如何求非齐次线性方程组Ax=b的通解
- 格式:doc
- 大小:23.50 KB
- 文档页数:1
如何求非齐次线性方程组Axb的通解
如何求非齐次线性方程组A x=b的通解
解答:由非齐次线性方程组的解的结构知识,只要求出它的一个解和对应的齐次线性方程组的基础解系,其具体步骤如下:
(1)用初等行变换将增广矩阵化为行最简形矩阵;
(2)写出同解方程组(用自由未知量表示所有未知量的形式);
(3)读出右端常数项(即自由未知量全部取零),则求出Ax=b的一个解;
(4)读出自由未知量的系数(相当于一个自由未知量取1,其余自由未知量取0),则求出Ax=0的基础解系;
(5)写出所求通解.。
如何求非齐次线性方程组
A b的通解
The following text is amended on 12 November 2020.
如何求非齐次线性方程组Ax=b的通解
解答:由非齐次线性方程组的解的结构知识,只要求出它的一个解和对应的齐次线性方程组的基础解系,其具体步骤如下:
(1)用初等行变换将增广矩阵化为行最简形矩阵;
(2)写出同解方程组(用自由未知量表示所有未知量的形式);
(3)读出右端常数项(即自由未知量全部取零),则求出Ax=b的一个解;
(4)读出自由未知量的系数(相当于一个自由未知量取1,其余自由未知量取0),则求出Ax=0的基础解系;
(5)写出所求通解.。
文献综述信息与计算科学关于非齐次线性方程组Ax=b两类解法的对比矩阵理论既是学习经典数学的基础,又是一门最有实用价值的数学理论。
它不仅是数学的一个重要的分支,而且业已成为现代各科技领域处理大量有限维空间形式与数量关系的强有力的工具。
特别是计算机的广泛应用,为矩阵论的应用开辟了广阔的前景。
广义逆矩阵是对逆矩阵的推广。
若A为非奇异矩阵,则线性方程组Ax=b的解为x=A^(-1)b,其中A的A的逆矩阵A^(-1)满足A^(-1)A=AA^(-1)=I(I为单位矩阵)。
若A 是奇异阵或长方阵,Ax=b可能无解或有很多解。
若有解,则解为x=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A^g、A^-或A^(1)等符号表示,有时简称广义逆。
线性方程组的逆矩阵解法一般只适用于一种特殊情况,即适用于系数矩阵为方阵的时候,用于一般的线性方程组,可以应用矩阵的广义逆来研究并表示它的解而且与其它解法相比解的讨论更完整,表达形式更简洁系统本文探讨了线性方程组的广义逆矩阵解法。
对一般的线性方程组,可以应用矩阵的广义逆来研究并表示它的解而且与其它解法相比解的讨论更完整,表达形式更简洁系统。
本文通过运用相关定理,进行线性方程组的广义逆矩阵解法和初等矩阵法的对比。
这对于我们理解相关广义逆矩阵的应用会有帮助。
白素英(2010)在《关于非齐次线性方程组 A x=b两类解法的对比》一文中给出相容的非齐次线性方程组的两种不同的解法,即矩阵的初等变换法及广义逆矩阵法,并证明了两种方法通解的等价性,通过实例给出了惟一的极小范数解。
对于不相客的非齐次线性方程组,用广义逆矩阵法由实例给出了惟一的极小范数最小二乘解。
侯双根(1992)在《广义分块对角矩阵的广义逆矩阵》一文中对广义分块对角矩阵的广义逆矩阵给出了一个运算规则,并且利用它可以简化求广义分块对角矩阵的广义逆矩阵。
已知是非齐次线性方程组ax=b的两个不同的
解
非齐次线性方程组ax = b,是最常见的线性方程组。
它是由数个方程同时组成的一个线性方程组,其本质是求多个未知量的值来满足指定的方程组。
因此,它可能有两个或多个不同的解,每一个解都可以使当前的线性方程组能够达到解的目的。
非齐次线性方程组的两个不同的解有多种特色。
首先,它们对于原始方程组选择的未知量来说是不同的,这样线性十分方程组就可以满足解的要求。
其次,两个不同的解肯定会改变原始方程组各未知量的取值范围,这是因为两个不同的解值都会影响未知量的取值范围。
此外,两个不同的解也会影响原始方程的正确性,这是因为两个不同的解对同一个方程可能具有不同的正确性。
为了解决非齐次线性方程组ax = b的两个不同的解,可以采用一些数学工具,如求解补充问题。
在求解补充问题时,可以把原始
线性方程组补充成完全齐次线性方程组,从而追求令整个方程组
都具有唯一解。
由于补充问题求解后,原始方程组会取得唯一解,因此两个不同的解就会消失,从而获得正确结果。
总之,非齐次线性方程组ax = b可能有两个或多个不同的解
但也有一些求解方式可以获得唯一解,如补充问题。
因此,要想
得到正确的结果,就应该充分利用数学工具,把非齐次线性方程
组解决得更好。
习题四 (A 类)1. 用消元法解下列方程组.(1) 12341241234123442362242322312338;x x x x ,x x x ,x x x x ,x x x x +-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩ (2) 1231231232222524246;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b 32434243324142360129200426100112614236142360129201292,001126001126004261007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩(2)解②①×2得23③① 得 2x 3=4 得同解方程组由⑥得 3=2,由⑤得 x 2=2x 3=4,由④得 x 1=22x 3 2x 2 = 10,得 (x 1,x 2,x 3)T =(10,4,2)T. 2. 求下列齐次线性方程组的基础解系.