菱形(提高)知识讲解
- 格式:doc
- 大小:237.86 KB
- 文档页数:5
菱形【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数.【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.【答案与解析】解:连接AC.∵四边形ABCD是菱形,∴ AB=BC,∠ACB=∠ACF.又∵∠B=60°,∴△ABC是等边三角形.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.又∵∠EAF=∠BAC=60°∴∠BAE=∠CAF.∴△ABE≌△ACF.∴ AE=AF.∴△AEF为等边三角形.∴∠AEF=60°.又∵∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,∴∠CEF=18°.【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.2、已知:如图所示,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)求证:AM=DM;(2)若DF=2,求菱形ABCD的周长.【答案与解析】证明:(1)连接DB,则由菱形性质得BD⊥AC.又因为EF⊥AC,所以EF∥BD,即ME∥BD.又因为点E是AB的中点,所以点M是AD的中点.所以AM=DM.(2)由(1)得DB∥EF.又BE∥DF,所以四边形EFDB是平行四边形.所以BE=DF=2.又因为12BE AB,即AB=2BE=2×2=4.所以菱形ABCD的周长为4×4=16.【总结升华】菱形四边相等,对角线互相垂直平分.举一反三:【变式】(2015春•潍坊期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB的中点,如果EO=2,求四边形ABCD的周长.解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵E是AB的中点,∴EO是△ABD的中位线,∴AD=2EO=2×2=4,∴菱形ABCD的周长=4AD=4×4=16.类型二、菱形的判定3、(2014春•郑州校级月考)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s 的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.【思路点拨】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【答案与解析】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.【总结升华】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键.【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.⑴求四边形AQMP的周长;⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【答案】解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=a∴四边形AQMP的周长为2a(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM,∴四边形AQMP为菱形类型三、菱形的综合应用4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°,所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.【答案与解析】解:(1)连接AC.在菱形ABCD中,BC=AB=4,AB∥CD.∵∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.∴∠ACF=60°,即∠ACF=∠B.∵∠EAF=60°,∠BAC=60°,∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE+CF=CE+BE=BC=4.(2)CE-CF=4.连接AC如图所示.∵∠BAC=∠EAF=60°,∴∠EAB=∠FAC.∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°.∵ AB=AC,∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE-CF=CE-BE=BC=4.【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系.。
八年级菱形知识点大全八年级是初中阶段非常重要的一个学习阶段,而其中最重要的课程莫过于数学。
在八年级数学学习当中,菱形的相关知识点便是一个非常重要的学习部分。
下面,我们将为大家总结八年级菱形的相关知识点,帮助大家深刻理解和掌握这一知识点。
一、菱形的基础概念:菱形是一个四边形,其四条边两两相等,而对角线互相垂直;同时,菱形内部的角度也必须是直角。
在菱形中,两条对角线互相垂直,分别被称为菱形的“长对角线”和“短对角线”。
二、菱形的面积计算:菱形的面积可以通过以下公式进行计算:面积 = 对角线1 ×对角线2 ÷2。
即,菱形的面积等于长对角线和短对角线的乘积再除以2。
例如,如果一个菱形的长对角线为6cm,短对角线为4cm,则它的面积为6 × 4 ÷ 2 = 12平方厘米。
三、菱形的周长计算:菱形的周长可以通过以下公式进行计算:周长= 4 ×边长。
即,菱形的周长等于它的四条边的长度之和。
例如,如果一个菱形的边长为3cm,则它的周长为4 × 3 = 12cm。
四、菱形的对角线角度计算:当我们知道了一个菱形的长对角线和短对角线的长度时,就可以很方便地计算出菱形内部角度的大小了。
此时,我们可以通过以下公式进行计算:cosθ = (长对角线 ÷2)÷(短对角线 ÷2)。
其中,θ表示的意义是长对角线与短对角线之间的夹角。
五、菱形的性质:菱形的性质有很多,以下是其中几个比较重要的性质:1、菱形内角度相等,任意两个相邻的内角之和都为180度;2、菱形对角线相互垂直;3、菱形的每一条对角线将其分成两个全等的三角形;4、菱形的面积是以长对角线和短对角线为底和高构成的直角三角形的一半。
六、菱形的图形变换:在数学学习中,我们经常会遇到一些图形变换的问题。
而对于菱形这一图形来说,常见的图形变换有以下几种:1、平移:平移就是将一个图形沿着平面上的某一条直线移动一定的距离,使它的位置发生改变。
《菱形》知识清单一、菱形的定义在一个平面内,有一组邻边相等的平行四边形叫做菱形。
需要注意的是,菱形首先是平行四边形,然后在此基础上增加了“一组邻边相等”这一特殊条件。
二、菱形的性质1、边的性质菱形的四条边都相等。
这是菱形区别于一般平行四边形的重要特征之一。
因为平行四边形的对边相等,而菱形不仅对边相等,邻边也相等。
2、角的性质菱形的对角相等,邻角互补。
这一性质与平行四边形相同。
3、对角线的性质(1)菱形的对角线互相垂直平分。
两条对角线将菱形分成四个全等的直角三角形。
(2)菱形的对角线平分每组对角。
这意味着对角线把菱形的内角分成了相等的两部分。
4、对称性菱形是轴对称图形,对称轴为两条对角线所在的直线。
同时,菱形也是中心对称图形,对称中心为两条对角线的交点。
5、面积计算菱形的面积可以用多种方法计算:(1)底乘以高。
(2)对角线乘积的一半。
三、菱形的判定1、一组邻边相等的平行四边形是菱形。
这是根据菱形的定义得出的判定方法。
2、对角线互相垂直的平行四边形是菱形。
因为对角线互相垂直的平行四边形,其四条边相等,从而符合菱形的定义。
3、四条边都相等的四边形是菱形。
直接从边的角度进行判定。
四、菱形在实际生活中的应用1、建筑设计在建筑外观的设计中,菱形的图案和结构可以增加建筑的美观性和独特性。
2、纺织和图案设计菱形图案在布料的纺织和各种图案设计中经常出现,给人以时尚和独特的感觉。
3、机械制造某些机械零件的形状可能采用菱形,以满足特定的功能和结构要求。
五、菱形相关的数学问题1、证明一个四边形是菱形通常需要根据已知条件,运用菱形的判定方法来进行证明。
2、计算菱形的边长、角度、对角线长度等这可能涉及到勾股定理、三角函数等知识。
3、与其他几何图形的综合应用例如与三角形、矩形等结合,求解相关的面积、周长等问题。
六、学习菱形时的注意事项1、清晰理解菱形与平行四边形的关系菱形是特殊的平行四边形,要明确其特殊性质是在平行四边形的基础上增加的。
数学菱形知识点总结一、菱形的定义菱形是一个四边形,它有着以下几个特点:1. 四边相等:菱形的四条边长度相等。
