数学建模之灰色预测模型修订稿
- 格式:docx
- 大小:197.34 KB
- 文档页数:8
【数学建模】灰色预测模型(预测)文章目录•一、算法介绍•o 1.灰色预测模型o 2.灰色系统理论o 3. 针对类型o 4. 灰色系统o 5. 灰色生成o 6. 累加生成o7. GM(1,1)模型o▪推导▪精度检验▪精度检验等级参照表•二、适用问题•三、算法总结•o 1. 步骤•四、应用场景举例•o 1. 累加生成o 2. 建立GM(1,1)模型o 3. 检验预测值•五、MATLAB代码•六、实际案例•七、论文案例片段(待完善)灰色预测模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五另外之前看过一篇比较完整的【数学建模常用算法】之灰色预测模型GM,作者:張張張張视频回顾一、算法介绍1.灰色预测模型灰色预测模型(Gray Forecast Model)是通过少量的、不完全的的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
2.灰色系统理论灰色系统理论是研究解决灰色系统分析、建模、预测、决策和控制的理论.灰色预测是对灰色系统所做的预测。
目前常用的一些预测方法(如回归分析等),需要较大的样本,若样本较小,常造成较大误差,使预测目标失效。
灰色预测模型所需建模信息少,运算方便,建模精度高,在各种预测领域都有着广泛的应用,是处理小样本预测问题的有效工具。
3. 针对类型灰色系统理论是由华中理工大学邓聚龙教授于1982年提出并加以发展的。
二十几年来,引起了不少国内外学者的关注,得到了长足的发展。
目前,在我国已经成为社会、经济、科学技术在等诸多领域进行预测、决策、评估、规划控制、系统分析与建模的重要方法之一。
特别是它对时间序列短、统计数据少、信息不完全系统的分析与建模,具有独特的功效,因此得到了广泛的应用.4. 灰色系统灰色系统是黑箱概念的一种推广。
SARS对经济指标的影响王海燕徐昊天吴德春摘要本文针对SARS 疫情传播对经济指标影响的问题,建立灰色预测模型,得到03年预测数据,并与实际数据作比较,进而研究SARS疫情对该市各经济指标的影响及其程度。
为研究SARS疫情对该市各经济指标的影响,我们作出了不同经济指标的散点图和数据列表,使得对问题的研究更直观。
(1)SARS对零售业的影响为简化计算,我们以1997--2002年年总值构造参考数列,得到一个预测各年总值的方程。
利用方程先预测出2003年零售额的年总值,根据各月综合服务业数额在年总值中所占比例求得各月预测值。
利用MATLAB软件求解,得到得预测值与实际值有一定的相差但相差并不大。
从表三我们得出结论:SARS疫情的传播对零售业从4月份开始产生影响,5、6月份影响最大,10月份以后影响就很小了。
(2)SARS对海外旅游业的影响以1997--2002年每年同期的数据构造参考数列,可以得到1-12月的共12个预测方程,即可预测2003年各月的海外旅游人数。
利用MATLAB软件求解,得到的预测值和实际值相差很大,说明从4月份开始SARS疫情就对旅游业产生影响,尤其5、6月份影响最大,但10月份以后影响就变小甚至没有影响了。
(3)SARS对综合服务业总额的影响以1997--2002年年总值构造参考数列,得到一个预测各年总值的方程。
利用方程先预测出2003年的年总值,再根据各月综合服务业数额在年总值中所占比例求得各月的预测值。
利用MATLAB软件求解,得到得预测值与实际值是很一致的。
因此,我们得出结论:SARS疫情的传播对综合服务业没有影响。
另外,本文对模型的误差进行了准确的分析,使得结论更加科学更加有说服力。
虽然模型的建立都是采用了灰色预测法,但在具体的数据处理时,采用了不同的方法,使模型更加丰满,更有特色。
关健词:经济指标;灰色预测;MATLAB;相对误差§1问题的提出背景知识与要解决的问题2003年SARS疫情席卷全球,对世界各国各地区各行业都造成一定的影响。
数学建模之灰色预测模型WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-一、灰色预测模型简介(P372)特点:模型使用的不是原始数据列,而是生成的数据列。