(1) 123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2) 12341234123412345 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩(3) 1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4) 123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩【解】(1)123123123320503580.x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 32213123132132132151021021358042000r r r r r r +--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A得同解方程组1323123232333723,23201,202,x x x x x x x x x x x x x ⎧=--=-⎪++=⎪⎧⇒⎨⎨=-=⎩⎪⎪=⎩得基础解系为T71122⎛⎫- ⎪⎝⎭. (2) 系数矩阵为32213142413211511151112302743181027413970414811510274() 2.00000000r r r r r r r r r r r ---------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦A A∴ 其基础解系含有4()2R -=A 个解向量.1342123434342343344331225077222227400110x x x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+-=-⎧⎢⎥⎢⎥⎢⎥-⎢⎥⇒==+⎨⎢⎥⎢⎥⎢⎥-+=⎢⎥⎩⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦基础解系为31272,.20110⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦(3)213132232112271122723450010114356800202211122701011400007r r r r r r ---⎡⎤⎡⎤⎢⎥⎢⎥=−−−→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎢⎥−−−→-⎢⎥⎢⎥⎣⎦A得同解方程组12345245552270,140,700.x x x x x x x x x x ++++=⎧⎪+-=⎨⎪=⇒=⎩取3410,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得基础解系为 (2,0,1,0,0)T,(1,1,0,1,0).(4) 方程的系数矩阵为2131322312221122211213200111247110033312221()2,0011100000r r r r r r R --+----⎡⎤⎡⎤⎢⎥⎢⎥=−−−→---⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦--⎡⎤⎢⎥−−−→=-⎢⎥⎢⎥⎣⎦A A∴ 基础解系所含解向量为n R (A )=52=3个取245x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦为自由未知量 245010,,,001100x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 得基础解系 324010,,.101001100--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3. 解下列非齐次线性方程组.(1) 123123121232122423442;x x x ,x x x ,x x ,x x x ++=⎧⎪-+=⎪⎨-=⎪⎪++=⎩ (2) 12341234123421422221;x x x x ,x x x x ,x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩(3) 123412341234212125;x x x x ,x x x x ,x x x x -++=⎧⎪-+-=-⎨⎪-++=⎩ (4) 12345123452345123457323222623543312x x x x x ,x x x x x ,x x x x ,x x x x x .++++=⎧⎪+++-=-⎪⎨+++=⎪⎪+++-=⎩【解】(1) 方程组的增广矩阵为32213142414324121121112121240322()120303224142034211211121032203220000001200240000r r r r r r r r r r r r ------↔⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥---⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥−−−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦A b得同解方程组3123323231232,21223222,3212 1.x x x x x x x x x x x x =⎧++=⎧⎪+⎪⎪--=⇒==-⎨⎨-⎪⎪=⎩⎪=--=-⎩ (2) 方程组的增广矩阵为312122*********()42212000102111100020r r r r ----⎡⎤⎡⎤⎢⎥⎢⎥=−−−→--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦A b得同解方程组123444421,00,20,x x x x x x x +-+=⎧⎪⇒=-=⎨⎪-=⎩即123421,0.x x x x +-=⎧⎨=⎩令130x x ==得非齐次线性方程组的特解x T =(0,1,0,0)T .