2. 对角线相等:菱形的两条对角线长度相等。
3. 相邻角相等:菱形的相邻两个角是相等的,并且相邻角的和是180度。
二、菱形的性质菱形是一种特殊的平行四边形,在平行四边形的基础上,菱形还有以下几个特殊的性质:1. 对角线垂直:菱形的对角线互相垂直。
2. 对角平分:菱形的对角线互相平分对角。
3. 对角线平分:菱形的对角线互相平分四边形的面积。
4. 对角线角度:菱形的对角线夹角为90度。
三、菱形的面积菱形的面积可以通过以下公式计算:菱形的面积=对角线1乘以对角线2除以2即S=d1*d2/2其中,d1和d2分别是菱形的两条对角线的长度。
通过这个公式,我们可以很容易地计算菱形的面积。
四、菱形的周长菱形的周长可以通过以下公式计算:菱形的周长=4乘以边长即P=4L其中,L是菱形的边长。
通过这个公式,我们可以很容易地计算菱形的周长。
五、菱形的性质应用菱形的性质在实际问题中有着广泛的应用,包括以下几个方面:1. 计算几何中的面积:当我们知道了菱形的对角线长度时,可以利用菱形的面积公式计算菱形的面积,从而解决相关问题。
2. 计算几何中的周长:当我们知道了菱形的边长时,可以利用菱形的周长公式计算菱形的周长,从而解决相关问题。
3. 利用菱形的垂直性求解问题:利用菱形对角线的垂直性质,可以解决一些与菱形相关的几何问题。
六、总结菱形是数学中一个重要的几何图形,它具有独特的性质和广泛的应用。
通过本文的介绍,读者可以更加全面地理解和掌握菱形的相关知识,从而更好地解决与菱形相关的数学问题。
希望本文对读者有所帮助,谢谢!。
有关菱形知识点总结一、菱形的定义菱形是一种具有四个边长相等的四边形,同时具有两条对角线互相垂直且等长的特殊几何形状。
菱形的定义可以用几何学的术语表示为:一个具有四个相等边长的四边形,并且具有两条互相垂直且等长的对角线的图形即为菱形。
二、菱形的性质1. 对角线相等菱形的两条对角线互相垂直且等长。
这是菱形独特的性质之一,也是区分菱形与其他四边形的重要特征。
可以通过勾股定理来证明菱形的对角线相等。
2. 对角线平分菱形的两条对角线分别将菱形对角的角度平分。
这个性质可以很容易地通过菱形的几何构图来呈现。
3. 对边相等菱形的四条边互相等长,即具有相等的边长。
这是菱形的基本特征之一,也是菱形与其他四边形的区别之一。
4. 内角性质菱形内角之间的夹角和为360度。
这个性质可以通过菱形的内角和为360度来证明。
5. 对角度性质菱形的内角均为直角,且每个内角大小为90度。
6. 对顶点性质菱形的每个顶点均为菱形的对角线的交点,即对角线的中点。
7. 对角线角度菱形的对角线之间的夹角为90度。
这个性质是由于菱形的对角线互相垂直而得出的。
三、菱形的公式1. 面积公式菱形的面积公式为:S= d1*d2/2,其中S为菱形的面积,d1和d2分别表示菱形的两条对角线的长度。
2. 周长公式菱形的周长公式为:P= 4a,其中P为菱形的周长,a表示菱形的一个边长。
四、菱形的应用菱形作为一种特殊的四边形,在几何学中具有很多应用,常见的有以下几个方面:1. 建筑设计在建筑设计中,菱形的几何形状常常被运用到建筑物的外观设计中。
例如,一些现代建筑的外墙设计就会采用菱形的图案来增加建筑的美观性和独特性。
2. 画框设计在画框设计中,菱形的形状常常被用作画框的设计图案。
例如,一些艺术品的画框就会采用菱形的形状来突出画作的艺术感。
3. 几何学教学在几何学教学中,菱形作为一种特殊的四边形,经常被用来进行几何学知识的教学。
通过菱形的性质和公式等知识点的学习,可以帮助学生更好地理解和掌握几何学的知识。
《菱形》知识清单一、菱形的定义在同一平面内,有一组邻边相等的平行四边形叫做菱形。
需要注意的是,菱形首先是平行四边形,然后在此基础上增加了“一组邻边相等”这个条件。
二、菱形的性质1、边菱形的四条边都相等。
这是菱形最基本也是最显著的特征之一。
因为菱形是平行四边形,平行四边形对边相等,再加上菱形的一组邻边相等,所以四条边都相等。
2、角菱形的对角相等,邻角互补。
这一点与平行四边形的性质相同。
3、对角线(1)菱形的对角线互相垂直且平分。
两条对角线把菱形分成四个全等的直角三角形。
(2)菱形的对角线平分一组对角。
也就是说,两条对角线与菱形的边所形成的夹角分别相等。
4、对称性菱形是中心对称图形,对称中心是两条对角线的交点。
同时,菱形也是轴对称图形,两条对角线所在的直线就是它的对称轴。
5、面积(1)菱形的面积可以用底乘以高来计算。
(2)由于菱形的对角线互相垂直,所以菱形的面积还可以用对角线乘积的一半来计算。
三、菱形的判定1、一组邻边相等的平行四边形是菱形。
这是根据菱形的定义直接得出的判定方法。
2、对角线互相垂直的平行四边形是菱形。
因为对角线互相垂直的平行四边形,其四条边都相等,满足菱形的定义。
3、四条边都相等的四边形是菱形。
这是从边的角度直接判定一个四边形为菱形。
四、菱形性质与判定的应用1、在几何证明题中如果已知一个四边形是菱形,那么可以利用菱形的性质来得出边、角、对角线等方面的关系,从而解决问题。
如果要证明一个四边形是菱形,则需要根据给定的条件,选择合适的判定方法进行证明。
2、在实际生活中的应用菱形的图案和结构在建筑、艺术设计、纺织等领域都有广泛的应用。
例如,一些窗户的设计采用菱形的格子,既美观又能保证结构的稳定性;在纺织品的花纹设计中,菱形图案也经常出现。
五、与菱形相关的常见题型1、计算型题目(1)已知菱形的边长、对角线长度等,求菱形的面积、周长等。
(2)根据菱形的面积和其中一条对角线的长度,求另一条对角线的长度。
菱形(提高)【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数.【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.【答案与解析】解:连接AC.∵四边形ABCD是菱形,∴ AB=BC,∠ACB=∠ACF.又∵∠B=60°,∴△ABC是等边三角形.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.又∵∠EAF=∠BAC=60°∴∠BAE=∠CAF.∴△ABE≌△ACF.∴ AE=AF.∴△AEF为等边三角形.∴∠AEF=60°.又∵∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,∴∠CEF=18°.【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.2、(2018•龙岩)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【思路点拨】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.【答案】C.【解析】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.【总结升华】本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.举一反三:【变式】(2018春•潍坊期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB的中点,如果EO=2,求四边形ABCD的周长.【答案】解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵E是AB的中点,∴EO是△ABD的中位线,∴AD=2EO=2×2=4,∴菱形ABCD的周长=4AD=4×4=16.类型二、菱形的判定3、(2018春•郑州校级月考)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s 的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.【思路点拨】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【答案与解析】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.【总结升华】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键.举一反三:【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.⑴求四边形AQMP的周长;⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【答案】解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=a∴四边形AQMP的周长为2a(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM,∴四边形AQMP为菱形类型三、菱形的综合应用4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°,所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.