数 yf x 与函数 y f x 的图象对于直线y 0 对称;函数 yf x 与函数 yf x的图象对于坐标原点对称 .二、函数与导数1、几种常有函数的导数① C '0 ;② ( x n )' nx n 1 ;③ (sin x) ' cos x ; ④ (cos x) ' sin x ; ⑤ ( a x ) 'a xln a ; ⑥ ( e x) 'e x; ⑦ (log a x)'1 ;⑧ (ln x) ' 1x ln ax2、导数的运算法例( 1) (u v)'u ' v '.( 2) (uv)' u 'v uv ' .( 3) ( u)'u 'v uv ' (v 0) .vv 23、复合函数求导法例复合函数 yf (g (x)) 的导数和函数y f (u), u g ( x) 的导数间的关系为 y x y u u x , 即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积 .解题步骤 :分层—层层求导—作积复原导数的应用:1、 yf ( x) 在点 x 0 处的导数的几何意义 :函数 yf (x) 在点 x 0 处的导数是曲线yf ( x) 在P(x 0 , f (x 0 )) 处的切线的斜率 f (x 0 ) ,相应的切线方程是 yy 0 f (x 0 )(xx 0 ) .切线方程 : 过点 P x 0 , y 0 的切线方程,设切点为x 1, y 1 ,则切线方程为 y y 1 f ' x 1 x x 1 ,再将 P 点带入求出 x 1 即可 2、函数的极值 (---- 列表法 )(1) 极值定义:极值是在 x 0 邻近全部的点,都有f ( x) < f ( x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极大值;极值是在 x 0 邻近全部的点,都有 f ( x) > f (x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极小值 .(2) 鉴别方法:①假如在 x 0 邻近的左边 f ' (x) > 0,右边 f ' (x) < 0,那么 f ( x 0 ) 是极大值;②假如在 x 0 邻近的左边 f ' (x) < 0,右边 f ' (x) > 0,那么 f ( x 0 ) 是极小值 .3、求函数的最值(1) 求 y f (x) 在 (a, b) 内的极值(极大或许极小值)(2) 将 y f (x) 的各极值点与 f (a), f (b) 比较,此中最大的一个为最大值,最小的一个为极小值。
高考数学各章要点(内部材料)山东省平度第一中学王尊甫编✧集合:是中学数学最基本的概念之一,高考题往往体现集合的概念、运算、语言及简单运用,并经常作为工具广泛运用于函数、方程、不等式、三角及曲线、轨迹等知识中。
注意强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义(数集与点集)。
注意韦恩图的应用。
注意在点集中会与解析几何内容结合考查。
✧简易逻辑:主要是判定命题的真假、复合命题的组成、四种命题、以及充要条件的判定。
其中充要条件是热点(可以利用推出关系,也可以使用集合的包含关系以及四种命题间的关系)。
注意新增全称命题与特称命题内容(尤其是命题的否定形式)。
✧函数:✓函数的概念及性质:掌握对应法则、图像等有关性质;掌握单调性、奇偶性的定义及判断方法(对单调性的考查,往往与导数、最值问题相结合,另外,注意分段函数的单调性;注意奇偶函数图像的对称性对作图的帮助)。
注意思考函数的定义域、值域、单调性、奇偶性、周期性等能解决什么问题?注意性质的综合应用。
熟练掌握二次函数(最值、恒成立以及根的分布问题)✓函数的图像:是函数性质的综合反映,也是考查数形结合的主阵地。
主要考查作图、识图、图像变换(平移变换、对称变换、周期变换)以及利用图像研究性质,分析解决问题的能力等。
客观题多由“数”到“形”,解答题多由“形”到“数”。
✓指对函数:重点是函数的性质、图像及运算性质,解题时注意数形结合与分类整合。
注意借助性质解指对不等式以及数值大小比较。
✓了解反函数的概念及互为反函数的图像间的关系,会求一些简单函数(尤其是指对函数)的反函数(注意解题步骤!)。
✧导数:✓导数的概念与运算是导数应用的基础,是高考重点考查的对象。
考查方式以客观题为主,主要是求导数的基本公式和法则,以及导数的几何意义,也可以解答题出现,即以导数的几何意义(切线)为背景设置成导数与解析几何的综合题。
✓导数的应用是重点,导数已由解决问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的单调性与最值问题已经成为炙手可热的热点。
人教版高三数学复习的重点与难点【人教版高三数学复习的重点与难点】高三数学作为升学考试的重要科目之一,对于学生来说既是挑战,也是机遇。
为了帮助广大学生更好地备考数学,下面将重点讨论人教版高三数学复习的重点与难点。
一、重点掌握的知识点1. 函数与导数函数与导数是高中数学的基础,也是高考数学考试的重要内容。
要理解函数的定义和性质,掌握常见函数的图像和性质,熟练运用导数的求导法则和性质,能够解决与导数相关的应用题。
2. 三角函数三角函数是高中数学的重点和难点之一。
重点掌握正弦函数、余弦函数和正切函数的定义和性质,熟练运用三角函数的基本关系式,能够解决与三角函数相关的各种问题。
3. 二次函数与函数的模二次函数是高中数学的重点内容,要熟练掌握二次函数的图像、性质和变换规律,能够解决与二次函数相关的各类问题。
此外,函数取绝对值、取模等内容在高考中也经常出现,要注意理解函数的模的定义和性质,能够解决与函数的模相关的各种问题。
4. 概率与统计概率与统计是高中数学的应用部分,也是高考数学考试的重点内容。
要理解概率的基本概念和常用计算方法,掌握排列组合和二项式定理的运用,能够解决与概率与统计相关的各类问题。
二、容易出错的难点1. 计算失误在解题过程中,计算失误是一个容易出现的问题。
尤其是在长篇的计算题中,经常会出现加减乘除等基本计算不准确的情况。
为了避免这类错误,同学们要提高计算准确性,注意书写规范,逐步计算,不要慌乱操作。
2. 题意理解错误有些数学题目存在一定的语言障碍,在理解题目时容易出现错误。
同学们要养成细心的阅读习惯,确保理解题意后再着手解题。
可以将问题分解为小问题,逐步解决,避免由于理解错误导致答案错误。
3. 问题分析不透彻在解决复杂的数学问题时,问题分析非常关键。
很多同学在遇到难题时容易急于求解,而忽略了问题本身的一些特点和性质。
要养成细致入微的分析思维,尽可能发现问题的规律和特点,找到问题的突破口。
4. 掌握解题思路不全面解题思路是解决高级数学问题的关键。