又分别取2310,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得其导出组的基础解系为TT1211;,,1,0,0,0,1,022⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ξξ∴ 方程组的解为121211022110.,001000x k k k k ⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦R(3) 2131121111211112111000221211500004r r r r ----⎡⎤⎡⎤⎢⎥⎢⎥---−−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦()()R R ≠A A ∴ 方程组无解.(4) 方程组的增广矩阵为31413242351111171111173211320122623()01226230122623543311201226231111170122623,000000000000r r r r r r r r --+-⎡⎤⎡⎤⎢⎥⎢⎥-------⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎡⎤⎢⎥-----⎢⎥−−−→⎢⎥⎢⎥⎣⎦A b分别令345010,,001100x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 得其导出组12345234502260x x x x x x x x x ++++=⎧⎨----=⎩的解为123123511622,,.010001100k k k k k k R ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦令3450x x x ===,得非齐次线性方程组的特解为:x T=(16,23,0,0,0)T,∴ 方程组的解为1231651123622001000010100x k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦其中123,,k k k 为任意常数.4. 某工厂有三个车间,各车间相互提供产品(或劳务),今年各车间出厂产量及对其它车间三车间0.1万元,0.2万元,0.5万元的产品;第二列,第三列类同,求今年各车间的总产量.解:根据表中数据列方程组有112321233130.10.20.4522,0.20.20.30,0.50.1255.6,x x x x x x x x x x x ---=⎧⎪---=⎨⎪--=⎩即 123123130.90.20.4522,0.20.80.30,0.50.8855.6,x x x x x x x x --=⎧⎪-+=⎨⎪-=-⎩解之 123100,70,120;x x x =⎧⎪=⎨⎪=⎩5. λ取何值时,方程组12312321231,,,x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩ (1)有惟一解,(2)无解,(3)有无穷多解,并求解.【解】方程组的系数矩阵和增广矩阵为211111;,11111111λλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A B|A |=2(1)(2)λλ-+.(1) 当λ≠1且λ≠2时,|A |≠0,R (A )=R (B )=3.∴ 方程组有惟一解212311(1),,.22(2)x x x λλλλλ--+===+++(2) 当λ=2时,312121221111212121221111124112412121212,0333033303360003r r r r r r -↔+---⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎢⎥⎢⎥→----⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦BR (A )≠R (B ),∴ 方程组无解.(3) 当λ=1时2131111111111111000011110000r r r r B --⎡⎤⎡⎤⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦R (A )=R (B )<3,方程组有无穷解.得同解方程组123223 3.1,,x x x x x x x =--+⎧⎪=⎨⎪=⎩∴ 得通解为1212123111, ,.100010x x k k k k R x --⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦6. 齐次方程组0020x y z ,x y z ,x y z λλ++=⎧⎪+-=⎨⎪-+=⎩当λ取何值时,才可能有非零解?并求解. 【解】方程组的系数矩阵为1111211λλ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A|A |=(4)(1)λλ-+当|A |=0即λ=4或λ=1时,方程组有非零解.