【答案与解析】解:(1)连接AC.在菱形ABCD中,BC=AB=4,AB∥CD.∵∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.∴∠ACF=60°,即∠ACF=∠B.∵∠EAF=60°,∠BAC=60°,∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE+CF=CE+BE=BC=4.(2)CE-CF=4.连接AC如图所示.∵∠BAC=∠EAF=60°,∴∠EAB=∠FAC.∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°.∵ AB=AC,∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE-CF=CE-BE=BC=4.【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系.【巩固练习】一.选择题1.下列命题中,正确的是( )A.两邻边相等的四边形是菱形B.一条对角线平分一个内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形2. 菱形的周长为高的8倍,则它的一组邻角是()A.30°和150°B.45°和135°C.60°和120°D.80°和100°3.已知菱形的周长为40cm,两条对角线的长度比为3:4,那么两条对角线的长分别为()A.6cm,8cm B. 3cm,4cm C. 12cm,16cm D. 24cm,32cm4.(2018•青神县一模)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°5. (2018•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.46. 如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()二.填空题7. (2018•江西三模)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.8.如图,已知菱形ABCD,其顶点A、B在数轴上对应的数分别为-4和1,则BC=_____.9.如图,菱形ABCD的边长是2cm,E是AB中点,且DE⊥AB,则菱形ABCD的面积为______ 2cm.10.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是.11. 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.12.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标__________________.三.解答题13. (2018•建湖县一模)如图,△ABC中,∠ACB=60°,分别以△ABC的两边向形外作等边△BCE、等边△ACF,过A作AM∥FC交BC于点M,连接EM.求证:(1)四边形AMCF是菱形;(2)△ACB≌△MCE.14.(2018•安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.15.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点(不与端点重合),且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.【答案与解析】一.选择题1.【答案】B ;2.【答案】A ;【解析】由题意可知边长是高的2倍,所以一个内角为30°,另一个内角为150°.3.【答案】C ;【解析】设两条对角线的长为6,8k k .所以有()()2223410k k +=,∴2k =,所以两条对角线的长为12 ,16.4.【答案】B ;【解析】连接PA ,如图所示:∵四边形ABCD 是菱形,∴∠ADP=∠CDP=∠ADC=36°,BD 所在直线是菱形的对称轴,∴PA=PC ,∵AD 的垂直平分线交对角线BD 于点P ,∴PA=PD ,∴PD=PC ,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°;故选:B.5.【答案】A.【解析】∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选A.6.【答案】A;【解析】阴影部分面积=两个菱形面积-△ABD面积-△DEF面积-△BGF面积==.二.填空题7.【答案】.;【解析】∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt △EBC 中,EC=2EB ,又EC=AE ,AB=AE+EB=3,∴EB=1,EC=2,∴BC=.8.【答案】5;【解析】菱形四条边相等.9.【答案】【解析】由题意∠A =60°,DE10.【答案】5;;2;【解析】菱形一个内角为60°,边长为5,所以两条对角线长为5和,面积为152⨯⨯=. 11.【答案】512; 【解析】431255AO BO OH AB ⨯⨯===. 12.【答案】()258,0,,08⎛⎫⎪⎝⎭; 【解析】由在菱形ABCD 中,AC =12,BD =16,E 为AD 中点,根据菱形的性质与直角三角形的性质,易求得OE 的长,然后分别从①当OP =OE 时,②当OE =PE 时,③当OP =EP 时去分析求解即可求得答案.三.解答题13.【解析】证明:(1)∵△ACF 是等边三角形,∴∠FAC=∠ACF=60°,AC=CF=AF ,∵∠ACB=60°,∴∠ACB=∠FAC,∴AF∥BC,∵AM∥FC,∴四边形AMCF是平行四边形,∵AM∥FC,∠ACB=∠ACF=60°,∴∠AMC=60°,又∵∠ACB=60°,∴△AMC是等边三角形,∴AM=MC,∴四边形AMCF是菱形;(2)∵△BCE是等边三角形,∴BC=EC,在△ABC和△MEC中∵,∴△ABC≌△MEC(SAS).14.【解析】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF .∴△ABE ≌△CDF .(2)解:∵四边形AECF 为菱形时,∴AE=EC .又∵点E 是边BC 的中点,∴BE=EC ,即BE=AE .又BC=2AB=4,∴AB=BC=BE ,∴AB=BE=AE ,即△ABE 为等边三角形,▱ABCD 的BC 边上的高可由勾股定理算得为,∴菱形AECF 的面积为2.15.【解析】解:(1)∵AE +CF =2=CD =DF +CF∴AE =DF ,DE =CF ,∵AB =BD∴∠A =∠ADB =60°在△BDE 与△BCF 中BD BC ADB C DE CF =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△BCF(2)由(1)得BE =BF ,∠EBD =∠CBF∴∠EBF =∠EBD +∠DBF =∠DBF +∠CBF =∠CBD =60°∴△BEF 是等边三角形(3)∵3≤△BEF 的边长<2∴2244S ≤<S ≤<。
(完整版)第十八章菱形知识点总结
1. 菱形定义和特性
菱形是一种几何形状,具有以下特性:
- 拥有四条边和四个角,其中每个角都是直角。
- 两条对角线相等且垂直交叉。
- 对角线的交点称为菱形的中心。
2. 菱形的性质
- 对角线相等性质:菱形的两条对角线相等。
- 对角线垂直性质:菱形的两条对角线相互垂直。
- 边长平行性质:菱形的相邻边互相平行。
3. 菱形的周长和面积计算公式
- 周长计算公式:菱形的周长等于边长乘以4,即 `周长 = 4 ×边长`。
- 面积计算公式:菱形的面积等于对角线之积的一半,即 `面积= (对角线1 ×对角线2) / 2`。
4. 菱形的相关图形和实际应用
- 平行四边形:菱形的特殊情况,具有相邻边平行的性质。
- 菱形切割:通过两个垂直相交的菱形切割,可以得到多个边长相等的小菱形。
- 菱形形状的物体:例如球场的中央足球场草坪通常呈现菱形形状。
5. 菱形的重要性和研究价值
- 菱形是几何学中重要的基本形状之一,了解和掌握菱形的定义和性质对进一步研究和理解其他几何形状非常有帮助。
- 菱形相关的计算公式可以应用于解决实际生活中的问题,例如计算球场草坪的总面积等。
- 掌握菱形的切割方法和相关技巧,能够发展和培养几何思维和想象力。
