金属及合金塑性变形与断裂
- 格式:pptx
- 大小:8.87 MB
- 文档页数:85
金属学与热办理总结一、金属的晶体构造要点内容:面心立方、体心立方金属晶体构造的配位数、致密度、原子半径,八面体、四周体空隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特征、晶界具的特征。
基本内容:密排六方金属晶体构造的配位数、致密度、原子半径,密排场上原子的堆垛次序、晶胞、晶格、金属键的观点。
晶体的特色、晶体中的空间点阵。
晶格种类fcc(A1)bcc(A2)hcp(A3)空隙种类正四周体正八面体四周体扁八面体四周体正八面体空隙个数84126126原子半径2a3a a442r A空隙半径32a22a53a23a62a21a 444442r B晶胞:在晶格中选用一个能够完整反应晶格特色的最小的几何单元,用来剖析原子摆列的规律性,这个最小的几何单元称为晶胞。
金属键:失掉外层价电子的正离子与洋溢此间的自由电子的静电作用而联合起来,这类联合方式称为金属键。
位错:晶体中原子的摆列在必定范围内发生有规律错动的一种特别构造组态。
位错的柏氏矢量拥有的一些特征:①用位错的柏氏矢量能够判断位错的种类;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路程径没关;③位错的柏氏矢量个部分均同样。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混淆型呈随意角度。
晶界拥有的一些特征:①晶界的能量较高,拥有自觉长大和使界面平直化,以减少晶界总面积的趋向;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐化和氧化;⑥常温下晶界能够阻挡位错的运动,提升资料的强度。
二、纯金属的结晶要点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成体制。
基本内容:结晶过程、阻力、动力,过冷度、变质办理的观点。
铸锭的缺点;结晶的热力学条件和构造条件,非均匀形核的临界晶核半径、临界形核功。
相起伏:液态金属中,时聚时散,起伏不定,不停变化着的近程规则摆列的原子公司。
第六章 金属和合金的塑性变形和再结晶金属材料(包括纯金属和合金)在外力的作用下引起的形状和尺寸的改变称为变形。
去除外力,能够消失的变形,称弹性变形;永远残留的变形,称塑性变形。
工业生产上正是利用塑性变形对金属材料进行加工成型的,如锻造、轧制、拉拔、挤压、冲压等。
塑性变形不仅能改变工件的形状和尺寸,还会引起材料内部组织和结构的变化,从而使其性能发生变化。
以再结晶温度为界,金属材料的塑性变形大致可分为两类:冷塑性变形和热塑性变形,在生产上,通常称为冷加工和热加工。
经冷塑性变形的金属材料有储存能,自由能高,组织不稳定。
若升高温度,使原子获得足够的扩散能力,则变形组织会恢复到变形前的状态,这个恢复过程包括:回复、再结晶和晶粒长大三个阶段。
从金属材料的生产流程来看,一般是先进行热加工,然后才进行冷加工和再结晶退火。
但为了学习的方便,本章先讨论冷加工,再讨论再结晶和热加工。
§6.1 金属材料的变形特性一、 应力—应变曲线金属在外力作用下,一般可分为弹性变形、塑性变形、断裂三个阶段。
图6.1是低碳钢拉伸时的应力—应变曲线,这里的应力和应变可表示为:000,L L L L L A F ∆=-==εσ 公式中F 是拉力,00,L A 分别是试样的原始横截面积和原始长度。
从图中可以得到三个强度指标:弹性极限e σ,屈服强度s σ,抗拉强度b σ。
当拉应力小于弹性极限e σ时,金属只发生弹性变形,当拉应力大于弹性极限e σ,而小于屈服强度s σ时,金属除发生弹性变形外,还发生塑性变形,当拉应力大于抗拉强度b σ时,金属断裂。
理论上,弹性变形的终结就是塑性变形的开始,弹性极限和屈服强度应重合为一点,但由于它们不容易精确测定,所以在工程上规定:将残余应变量为0.005%时的应力值作为弹性极限,记为005.0σ,而将残余应变量为0.2%时的应力值作为条件屈服极限,记为2.0σ。
s σ和2.0σ都表示金属产生明显塑性变形时的应力。
第一章:单向静拉伸试验:是应用最广泛的力学性能试验方法之一。
1)可揭示材料在静载下的力学行为(三种失效形式):即:过量弹性变形、塑性变形、断裂。