(i) 当λ=4时,21213123234215134111411411414110155211211093141141031031031000r r r r r r r r r r ↔--⋅-⋅--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A得同解方程组112322331340.13031x x x x x k k R x x x ⎡⎤-⎢⎥⎡⎤+-=⎢⎥⎡⎤⎢⎥⇒=∈⎢⎥⎢⎥⎢⎥-+=⎣⎦⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦(ii) 当λ=1时,2121312111111111111111000211211013r r r r r r ↔+------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦A得131232323332,03,30x x x x x x x x x x x=-⎧--=⎧⎪⇒=-⎨⎨+=⎩⎪=⎩ ∴ (123,,x x x )T=k ·(2,3,1)T.k ∈R7. 当a ,b 取何值时,下列线性方程组无解,有惟一解或无穷多解?在有解时,求出其解.(1) 123412341234123423123132236x x x x x x x x x x x x a x x x bx ++-=⎧⎪+++=⎪⎨---=⎪⎪+-+=-⎩ (2) 123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨----=⎪⎪+++=-⎩【解】方程组的增广矩阵为(1)213132414237212311123111123101140()311207101323160172812311123110114001140003273003273006280r r r r r r r r r r a a b b a a b b -------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥------⎢⎥⎢⎥----+-⎣⎦⎣⎦--⎡⎤⎢⎥----⎢⎥−−→⎢⎥------⎢⎥---+⎣⎦A b .5222a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦(i) 当b ≠52时,方程组有惟一解12344(1)326(1),,352352318(1)2(1),.35252a a a a x x b b a a a x x b b +-+=-=-++-++=-+=-++(ii) 当b =52,a ≠1时,方程组无解.(iii) 当b =52,a =1时,方程组有无穷解. 得同解方程组123423434231403274x x x x x x x x x ++-=⎧⎪--+=⎨⎪--=-⎩(*) 其导出组123423434230403270x x x x x x x x x ++-=⎧⎪--+=⎨⎪--=⎩的解为1412423434442,21313.9,91.x x x x x x k k x x x x x x =⎧⎡⎤⎡⎤⎪⎢⎥⎢⎥=⎪⎢⎥⎢⎥=∈⎨⎢⎥⎢⎥=--⎪⎢⎥⎢⎥⎪=⎣⎦⎣⎦⎩R 非齐次线性方程组(*)的特解为取x 4=1, 12345335.32331x x x x ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦∴ 原方程组的解为5323513.3923131x k k ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+∈⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦R(2)32414231111001221()01(3)23211111100122100101012311111001221.0010100010r r r r r r a b a a b a a b a +-+⎡⎤⎢⎥⎢⎥=−−−→⎢⎥---⎢⎥-⎣⎦⎡⎤⎢⎥⎢⎥−−−→⎢⎥-+⎢⎥----⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥-⎣⎦A b (i) 当a 1≠0时,R (A )=R (A )=4,方程组有惟一解.12342123.1110b a a x a b x a x b x a -+⎡⎤⎢⎥-⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥+⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦(ii) 当a 1=0时,b ≠1时,方程组R (A )=2<R (A )=3,∴ 此时方程组无解.(iii) 当a =1,b = 1时,方程组有无穷解. 得同解方程组12342340,22 1.x x x x x x x +++=⎧⎨++=⎩ 取13423433441,221,,,x x x x x x x x x x =+-⎧⎪=--+⎪⎨=⎪⎪=⎩∴ 得方程组的解为12121234111221.,100010x x k k k k x x -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦R8. 设112224336⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,求一秩为2的3阶方阵B 使AB =0.【解】设B =(b 1 b 2 b 3),其中b i (i =1,2,3)为列向量,由123123()(1,2,3)i i =⇒=⇒==⇒AB A b b b Ab b b b 00为Ax =0的解.求123112224336x x x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=0的解.