6. 总结
第十八章菱形知识点总结了菱形的定义、特性、性质、周长和面积计算公式,以及菱形的相关图形和实际应用。
菱形作为几何学中的重要形状,掌握其知识和技巧对学习和应用几何学具有重要意义。
希望这份总结能够帮助你更好地理解和掌握菱形的相关知识。
八年级数学《菱形》知识总结及经典例题学习目标1.掌握菱形的概念.2.理解菱形的性质及识别方法.3.能利用菱形的性质及识别方法,解决一些问题.学法指导把平行四边形、矩形、菱形的性质及识别方法对照起来学习,了解它们的相同点和不同点.基础知识讲解1.菱形的定义四条边都相等的平行四边形(或一组邻边相等的平行四边形)叫做菱形.由菱形的定义可知,菱形是一种特殊的平行四边形,菱形的定义包含两个条件,①是平行四边形,②邻边相等,这两个条件缺一不可.2.菱形的性质(1)它具有平行四边形的一切性质(2)它除具有平行四边形的性质外,还具有自己的特殊性质.①菱形的四条边都相等.②菱形的对角线互相垂直平分,而且每条对角线平分一组对角.③菱形是轴对称图形,对称轴是两条对角线所在的直线.④菱形的对角线分菱形为4个全等的直角三角形.3.菱形的识别方法菱形的识别方法,除用定义来识别外,还有其它的识别方法,用定义来识别是最基本的识别方法.其它的识别方法有①四条边都相等的四边形,也为菱形.②对角线互相垂直的平行四边形,也是菱形,运用这个识别方法必须符合两个条件,一是对角线互相垂直,二是平行四边形.4.菱形的面积计算由菱形的对角线把菱形分成4个全等的直角三角形,可得出,菱形的面积=4×S Rt △. 设对角线长分别为a ,b .则菱形的面积=4×21×(22b a )=21ab ,即菱形的面积等于对角线乘积的一半.5.菱形的性质及识别方法的作用利用它们可以证明线段相等、垂直、平分、平行等关系.证明角相等,平分等关系,证明一个四边形为菱形和进行有关的计算.重点难点重点:菱形的性质,识别方法及其在生活、生产中的应用.难点:运用菱形的性质及识别方法,灵活地解答一些问题.易错误区分析运用菱形的定义时易忽略,邻边相等的平行四边形中的平行四边形这个条件. 例1.判断下列说法对不对(1)邻边相等的四边形为菱形.( )(2)两边相等的平行四边形为菱形.( )错误分析:(1)中应为邻边相等的平行四边形.(2)中是指邻边相等而不是两边相等. 错解:(1)(√) (2)(×)正解:(2)(×) (2)(×)运用菱形的识别方法“对角线”互相垂直且平分的平行四边形中有时忽略垂直或者平分,有时忽略平行四边形这些条件.由于本节的性质判别方法较多,利用本节解题时易犯推理不严密的错误.例2.如图在菱形ABCD 中,E ,F 分别是BC ,CD 的中点连结AE ,AF.求证:AE =AF错误分析:本题证明错在BE =DF ,因为并未证明BC =CD ,推理不严格错证:∵菱形ABCD ,∴AB =CD ,∠B =∠D又∵E ,F 分别为BC ,CD 的中点,∴BE =DF∴△ABE ≌△ADF ∴AE =AF正证:∵菱形ABCD ∵AB =AD ,∠B =∠D , ∴21BC=21CD 又∵EF 分别为BC ,CD 的中点 ∴BE =DF ,∴△ABE ≌△ADF ∴AE =AF典型例题例l .已知,如图所示,菱形ABCD 中,E ,F 分别是BC 、CD 上的一点,∠D=∠EAF=∠AEF =60°.∠BAE =18°,求∠CEF 的度数.分析:要求∠CEF 的度数,可先求∠AEB 的度数,而要求∠AEB 的度数则必须求∠B 的度数,这一点则可由菱形是特殊的平行四边形可得到.另外,由∠D =60°.如连结AC 得等边△ABC 与△ACD ,从而△ABE ≌△ACF ,有AE =AF ,则△AEF 为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF解法一:因为菱形是特殊的平行四边形.所∠B =∠D =60°.因为∠BAE =18°,∠AEB+∠B+∠BAE =180°所以∠AEB+60°+18°=180°.即∠AEB=180°-60°-18°=102°.又∠AEF =60°,∠AEB+∠AEF+∠CEF =180°所以∠CEF =180°-60°-102°=18°解法二:连结AC ∴四边形ABCD 为菱形,∴∠B =∠D =60°,AB =BC =CD =AD .∴△ABC 和△CDA 为等边三角形 ∴AB =AC ,∠B =∠ACD =∠BAC =60°∵∠EAF =60° ∴△BAE=∠CAF ∴△ABE ≌△ACF ∴AE =AF又∵∠EAF =60° ∴△EAF 为等边三角形 ∴∠AEF =60°∵∠AEC=∠B+∠BAE=∠AEF+∠CEF∴60°+18°=60°+∠CEF ∴∠CEF =18°解法三:利用辅助线把菱形转化为三角形来解答,这是一种常用的作辅助线的方法.例2.已知:如图,△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BE 平分∠ABC ,交AD 于点M ,AN 平分∠DAC ,交BC 于点N.求证:四边形AMNE 是菱形.分析:要证AMNE 是菱形,可以根据定义,证得它是平行四边形,并且有一组邻边相等,也可以根据判定定理,证它四边相等;或证两条对角线互相垂直平分,注意到AN 是∠DAC 的平分线,只要证AM =AE ,则AN 垂直平分ME ,若证AN ⊥ME ,则再由BE 平分∠ABN 易知BE 也垂直平分AN ,即AN 与ME 互相垂直平分,故有AM =MN =NE =AE ,即AMNE 是菱形,此为证法一.显然,在上述证法中,证得BE 垂直平分AN 后,可得AM =MN ,所以∠MNA =∠MAN =∠NAE ,所以MN AE ,则AMNE 是平行四边形,又AM =MN 所以AMNE 是菱形.证法一:因为∠BAC =90°,AD ⊥BC ,所以∠BAD =∠C因为BE 平分∠ABC ,所以∠ABE =∠EBC .因为∠AME =∠BAD+∠ABE =∠C+∠EBC =∠AEM ,所以AM =AE ,又因为AN 平分∠DAC ,所以AM =MN ,所以AM =MN =NE =AE .所以AMNE 是菱形.证法二:同上,若证AN 垂直平分ME ,再证BE 垂直平分AN ,则AM =MN ,所以∠MNA=∠MNA=∠NAE.所以MN AE .所以AMNE 是平行四边形,由AM =MN 得AMNE 是菱形.例3.已知:如图菱形ABCD 中,DE ⊥AB 于点E ,且OA =DE ,边长AD =8,求菱形ABCD 的面积.分析:由菱形的对角线互相垂直知OA 是△ABD 的边BD 上的高,又由DE ⊥AB ,OA =DE ,易知△AOD ≌△DEA 从而知△ABD 是等边三角形,从而菱形ABCD 面积可求.解:在菱形ABCD 中,因为AC ⊥BD ,所以△AOD 是直角三角形,因为DE ⊥AB ,所以△AED 是直角三角形.在Rt △AOD 和Rt △AED 中,因为AD =AD ,DE =OA ,所以Rt △AOD ≌Rt △DEA .所以∠ADO =∠DAE ,因为ABCD 为菱形,所以∠ADO =∠ABO ,所以△ABD 是等边三角形.因为AD =8,DE ⊥AB ,所以AE =21AD =4,在Rt △AED 中,DE =22AE AD =43.从而S 菱形ABCD =AB ·DE =8×43=323注意:题中是将菱形的面积按一般的平行四边形面积公式计算的,当然也可以求出对角线AC ,BD 的长,按S 菱形ABCD =21AC ·BD 来计算,但后者较繁复. 例4.已知:如图,□ABCD 中,AD =2AB ,将CD 向两边分别延长到E ,F 使CD =CE =DF. 求证:AE ⊥BF分析:注意□ABCD 中,AD =2AB 这一特殊条件,因此□ABCD 能分成两个菱形.从而可以通过菱形的对角线互相垂直来证明.证明:设AE 交BC 于点G ,BF 交AD 于点H ,连结GH.因为AB ∥DF ,所以∠F=∠ABH , ∠FDH=∠BAH.又因为AB =CD =DF ,所以△ABH ≌△DFH.所以AH =HD=21AD=AB.所以BC AH ,BG=AB .则四边形ABGH 是菱形,所以AE ⊥BF.例5.如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.分析:由已知判断△AOF 和△DOF 是关于直线EF 成轴对称图形,再由轴对称的特征,得到∠OAF =∠ODF ,再结合已知得到∠ODF =∠OAE ,从而判断DF ∥AE ,得到AEDF 是平行四边形,进一步推出对角线互相垂直平分,得到AEDF 是菱形。
八年级数学下册菱形知识点总结及典型例题解析(提高)菱形是一种特殊的平行四边形,其定义为具有一组邻边相等的平行四边形。
菱形的性质包括四条边相等、两条对角线互相垂直并平分一组对角、是轴对称图形且有两条对称轴。
菱形可以用来证明线段相等、角相等、直线平行、垂直及有关计算问题。
菱形的面积可以通过平行四边形的面积公式或者两条对角线乘积的一半计算。