2)可标定出材料最基本力学性能指标:如:屈服强度、抗拉强度、伸长率、断面收缩率等。
拉伸力-伸长曲线拉伸曲线:拉伸力F -绝对伸长△L 的关系曲线。
在拉伸力的作用下,退火低碳钢的变形过程四个阶段:1)弹性变形:O ~e2)不均匀屈服塑性变形:A ~C3)均匀塑性变形:C ~B4)不均匀集中塑性变形:B ~k5)最后发生断裂。
k ~第二章:弹性变形:当外力去除后,能恢复到原形状或尺寸的变形。
特点:可逆性、单值线性、同相位、变形量小本质:都是构成材料的原子(离子)或分子从平衡位置产生可逆位移的反映。
弹性模量E :是表征材料对弹性变形的抗力,工程称材料的刚度.E 值越大,在相同应力下产生的弹性变形就越小。
弹性模量是结构材料的重要力学性能指标之一。
影响因素:1、键合方式 2、原子结构 3、晶体结构 4、化学成分 5.微观组织 6.温度 弹性模量 E 与切变模量 G 关系:(其中: ν-泊松比。
)比例极限σp :是材料弹性变形按正比关系变化的最大应力,即拉伸应力一应变曲线上开始偏离直线时的应力值。
弹性极限:材料由弹性变形过渡到弹-塑性变形时的应力,当应力超过弹性极限σe 后,便开始产生塑性变形。
(比例极限σp 和弹性极限σe 与屈服强度的概念基本相同,都表示材料对微量塑性变形的抗力,影响因素也基本相同。
)弹性比功ae :(弹性比能、应变比能)表示材料在弹性变形过程中吸收弹性变形功的能力。
一般用材料开始塑性变形前单位体积吸收的最大弹性变形功表示。
物理意义:吸收弹性变形功的能力。
几何意义:应力σ -应变ε曲线上弹性阶段下的面积。
欲提高材料的弹性比功:提高σe ,或降低 E2E G ν=(1+)弹簧钢:含碳较高并添加Si 、Mn 等合金元素强化基体,经淬火+中温回火获得回火托氏体组织及冷变形强化,以提高其弹性极限,使弹性比功ae 和弹性提高。
金属材料受力后会弯曲或断裂金属材料是一类常见的工程材料,广泛应用于建筑、航空、汽车制造等领域。
在使用过程中,金属材料会承受各种外部力的作用,如拉力、压力、弯曲力等。
然而,这些力的作用会导致金属材料发生变形,甚至出现弯曲或断裂的情况。
本文将针对金属材料在受力后发生弯曲或断裂的原因以及相应的预防措施进行探讨。
首先,金属材料在受力后发生弯曲的原因有多种。
主要原因之一是金属材料的内部结构造成的。
金属材料的内部由晶粒组成,晶粒与晶粒之间通过晶界连接着。
当外力作用到金属材料上时,晶粒之间的晶界可能发生滑移或移位,导致材料整体发生塑性变形。
这种滑移和移位会导致材料内部产生应力集中区域,从而造成金属材料整体弯曲。
此外,金属材料的晶粒尺寸和材料的纯度也会影响金属材料的强度和塑性,进而影响材料在受力后的弯曲情况。
其次,金属材料在受力后出现断裂的原因也有多方面。
一方面,金属材料的强度不足可能导致断裂。
当外力作用到金属材料上超过材料的强度极限时,金属材料就会发生破裂。
此外,金属材料的内部存在缺陷也可能导致断裂。
缺陷包括气孔、夹杂物、裂纹等,这些缺陷会导致材料内部应力集中,从而引起断裂。
此外,金属材料的应力集中也可能导致断裂。
当外力作用到金属材料上时,如果材料表面存在缺口或切口等形状不良的部分,外力就会在这些部分产生应力集中,进而引发断裂。
对于金属材料在受力后弯曲或断裂的情况,我们应该采取相应的预防措施。
首先,正确选择金属材料是非常重要的。
对于不同场合的应用,需要选择适合强度和塑性的金属材料,以免在受力下出现过度弯曲或断裂。
其次,合理设计金属结构也是关键。
在设计过程中,应该避免金属结构出现应力集中的部位,适当增加支撑或加强结构刚度等方式来预防弯曲或断裂。
此外,采用适当的材料处理方法也能有效预防金属材料受力后弯曲或断裂。
比如,通过热处理可以改善金属材料的强度和塑性,进而提高金属材料的抗弯曲和抗断裂能力。
此外,加强金属材料的监测和检测也是重要的一环。
材料科学基础(下)复习提纲第六章 金属与合金的塑性变形与断裂1、常温和低温下金属塑性变形的两种主要方式为( )和 ( )。
2、体心、面心、密排六方晶格金属的主要滑移系,详见表6-2。
解释体心立方的金属的塑性为什么比面心立方金属差?3、了解施密特定律,并会做相应的计算(见第六章作业)4、晶体的滑移的实质(是位错在切应力的作用下沿着滑移面逐步移动的结果)。
了解位错的交割和塞积对金属的力学性能的影响。
5、掌握塑性变形对金属组织和性能的影响。