由 213123112112224000336000r r r r --⎡⎤⎡⎤⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A得同解方程组12322332,,,x x x x x x x =--⎧⎪=⎨⎪=⎩∴ 其解为121212312.,1001x x k k k k R x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦取123120;;,100010--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦b b b则120100010--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B9.已知123,,ηηη是三元非齐次线性方程组Ax =b 的解,且R (A )=1及122313111,,,011001⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=+=+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ηηηηηη求方程组Ax =b 的通解.【解】Ax =b 为三元非齐次线性方程组R (A )=1⇒Ax =0的基础解系中含有3R (A )=31=2个解向量.131223121323110()(),01100110()(),110101-⎡⎤⎡⎤⎢⎥⎢⎥-=+-+==--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥-=+-+==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ηηηηηηηηηηηη由123,,ηηη为Ax=b 的解1312,⇒--ηηηη为Ax=0的解,且1312(),()--ηηηη线性无关1312,⇒--ηηηη为Ax =0的基础解系. 又[]11223131()()()211112111,011022200112ηηηηηηη=+-+++⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦∴ 方程组Ax=b 的解为11132121212()()1002.,0101012k k k k k k =+-+-⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++∈-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦x ηηηηηR10. 求出一个齐次线性方程组,使它的基础解系由下列向量组成.(1) 1223==;1001,-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξξ(2) 123121232==,=021352132,.⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ξξξ【解】(1) 1223==1001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξξ设齐次线性方程组为Ax =0由12,ξξ为Ax =0的基础解系,可知11121222133223231001x x k k k k x x k x x k -+-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+=⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦x令 k 1=x 2 , k 2=x 3⇒Ax =0即为x 1+2x 23x 3=0.(2) A (123ξξξ)=0⇒A 的行向量为方程组为12345121232()0021352132x x x x x ⎡⎤⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥---⎣⎦的解. 即124512345123452302325302220x x x x x x x x x x x x x x -+-=⎧⎪-++-=⎨⎪-++-=⎩的解为 31212120311203123253012111212200111r r r r ------⎡⎤⎡⎤⎢⎥⎢⎥−−−→----⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦得基础解系为1η=( 5 1 1 1 0)T2η=( 1 1 1 0 1)TA =5111011101--⎡⎤⎢⎥--⎣⎦方程为1234123550,0.x x x x x x x x --++=⎧⎨--++=⎩ 11. 证明:线性方程组121232343454515x x a x x a x x a x x ax x a -=⎧⎪-=⎪⎪-=⎨⎪-=⎪-=⎪⎩有解的充要条件是510i i a ==∑.【解】215212345123415123412511000011000011000011100011100001100001100001101011100001100001100001100101r r r r a a a a a a a a a a a a a a a a a a ++-⎡⎤⎢⎥-⎢⎥⎢⎥=-−−−→⎢⎥-⎢⎥⎢⎥-⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥-−−−→⎢⎥-⎢⎥⎢⎥-+⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥-−−→⎢⎥-⎢⎥⎢⎥-++⎣⎦A 1234511100011000011000011001i i a a a a a =-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦∑ 方程组有解的充要条件,即R (A )=4=R (A )510i i a =⇔=∑得证.12. 设*η是非齐次线性方程组Ax=b 的一个解,12n r ,,,-ξξξ 是对应的齐次线性方程组的一个基础解系.