菱形的判定方法有三种,包括定义、对角线互相垂直的平行四边形和四条边相等的四边形。
例题:已知菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE=18°,求∠CEF的度数。
由已知∠B=60°,∠BAE=18°,可知∠AEC=78°。
欲求∠XXX的度数,只需求出∠AEF的度数。
由∠EAF=60°,易证△AEF为等边三角形,从而∠AEF=60°。
连接AC,由四边形ABCD 是菱形可知AB=BC,∠ACB=∠ACF。
又∵∠B=60°,∴△ABC是等边三角形,∴∠BAC=∠ACB=60°,AB=AC。
∴∠ACF=∠B=60°,又∵∠EAF=∠BAC=60°,∴∠BAE=∠CAF,∴△ABE≌△ACF,∴AE=AF。
因此,△AEF为等边三角形,∴∠AEF=60°。
2)利用菱形的性质,即对角线相等,结合EF的运动情况列出方程,解得t=2,代入验证即可.答案】(1)证明略.2)当t=2时,四边形ACFE是菱形.解析】1)略.2)设EF与AC的交点为点D,由题意可知:AG∥BC,∠BAC=60°,BC=6。
EF的速度为2cm/s,AE=l。
XXX的方程为:y=2x+l.XXX的中点为M,∴MC=MA=3。
AC的方程为:y=-√3x+3.D为AC的中点,∴D的坐标为(1.5,1.5√3)。
DE的方程为:y=-√3x+3√3.XXX≌CDF。
九年级数学上菱形知识点在九年级数学学习中,菱形是一个重要的几何形状。
菱形具有特殊的性质和定理,学好菱形的知识将有助于我们更好地理解几何的相关概念和应用。
本文将介绍九年级数学上与菱形相关的重要知识点。
一、菱形的定义与性质菱形是一个四边形,它有以下两个特点:1. 所有边相等:菱形的四个边长度相等,可以表示为AB=BC=CD=DA。
2. 对角线相互垂直且平分:菱形的对角线互相垂直,并且平分对方的对角线,即AC和BD互为对方的平分线。
二、菱形的面积计算菱形的面积计算公式为:面积 = 对角线1 ×对角线2 ÷ 2,即S = d1 × d2 ÷ 2,其中d1和d2分别表示对角线的长度。
三、菱形的周长计算菱形的周长计算公式为:周长 = 4 ×边长,即P = 4 × a,其中a 表示菱形的边长。
四、菱形的定理1. 菱形内角定理:菱形的内角都是锐角,且相邻内角的和为180度。
2. 菱形的对角线垂直定理:菱形的对角线相互垂直。
3. 菱形的对角线长度关系定理:菱形的对角线长度满足d1² + d2² = 4a²,其中d1和d2分别表示对角线的长度,a表示边长。
五、菱形的应用1. 建筑设计:菱形作为一种美观、稳定的几何形状,常被应用于建筑设计中,如屋顶、玻璃幕墙等。
2. 电子产品:许多电子产品的外观和按键都采用了菱形设计,例如手机屏幕、电视遥控器等。
3. 菱形区域划分:在地理勘探、城市规划等领域,菱形常被用来划分区域,以实现一定的空间分隔和布局。
六、菱形的例题解析例题1:已知菱形ABCD,AD=10cm,BD=24cm,计算菱形的面积和周长。
解析:先计算菱形的边长a,由于BD互为对角线的平分线,因此可以将菱形分为两个等腰三角形。
根据勾股定理可得,(AD/2)² + (BD/2)² = a²,代入已知数据计算得a=14cm。
菱形的性质与判定
1、定义:在同一平面内,有一组邻边相等的平行四边形是菱形
2、菱形的判定方法:1.有一组邻边相等的平行四边形。
2.对角线相互垂直的平行四边形。
3.四条边都相等的四边形。
3、性质(4和5是补充性质)
1、菱形具有平行四边形的一切性质;
2、菱形的四条边都相等;
3、菱形的对角线互相垂直平分且平分每一组对角
4、菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形还是中心对称图形
5、菱形的面积等于两条对角线乘积的一半;当不易求出对角线长时,就用平行四边形面积的一般计算方法计算菱形面积S=底×高。
菱形的判定及知识点归纳菱形是几何学中一种特殊的四边形,它具有特殊的性质和判定方法。
在本文中,我们将介绍菱形的定义、性质以及判定方法,并对相关知识点进行归纳总结。
一、菱形的定义菱形是一种四边形,它的四条边相等且相互垂直。
换句话说,四条边长度相等并且对角线相互垂直。
二、菱形的性质1. 对角线互相垂直:菱形的两条对角线相互垂直,即对角线之间的夹角为90度。
2. 对角线相等:菱形的两条对角线相等,即对角线长度相等。
3. 边相等:菱形的四条边都相等,即四边长度均相等。
4. 对角线平分角:菱形的两条对角线平分菱形的内角,即每条对角线平分相应的两个内角。
5. 对角线角平分线:菱形的每条对角线都是相应内角的角平分线。
6. 内角和:菱形的内角和为360度,即四个内角的和等于360度。
三、菱形的判定方法1. 判定菱形的方法一:判定四边形的四条边长度相等,即任意两条边长相等。
2. 判定菱形的方法二:判定四边形的对角线相等并且垂直,即对角线长度相等且对角线之间的夹角为90度。
四、菱形的相关知识点归纳1. 正方形是一种特殊的菱形:正方形是一种四边形,也是一种菱形,其四条边相等且相互垂直。
2. 菱形的对角线长度关系:菱形的对角线长度相等,即对角线AB= 对角线CD。
3. 菱形的边长关系:菱形的四条边相等,即AB = BC = CD = DA。
4. 菱形的内角关系:菱形的每个内角为90度,四个内角的和为360度。
5. 菱形的内角平分线关系:菱形的每条对角线都是相应内角的角平分线。
总结:菱形是一种四边形,具有四条边相等、对角线相等且相互垂直的性质。
菱形的判定方法主要包括四边形边长相等和对角线相等且垂直两种情况。
菱形还有一些特殊的性质和定理,如对角线长度关系、边长关系、内角关系以及内角平分线关系等。
熟练掌握菱形的定义、性质和判定方法,对于几何学的学习和问题解决具有重要意义。
八年级菱形的知识点菱形作为初中数学中的一个常见图形,在八年级学习中也有很大的地位。
菱形具有以下特点:四条边相等、对角线相等并且互相平分,内角和为360度。
除此之外,菱形还有很多特性需要深入掌握,下面就来详细介绍八年级菱形的知识点。
1. 菱形的面积菱形面积的计算方法有两种,一种是S=1/2×d1×d2(d1和d2分别是两条对角线),另一种是S=a^2/2(a代表菱形的边长)。
以上两个公式得出的结果是一致的,如何选择运用则取决于问题形式。
2. 菱形的周长计算菱形周长的公式为C=4a(a代表菱形的边长),很容易推出。
3. 菱形的对角线菱形的对角线即两个相互平分的相邻角的线段。
计算菱形两条对角线的长度也有两种方法,第一种是利用勾股定理(其实就是特殊的直角三角形)d1^2=d2^2+a^2,代入另一式d1+d2=2a即可,另一种是使用三角形的正弦定理和余弦定理,但相比较而言使用勾股定理更为简单。
4. 菱形的对角线垂直菱形的对角线互相垂直,也就是说每条对角线的端点就构成了一个直角。
这个性质可以通过利用正方形的定理进行证明,或者使用菱形内部的四个全等直角三角形也可以证明。
5. 菱形内接圆与正方形一样,菱形也可以内切一个圆。
该圆的半径即菱形的半对角线a/2。
它的周长(即菱形的周长)可以使用公式C=2πr=4πa/2=2πa进行计算。
6. 连接菱形中心的中心线由于菱形内部存在四个全等直角三角形,所以将菱形内部的四个角分别连接三角形的重心,可以得到一个正方形。
而菱形中心连接对面的点,所得的线段则是这个正方形的对角线,该线段也被称之为菱形的中心线。
总结以上就是八年级菱形的知识点,需要注意的是,菱形作为一个简单但常见的图形,还有很多相关定理和性质,需要在实际问题运用中逐步掌握。
最后,希望大家能够通过不断的练习和思考来更好地掌握和应用菱形的相关知识。