第七章 金属及合金的回复与再结晶1、了解回复过程的组织结构和性能的变化?2、了解再结晶过程的组织结构和性能的变化?3、从金属学角度,金属的热加工和冷加工是如何划分的? 第八章 扩散1、固态下原子扩散的机制主要有哪两种?扩散的本质原因是什么?2、掌握扩散第二定律的误差函数解,并会做相应计算。
(见作业题型)3、了解影响扩散的因素。
第九章 钢的热处理原理 1、钢的奥氏体化过程? 2、钢在冷却过程中的转变。
高温转变⎪⎩⎪⎨⎧︒︒︒,托氏体,索氏体,珠光体C C C A 550~600600~650650~1 解释珠光体、索氏体和托氏体的力学性能与片间距的关系。
(详见P246)中温转变⎩⎨⎧︒,下贝氏体,上贝氏体S M C ~350350~600 了解下贝氏体的力学性能及生产方式(详见P261)低温转变 {下,马氏体转变、,快冷至f S C M M V V ≥(1) 什么是马氏体?马氏体的晶体结构、组织形态、性能特点? (2) 马氏体转变的特点?3、淬火钢的回火转变过程?(一)~(五)P268~272,淬火钢回火时力学性能的变化?4、了解第一类和第二类回火脆性及解决办法? 第十章 钢的热处理工艺1、了解退火和正火的目的?各种退火工艺的目的和适用对象。
正火工艺适用的四个主要方面。
2、淬火的加热温度的选择?原因?淬火常用的介质有哪几种?淬火常用方法?3、什么是淬透性、淬硬性?它们的差别?(详见P289)4、低温、中温、高温回火各获得什么组织?其性能有何特征?5、了解感应加热表面淬火的工作原理?淬硬层深度与电流频率的关系?5、渗碳的适用材料、主要方法、渗碳温度及渗碳介质?渗氮的适用材料、主要方法、渗氮温度及渗氮介质?第十一章 工业用钢1、 合金元素在钢里的存在方式?合金元素对铁-渗碳体相图的影响?合金元素对钢热处理过程的影响?2、 什么时回火稳定性和二次硬化?3、 造成金属腐蚀的原因?耐磨钢耐磨的原因?耐热钢的抗氧化型和热强性? 第十二章 铸铁1、 铸铁石墨化过程?铸铁的组织?影响铸铁石墨化的因素? 第十三章 有色金属及其合金1、 铝合金的分类及铝合金的强化方法?(重点掌握铝合金的沉淀强化P384)2、 铜合金的分类?黄铜的力学性能与含锌量的关系?锡青铜的力学性能与含锡量的关系。
金属的断裂条件及断口金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。
断裂是裂纹发生和发展的过程。
1. 断裂的类型根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。
韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。
脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。
韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。
韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。
2. 断裂的方式根据断裂面的取向可分为正断和切断。
正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。
切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。
3. 断裂的形式裂纹扩散的途径可分为穿晶断裂和晶间断裂。
穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。
晶间断裂:裂纹穿越晶粒本身,脆断。
机器零件断裂后不仅完全丧失服役能力,而且还可能造成不应有的经济损失及伤亡事故。
断裂是机器零件最危险的失效形式。
按断裂前是否产生塑性变形和裂纹扩展路径做如下分类。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,用肉眼或低倍显微镜观察时,断口呈暗灰色纤维状,有大量塑性变形的痕迹。
脆性断裂则相反,断裂前从宏观来看无明显塑性变形积累,断口平齐而发亮,常呈人字纹或放射花样。
宏观脆性断裂是一种危险的突然事故。
脆性断裂前无宏观塑性变形,又往往没有其他预兆,一旦开裂后,裂纹迅速扩展,造成严重的破坏及人身事故。
因而对于使用有可能产生脆断的零件,必须从脆断的角度计算其承载能力,并且应充分估计过载的可能性。
. 金属材料产生脆性断裂的条件(1)温度任何一种断裂都具有两个强度指标,屈服强度和表征裂纹失稳扩散的临界断裂强度。