证明(1)1*n r ,,-,ξξ η线性无关;(2)1++***n r ,,-,ξξ ηηη线性无关. 【 证明】(1) 1*n r ,,-,ξξ η线性无关⇔110*n r n r k k k --+++=ξξ η成立,当且仅当k i =0(i =1,2,…,n r ),k =01111()00*n r n r *n r n r k k k k k k ηη----+++=⇒+++=A ξξA A ξA ξ∵12n r ,,,-ξξξ 为Ax =0的基础解系0(1,2,,)i i n r ξ⇒==-A*0k ⇒=A η由于*0b =≠A η00.k b k ⇒⋅=⇒=.由于12n r ,,,-ξξξ 为线性无关112200(1,2,,)n r n r i k k k k i n r --+⋅++⋅=⇔==-ξξξ∴121*n ,,,-,ξξξ η线性无关.(2) 证1++***n r ,,-,ξξ ηηη线性无关.***11()()0n r n r k k k --⇔+++++=ξξ ηηη成立当且仅当k i =0(i =1,2,…,n r ),且k =0***11()()0n r n r k k k --+++++=ξξ ηηη即*111()0n r n r n r k k k k k ---++++++=ξξ η由(1)可知,11*n ,,-,ξξ η线性无关. 即有k i =0(i =1,2,…,n r ),且100n r k k k k -++=⇒=∴1++***n r ,,-,ξξ ηηη线性无关.(B 类)1.B2. C3. D4. C5. t= 36. R(A)=2;2;27. 设η1,η2,…,ηs 是非齐次线性方程组Ax=b 的一组解向量,如果c 1η1+c 2η2+…+c s ηs 也是该方程组的一个解向量,则c 1+c 2+…+c s = .解:因为η1, η2,…, ηs 是Ax=b 的一组解向量,则A η1=b, A η2=b,…, A ηs =b,又 C 1η1+ C 2η2+…+ C s ηs 也是Ax=b 的一解向量,所以A(C 1η1+…+ C s ηs )=b ,即C 1A η1+ CA η2+…+ C s A ηs =b,即C 1b+ C 2b+…+ C s b=b,(C1+…+C s )b=b,所以C 1+…+ C s =1.8. 设向量组1α=(1,0,2,3),2α=(1,1,3,5),3α=(1,1,a +2,1),4α=(1,2,4,a +8),β=(1,1,b +3,5)问:(1) a ,b 为何值时,β不能由1α,2α,3α,4α线性表出?(2) a ,b 为何值时,β可由1α,2α,3α, 4α惟一地线性表出?并写出该表出式. (3) a ,b 为何值时,β可由1α,2α,3α,4α线性表出,且该表出不惟一?并写出该表出式. 【解】11223344x x x x =+++βαααα (*)314132422321111101121()232433518511111111110112101121012100100225200010r r r r r r r r a b a a b a b a a ----⎡⎤⎢⎥-⎢⎥==−−−→⎢⎥++⎢⎥+⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥++⎢⎥⎢⎥-++⎣⎦⎣⎦A A b(1) β不能由1α,2α,3α,4α线性表出⇔方程组(*)无解,即a +1=0,且b ≠0.即a =1,且b ≠0.(2) β可由1α,2α,3α,4α惟一地线性表出⇔方程组(*)有惟一解,即a +1≠0,即a ≠1.(*) 等价于方程组12342343443231123121(1)(1)01011111210111121111x x x x x x x a x b a x b b a b x x x x a a a b b b x a a a b a b ba a a βααα+++=⎧⎪-+=⎪⎨+=⎪⎪+=⎩++⇒===+=+=+++⎛⎫=---=-+ ⎪+++⎝⎭++∴=-+++++(3) β可由1α,2α,3α,4α线性表出,且表出不惟一⇔方程组(*)有无数解,即有a +1=0,b =0⇒a =1,b =0.方程组(*)12112342122343142212121x k k x x x x x k k x x x x k x k =-⎧⎪+++==-+⎧⎪⇔⇒⎨⎨-+==⎩⎪⎪=⎩1234,,,k k k k 为常数.∴2111221324(2)(21)k k k k k k =-+-+++βαααα9. 设有下列线性方程组(Ⅰ)和(Ⅱ)(Ⅰ)1241234123264133x x x x x x x x x x +-=-⎧⎪---=⎨⎪--=⎩ (Ⅱ) 123423434521121x mx x x nx x x x x t +--=-⎧⎪--=-⎨⎪-=-⎩(1) 求方程组(Ⅰ)的通解;(2) 当方程组(Ⅱ)中的参数m,n,t 为何值时,(Ⅰ)与(Ⅱ)同解? 解:(1)对方程组(Ⅰ)的增广矩阵进行行初等变换11026110261102641111051725001253110304162101014100120101400125 ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎣⎦--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组142434020x x x x ⎪-=⎨⎪-=⎩ (*) 得方程组(*)的基础解系11121⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ξ令40x =,得方程组(Ⅰ)的特解 2450-⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥⎣⎦η于是方程组(Ⅰ)的通解为k =+ηξx ,k 为任意常数。