菱形【知识梳理】1.定义: 有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形: 一组邻边相等)2.性质: (1)边: 四条边都相等;(2)角: 对角相等、邻角互补;(3)对角线: 对角线互相垂直平分且每条对角线平分每组对角;(4)对称性:既是轴对称图形又是中心对称图形.3.菱形的判定方法:一组邻边相等的平行四边形是菱形对角线互相垂直平分的平行四边形是菱形对角线互相垂直平分的四边形是菱形四条边都相等的四边形是菱形4.识别菱形的常用方法(1)先说明四边形ABCD为平行四边形, 再说明平行四边形ABCD的任一组邻边相等.(2)先说明四边形ABCD为平行四边形, 再说明对角线互相垂直.(3)说明四边形ABCD的四条相等.5、面积:设菱形ABCD的一边长为a, 高为h, 则S菱形=ah;若菱形的两对角线的长分别为a,b, 则S菱形=ab【经典题】一、选择题1.(201.广东省珠海市.边长为3 cm的菱形的周长是.. )A.6 cmB.9 cmC.12 cmD.15 cm3.(201.贵州省毕节地区.如图所示, 菱形ABCD 中, 对角线AC.BD 相交于点O, H 为AD 边的中点, 菱形ABCD 的周长为28, 则OH 的长等于. )A.3.5B.4C.7D.14B C(第8题图)4.(201.湖南省长沙市.如图, 已知菱形ABCD 的边长等于2, ∠DAB=60°,则对角线BD 的长....)A. 1B.C. 2D. 25.(201.江苏省徐州市.若顺次连接四边形的各边中点所得的四边形是菱形, 则该四边形一定是矩形 B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形6.(201.山东省枣庄市.如图, 菱形ABCD的边长为4, 过点A.C作对角线AC的垂线, 分别交CB和AD的延长线于点E, F,AE=3, 则四边形AECF的周长为.. )A. 22B. 18C. 14D. 117.(201.浙江省宁波市.菱形的两条对角线长分别是6和8, 则此菱形的边长...... .. )A.1.......B........C.......D.58.(201.黑龙江省农垦牡丹江管理局.如图, 在菱形ABCD中, E是AB边上一点, 且∠A=∠EDF=60°, 有下列结论: ①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF, 其中结论正确的个数是()A. 3B. 4C. 1D. 29.(201.上海市.如图, 已知AC.BD是菱形ABCD的对角线, 那么下列结论一定正确的是.. ).(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的周长相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.10.(201.浙江省台州市.如图, 菱形ABCD的对角线AC=4cm, 把它沿着对角线AC方向平移1cm得到菱形EFGH, 则图中阴影部分图形的面积与四边形EMCN的面积之比为()A.4:3 B.3:2 C.14: 9 D.17: 9二、填空题11.(201.吉林省长春市.如图, 在边长为3的菱形ABCD中, 点E在边CD上, 点F为BE延长线与AD延长线的交点. 若DE=1, 则DF的长为.. .12.(201.福建省莆田市.如图, 菱形ABCD的边长为4, ∠BAD=120°, 点E是AB的中点, 点F是AC上的一动点, 则EF+BF的最小值是2 .13.(201.甘肃省陇南市.如图, 四边形ABCD是菱形, O是两条对角线的交点, 过O点的三条直线将菱形分成阴影和空白部分. 当菱形的两条对角线的长分别为6和8时, 则阴影部分的面积为12.14.(201.甘肃省兰州市.如果菱形的两条对角线的长为a 和b, 且a, b 满足(a ﹣1)2+=0, 那么菱形的面积等于 _________ .15.(201.湖北省十堰市.如图, 在△ABC 中, 点D 是BC 的中点, 点E 、F 分别在线段AD 及其延长线上, 且DE=DF, 给出下列条件: ①BE ⊥EC ;②BF ∥CE ;③AB=AC ;从中选择一个条件使四边形BECF 是菱形, 你认为这个条件.... (只填写序号)DAB C F E16.(201.江苏省宿迁市.如图, 在平面直角坐标系xOy 中, 若菱形ABCD 的顶点A, B 的坐标分别为(-3, 0), (2,0), 点D 在y 轴上, 则点C 的坐标......17.(201.辽宁省大连市.如图, 菱形ABCD 中, AC.BD 相交于点O, 若∠BCO=55°, 则∠ADO=. .18.(201.四川省宜宾市.菱形的周长为20cm, 两个相邻的内角的度数之比为l ∶2, 则较长的对角线长度是cm.19.(201.四川省凉山州.顺次连接矩形四边中点所形成的四边形... , 学校的一块菱形花圃两对角线的长分别是6m 和8m, 则这个花圃的面积......20.(201.四川省泸州市.一个平行四边形的一条边长为3, 两条对角线的长分别为4和, 则它的面积...... .21.(201.福建省漳州市.若菱形的周长为20cm, 则它的边长是 cm .22.(201.重庆市A 卷.如图, 菱形ABCD 中, ∠A=60°, BD=7, 则菱形ABCD 的周长为________.CAB23.(201.辽宁省锦州市.菱形ABCD 的边长为2, ,E 是AD 边中点, 点P 是对角线BD 上的动点, 当AP+PE 的值最小时, PC 的长是__________.24.(201.山东省淄博市.已知□ABCD, 对角线AC, BD 相交于点O, 请你添加一个适当的条件, 使□ABCD 成为一个菱形. 你添加的条件........三、证明题25.(201.福建省厦门市.如图6, 在四边形ABCD.., AD ∥BC, AM ⊥BC, 垂足为M, AN ⊥DC, 垂足为N. 若∠BAD =∠BCD, AM =AN, 求证四边形ABCD 是菱形.B D(第15题图)图626.(201.贵州省贵阳市.如图, 在Rt △ABC 中, ∠ACB=90°, D.E 分别为AB, AC 边上的中点, 连接DE, 将△ADE 绕点E 旋转180°得到△CFE, 连接AF, CD.(1)求证: 四边形ADCF 是菱形;(5分)(2)若BC =8, AC =6, 求四边形ABCF 的周长.(5分)27.(201.江苏省淮安市.如图, 在三角形ABC 中, AD 平分∠BAC, 将△ABC 折叠, 使点A 与点D 重合, 展开后折痕分别交AB.AC 于点E 、F, 连接DE 、DF.求证: 四边形AEDF 是菱形.28.(201.四川省乐山市.如图, 在△ABC 中, AB=AC, 四边形ADEF 是菱形, 求证: BE=CE.29.(201.湖南省张家界市.如图, 在四边形ABCD 中, AB =AD, CB =CD, AC 与BD 相交于O 点, OC=OA, 若E 是CD 上任意一点, 连结BE 交AC 于点F, 连结DF.(1)证明: △CBF ≌△CDF ;(2)若AC=2, BD=2,求四边形ABCD 的周长;(3)请你添加一个条件, 使得∠EFD =∠BAD, 并予以证明.第18题图 E D C A四、猜想、探究题30.(201.四川省攀枝花市.如图, 两个连接在一起的菱形的边长都是1cm, 一只电子甲虫, 从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行, 当电子甲虫爬行2014cm时停下, 则它停的位置是()A.点F B.点E C.点A D.点C。
第1讲 菱形的性质与判定1. 理解菱形的概念;2. 探索并证明菱形的性质定理和判定定理,并能运用它们进行证明和计算;3. 通过经历菱形的性质定理和判定定理的探索过程,丰富学生的数学活动经验和体验,进一步培养和发展学生的合情推理能力;4. 通过菱形的性质定理和判定定理以及相关问题的证明和计算,进一步培养和发展学生的演绎推理能力。
知识点 1:菱形的性质菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:(1)具有平行四边形的性质(2)且四条边都相等(3)两条对角线互相垂直平分,每一条对角线平分一组对角。
注意:菱形是轴对称图形,每条对角线所在的直线都是对称轴。
知识点2:菱形的面积菱形的面积等于两条对角线长的乘积的一半BD AC BD AC S S AOB Rt ABCD •=••⨯==∆2121212144菱形知识点3:菱形的判定※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
【题型1菱形的概念和性质】【典例1】如图,在菱形ABCD中,对角线AC,BD相交于点O,已知AC=10cm,BD=24cm,则△ABD的周长为()A.30cm B.36cm C.50cm D.52cm【变式1-1】如图,在菱形ABCD中,∠ABD=30°,则∠A的度数为()A.150°B.140°C.130°D.120°【变式1-2】在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定正确的是()A.AB=AD B.AC⊥BD C.∠DAC=∠BAC D.AC=BD 【变式1-3】如图,菱形ABCO中的顶点O,A的坐标分别为(0,0),,点C在x轴的正半轴上,则点B的坐标为()A.B.C.D.【典例2】(2022秋•绥化期末)下列不属于菱形性质的是()A.四条边都相等B.两条对角线相等C.两条对角线互相垂直D.每一条对角线平分一组对角【变式2-1】(2022秋•舞钢市期中)下列说法不正确的是()A.菱形的四条边都相等B.菱形的对角线相等C.菱形是轴对称图形D.