温度高,原子运动热能大,位错源释放出位错,移动吸收能量;温度低反之。
(2)缺陷材料韧性裂纹尖端应力大,韧性好发生屈服,产生塑性变形,限制裂纹进一步扩散。
弹性:材料的可恢复变形的能力。
塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。
塑性变形:材料在一定外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法。
塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法。
塑性成形的特点:组织性能好、材料利用率高、生产效率高、尺寸精度高、设备相对复杂。
冷态塑性变形的机理:晶内变形(滑移和孪生)和晶间变形(滑动和转动)滑移:晶体在力的作用下,晶体的一部分沿一定的晶面(滑移面)和晶向(滑移向)相对于晶体的另一部分发生相对移动或切变。
孪生:晶体在力的作用下,晶体的一部分沿一定的晶面(孪生面)和晶向(孪生向)发生均匀切边滑移面:滑移中,晶体沿着相对滑动的晶面。
滑移方向:滑移中,晶体沿着相对滑动的晶向。
塑性变形的特点:不同时性、不均匀性、相互协调性。
合金:合金是由两种或者两种以上的金属元素或者金属元素与非金属元素组成具有金属特性的物质。
合金分为固溶体(间隙固溶体、置换固溶体)和化合物(正常价、电子价、间隙化合物)固溶强化:以间隙或者置换的方式融入基体的金属所产生的强化。
弥散强化:若第二项是通过粉末冶金的方法加入而引起的强化。
时效强化:若第二项为力是通过对过饱和固溶体的时效处理而沉淀析出并产生强化。
冷态下的塑性变形对组织性能的影响:组织:晶粒形状发生变化,产生纤维组织晶粒内部产生亚晶结构晶粒位向改变:产生丝织构和板织构性能:产生加工硬化(随着塑性变形的程度的增加,金属的塑性韧性降低,强度硬度提高的现象)加工硬化的优点:变形均匀,减小局部变薄,增大成形极限缺点:塑性降低、变形抗力提高、变形困难。
热塑性变形的软化过程:动态回复、动态再结晶、静态回复、静态再结晶、亚动态再结晶金泰回复:从热力学角度,变形引起金属内能增加,而处于稳定的高自用能状态具有向变形前低自由能状态自发恢复的趋势静态再结晶:冷变形金属加热到更高温度后,在原来版型体中金属会重新形成无畸变的等轴晶直至完全取代金属的冷组织的过程。
塑性力学的概念塑性力学是固体力学的一个分支,研究材料在超过其弹性极限后的变形和断裂行为。
相对于弹性力学,塑性力学更关注材料在较大的应力下的变形行为,以及这种变形和力学性质之间的关系。
塑性力学的研究对象主要是金属等金属合金材料和一些塑性较好的非金属材料,如塑料、橡胶等。
这些材料在加载后,会由于原子层间的相对位移和克服层间原子间的势垒而发生形变。
塑性变形是一种非弹性变形,在加载后会持续残留,并且不易恢复原状。
塑性力学的核心概念是塑性的本构关系。
本构关系描述了材料应力和应变之间的关系。
塑性变形的本构关系可以用应力-应变曲线来表示,也可以用应力函数、流动规律等方式来刻画。
塑性力学可以通过实验和理论分析来确定材料的本构关系,从而预测材料的力学行为。
在塑性力学中,有几个重要的概念需要了解。
首先是屈服点,屈服点是材料在加载过程中产生塑性变形的临界点。
当材料的应力达到一定值时,开始发生持久性的塑性变形。
屈服点的大小取决于材料本身的性质和所受到的加载条件。
其次是流动规律。
塑性变形是由于材料内部的位错运动引起的,而流动规律描述了位错运动的方式和速率。
流动规律是塑性力学的基础理论,可以通过实验和数学方法来研究。
接下来是材料的硬化行为。
在材料发生塑性变形后,材料的抵抗能力会增加,这被称为材料的硬化行为。
硬化行为是由于位错的增加和移动引起的。
硬化行为的研究对于材料的加工过程和强化方法具有重要意义。
最后是断裂行为。
塑性变形会导致材料的应力集中和损伤积累,最终可能导致材料的断裂。
研究材料的断裂行为对于安全工程和结构设计具有重要意义。
塑性力学的研究方法包括实验和理论分析两个方面。
实验可以通过材料的拉伸试验、压缩试验、剪切试验等来获取塑性力学的相关参数。
理论分析则通过建立数学模型和求解相应的方程来描述材料的力学行为。
总之,塑性力学是固体力学的一个重要分支,研究材料在超过弹性极限后的塑性变形和断裂行为。
在工程领域中,塑性力学的研究对于材料加工、结构设计和安全工程都具有重要意义。