菱形的对角线互相垂直【变式2-2】(2022春•兰陵县期末)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是()A.25°B.30°C.35°D.40°【变式2-3】(2022•赫章县模拟)如图,在平面直角坐标系中,四边形ABCD 为菱形,A,B两点的坐标分别是(4,0),(0,3),点C,D在坐标轴上,则菱形ABCD的周长等于()A.16B.20C.24D.26【典例3-1】(2021秋•榆林期末)如图,在菱形ABCD中,若AB=5,AC=8,则菱形ABCD的面积为()A.24B.20C.16D.12【典例3-2】(2022•文山州模拟)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=6,DB=8,则点A到BC的距离为()A.B.6C.8D.(2021秋•深圳期末)已知菱形的两条对角线的长分别为6cm和8cm,【变式3-1】则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm2【变式3-2】(2021秋•毕节市期末)如图,在菱形ABCD中,对角线AC与BD 相交于点O,且AC=6,DB=8,AE⊥BC于点E,则AE=()A.6B.8C.D.【题型2:菱形的判定】【典例4】依据所标识的数据,下列平行四边形一定为菱形的是()A.B.C.D.【变式4-1】在下列条件中,能够判定▱ABCD为菱形的是()A.AB=AC B.AC⊥BD C.AC⊥BC D.AC=BD【变式4-2】如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.∠ABC=90°D.AO=BO【变式4-3】要检验一张四边形的纸片是否为菱形,下列方案中可行的是()A.度量四个内角是否相等B.测量两条对角线是否相等C.测量两条对角线的交点到四个顶点的距离是否相等D.将这纸片分别沿两条对角线对折,看对角线两侧的部分是否每次都完全重合【典例5】(2022春•苍溪县期末)如图,在△AFC中,∠F AC=90°,B、E分别是FC、AB的中点,过点A作AD∥FC交FE的延长线于点D.(1)求证:BF=AD;(2)求证:四边形ABCD是菱形.【变式5-1】(2022秋•章丘区校级月考)已知:如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点F,E是AC的中点,过点A作AD∥BC,交FE的延长线于点D.(1)求证:四边形AFCD是平行四边形;(2)给△ABC添加一个条件,使得四边形AFCD是菱形.请证明你的结论.【变式5-2】(2022•天宁区校级一模)如图,在四边形ABCD中,AC与BD相交于点O.且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:△AOE≌△COD;(2)若AB=BC,求证:四边形AECD是菱形.【题型3:菱形的性质与判定综合】【典例6】(2022•冷水滩区校级开学)如图,在△ABC中,∠BAC=90°,线段AC的垂直平分线交AC于点D,交BC于点E,过点A作BC的平行线交ED于点F,连接AE,AF.(1)求证:四边形AECF是菱形;(2)若AB=10,∠ACB=30°,求菱形AECF的面积.【变式6-1】(2022秋•龙岗区期末)如图,在四边形ABCD中,AB∥CD,AD ∥BC,AC平分∠DAB,连接BD交AC于点O,过点C作CE⊥AB交AB延长线于点E.(1)求证:四边形ABCD为菱形;(2)若OA=4,OB=3,求CE的长.【变式6-2】(2022•新市区校级一模)如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若,∠F AC=30°,∠B=45°,求AB的长.【变式6-3】(2022春•张家港市校级月考)如图,▱ABCD对角线AC,BD相交于点O,过点D作DE∥AC且DE=OC,连接CE,OE,OE=CD.(1)求证:▱ABCD是菱形;(2)若AB=4,∠ABC=60°,求AE的长.1.(2022•河南)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E 为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.48 2.(2022•湘西州)如图,菱形ABCD的对角线AC、BD相交于点O,过点D 作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为32,则CD的长为()A.4B.4C.8D.8 3.(2022•淄博)如图,在边长为4的菱形ABCD中,E为AD边的中点,连接CE交对角线BD于点F.若∠DEF=∠DFE,则这个菱形的面积为()A.16B.6C.12D.30 4.(2022•甘肃)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB =2cm,AC=4cm,则BD的长为cm.5.(2022•北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.6.(2022•岳阳)如图,点E,F分别在▱ABCD的边AB,BC上,AE=CF,连接DE,DF.请从以下三个条件:①∠1=∠2;②DE=DF;③∠3=∠4中,选择一个合适的作为已知条件,使▱ABCD为菱形.(1)你添加的条件是(填序号);(2)添加了条件后,请证明▱ABCD为菱形.7.(2022•大连)如图,四边形ABCD是菱形,点E,F分别在AB,AD上,AE =AF.求证:CE=CF.8.(2022•广元)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.9.(2022•凉山州)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD 的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40.求AC的长.1.(2022•齐齐哈尔)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是.(只需写出一个条件即可)2.(2021春•龙马潭区期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是AB的中点,连结EO.若EO=2,则CD的长为()A.2B.3C.4D.5 3.(2022秋•丰城市校级期末)如图,菱形ABCD中对角线相交于点O,AB=AC,则∠ADB的度数是()A.30°B.40°C.50°D.60°4.(2022秋•南海区期中)如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的周长是()A.14cm B.16cm C.18cm D.20cm 5.(2021秋•建平县期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=2,则菱形ABCD的周长为()A.6B.8C.12D.16 6.(2022秋•碑林区校级期中)如图,已知菱形的两条对角线AC与BD长分别是12和16,则这个菱形的面积是()A.192B.48C.96D.40 7.(2022秋•三明期中)如图,在菱形ABCD中,AC交BD于点O,DE⊥BC 于点E,连接OE,若∠BCD=50°,则∠OED的度数是()A.25°B.30°C.35°D.20°9.(2022秋•浑南区期中)在下列条件中,能够判定四边形是菱形的是()A.两条对角线相等B.两条对角线互相垂直平分C.两条对角线互相垂直D.两条对角线相等且互相垂直10.(2022秋•二七区校级月考)如图▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形11.(2022春•铁西区期末)已知:如图,在Rt△ABC中,∠ACB=90°,∠BAC =60°,BC的垂直平分线分别交BC和AB于点D和点E,点F在DE的延长线上,且AF=CE.(1)∠BCE的度数为°.(2)求证:四边形ACEF是菱形.12.(2022春•长乐区期中)如图,▱ABCD的对角线AC,BD相交于点O,且AB=13,AO=12,BO=5.求证:▱ABCD是菱形.13.(2022秋•海淀区期中)如图,在△ABC中,∠ABC=90°,BD为△ABC的中线.BE∥DC,BE=DC,连接CE.(1)求证:四边形BDCE为菱形;(2)连接DE,若∠ACB=60°,BC=4,求DE的长.。
菱形的性质及知识点归纳1500字菱形是一种特殊的四边形,具有一些独特的性质和特点。
下面是关于菱形的性质及相关知识点的归纳。
1. 边长性质:菱形的四条边边长相等。
2. 角度性质:菱形的内角都是直角,即90度。
3. 对角线性质:菱形的两条对角线相等且互相垂直。
4. 对称性质:菱形具有对称性,可以通过对角线进行对称。
5. 直角菱形:若菱形的一对对角线垂直,那么该菱形就是直角菱形。
6. 正菱形:若菱形的四个内角均为直角,则该菱形称为正菱形。
7. 等边菱形:菱形的四条边均相等,则称之为等边菱形。
8. 面积性质:菱形的面积可以通过对角线的乘积除以2来计算。
设菱形的对角线长为d1和d2,则菱形的面积S = (d1 × d2) / 2。
9. 周长性质:菱形的周长可以通过边长的四倍来计算。
设菱形的边长为a,则菱形的周长L = 4a。
10. 利用菱形的角平分线性质:菱形的角平分线上的长度都相等,并且菱形的左右两对角线划分出的小菱形相似,并且边长与菱形相比为1/2。
11. 利用菱形的内切圆性质:菱形的四条边都切内切圆的话,内切圆的直径等于菱形的对角线长度。
12. 利用菱形的封闭性质:菱形的内部由四个直角三角形组成。
可以通过计算这四个直角三角形的面积来计算菱形的面积。
13. 特殊菱形性质:如果一个四边形的对角线相等并且互相垂直,那么它就是一个菱形。
14. 利用菱形的边长性质:如果一个四边形的四条边相等,那么它就是一个菱形。
15. 利用菱形的角度性质:如果一个四边形的四个内角都是直角,那么它就是一个菱形。
16. 利用菱形的对称性质:如果一个四边形可以通过对角线进行对称,那么它就是一个菱形。
菱形是几何学中的一个重要概念,具有许多重要的性质和应用。
在解决几何问题和计算菱形的面积和周长时,以上这些性质和知识点都非常有用。
菱形(提高)
【学习目标】
1. 理解菱形的概念.
2. 掌握菱形的性质定理及判定定理.
【要点梳理】
要点一、菱形的定义
有一组邻边相等的平行四边形叫做菱形.
要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.
要点二、菱形的性质
菱形除了具有平行四边形的一切性质外,还有一些特殊性质:
1.菱形的四条边都相等;
2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称
中心.
要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.
(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;
另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).
实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘
积的一半.
(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.
要点三、菱形的判定
菱形的判定方法有三种:
1.定义:有一组邻边相等的平行四边形是菱形.
2.对角线互相垂直的平行四边形是菱形.
3.四条边相等的四边形是菱形.
要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.
【典型例题】
类型一、菱形的性质
1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数.
【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.
【答案与解析】
解:连接AC.
∵四边形ABCD是菱形,
∴ AB=BC,∠ACB=∠ACF.
又∵∠B=60°,
∴△ABC是等边三角形.
∴∠BAC=∠ACB=60°,AB=AC.
∴∠ACF=∠B=60°.
又∵∠EAF=∠BAC=60°
∴∠BAE=∠CAF.
∴△ABE≌△ACF.
∴ AE=AF.
∴△AEF为等边三角形.
∴∠AEF=60°.
又∵∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,
∴∠CEF=18°.
【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.
2、(优质试题•龙岩)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()
A.1 B.2 C.3 D.4
【思路点拨】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.
【答案】C.
【解析】
解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时
EP+FP=EP+F′P=EF′.
∵四边形ABCD为菱形,周长为12,
∴AB=BC=CD=DA=3,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四边形AEF′D是平行四边形,
∴EF′=AD=3.
∴EP+FP的最小值为3.
故选:C.
【总结升华】本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.
举一反三:
【变式】(优质试题春•潍坊期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB的中点,如果EO=2,求四边形ABCD的周长.
【答案】
解:∵四边形ABCD为菱形,
∴BO=DO,即O为BD的中点,
又∵E是AB的中点,
∴EO是△ABD的中位线,
∴AD=2EO=2×2=4,
∴菱形ABCD的周长=4AD=4×4=16.
类型二、菱形的判定
3、(优质试题春•郑州校级月考)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s 的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;
(2)当t为多少时,四边形ACFE是菱形.
【思路点拨】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;
(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【答案与解析】
(1)证明:∵AG∥BC,
∴∠EAD=∠DCF,∠AED=∠DFC,
∵D为AC的中点,
∴AD=CD,
在△ADE和△CDF中,
,
∴△ADE≌△CDF(AAS);
(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,
则此时的时间t=6÷1=6(s).
故答案为:6s.
【总结升华】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键.
举一反三:
【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.
⑴求四边形AQMP的周长;
⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.
【答案】
解:(1)∵MQ∥AP,MP∥AQ,
∴四边形AQMP是平行四边形
∴QM=AP
又∵AB=AC,MP∥AQ,
∴∠2=∠C,△PMC是等腰三角形,PM=PC
∴QM+PM=AP+PC=AC=a
∴四边形AQMP的周长为2a
(2)M位于BC的中点时,四边形AQMP为菱形.
∵M位于BC的中点时,易证△QBM与△PCM全等,
∴QM=PM,
∴四边形AQMP为菱形
类型三、菱形的综合应用
4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别
交BC、CD于E、F.
(1)当点E、F分别在边BC、CD上时,求CE+CF的值.
(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.
【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°,所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.
【答案与解析】
解:(1)连接AC.
在菱形ABCD中,BC=AB=4,AB∥CD.
∵∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.
∴∠ACF=60°,即∠ACF=∠B.
∵∠EAF=60°,∠BAC=60°,
∴∠BAE=∠CAF.
∴△ABE≌△ACF(ASA),
∴ BE=CF.
∴ CE+CF=CE+BE=BC=4.
(2)CE-CF=4.连接AC如图所示.
∵∠BAC=∠EAF=60°,
∴∠EAB=∠FAC.
∵∠ABC=∠ACD=60°,
∴∠ABE=∠ACF=120°.
∵ AB=AC,
∴△ABE≌△ACF(ASA),
∴ BE=CF.
∴ CE-CF=CE-BE=BC=4.
【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系.。