优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性和可靠性低的问题。
缺点:只适用于中短期的预测和指数增长的预测。
1、GM(1,1)预测模型GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。
模型的应用 ①销售额预测②交通事故次数的预测③某地区火灾发生次数的预测④灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报。
(百度文库)⑤基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥网络舆情危机预警(下载的文档) 步骤①级比检验与判断由原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =计算得序列的级比为(0)(0)(1)(),2,3,,.()x k k k n x k λ-==若序列的级比()k λ∈ 2212(,)n n e e-++Θ=,则可用(0)x 作令人满意的GM(1,1)建模。
光滑比为(0)1(0)1()()()k i x k p k xi -==∑若序列满足[](1)1,2,3,,1;()()0,,3,4,,;0.5.p k k n p k p k k n ϕϕ+<=-∈=<则序列为准光滑序列。
否则,选取常数c 对序列(0)x 做如下平移变换(0)(0)()(),1,2,,,y k x k c k n =+=序列(0)y 的级比0(0)(1)(),2,3,,.()y y k k k n y k λ-=∈Θ=②对原始数据(0)x 作一次累加得 (1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),,())(11+(2),,(1)()).x x x x n x x x x x n ==++(),()建立模型:(1)(1),dx ax b dt+= (1)③构造数据矩阵B 及数据向量Y(1)(1)(1)(2)1(3)1,()z z B z n ⎡⎤- ⎢⎥- ⎢⎥=⎢⎥ ⎢⎥⎢⎥- 1⎣⎦(0)(0)(0)(2)3()x x Y x n ⎡⎤⎢⎥⎢⎥=⎢⎥ ⎢⎥⎢⎥⎣⎦() 其中:(1)(1)(1()0.5()0.5(1),2,3,,.z k x k x k k n =+-=)④由1ˆˆ()ˆT T auB B B Y b -⎡⎤==⎢⎥⎣⎦求得估计值ˆa= ˆb = ⑤由微分方程(1)得生成序列预测值为ˆ(1)(0)ˆˆˆ(1)(1)k 0,1,,1,,ˆˆak b b xk x e n a a -⎛⎫+=-+=- ⎪ ⎪⎝⎭,则模型还原值为(0)(1)(1)ˆˆˆ(1)(1),1,2,,1,.x k x k x k n +=+-=-⑥精度检验和预测残差(0)(0)ˆ()()(),1,2,,,k x k xk k n ε=-=相对误差(0)|()|()k x k ε∆=相对误差精度等级表级比偏差10.5()1(),10.5a k k a ρλ-⎛⎫=-⎪+⎝⎭若()k ρ<则可认为达到一般要求;若()k ρ<,则可认为达到较高要求。
利用matlab 求出模型的各种检验指标值的结果如表经过验证,给出相应预测预报。
2、新陈代谢模型灰色新陈代谢模型是一个不断考虑新信息的预测模型,它考虑了随着时间推移相继进入系统的扰动因素带来的影响,在不断补充新信息的同时,及时去掉旧信息,使整个系统一直处于更新和发展的过程中,更符合现实世界的变化。
与GM(1,1)模型相比,既能充分发挥传统GM(1,1)模型仅利用少量数据, 就能获得较高预测精度的优点,又能反映出数据的变化趋势, 从而使预测结果的精度获得更进一步的提高。
局限性在于该模型适合预测具有较强指数规律的序列, 只能描述单调变化的过程。
模型的应用①深圳货运量预测;(下载文档)②天津市城市人均住宅建筑面积及非农业户籍人口总数预测(下载文档); ③网络舆情危机预警(下载文档)。
步骤①建立新陈代谢数据序列 原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =,用最新信息(0)(1)x n +替换最初数据(0)(1)x ,即得到新陈代谢数据序列(0)(0)(0)(0)((2),,(),(1))y x x n x n =+。
②后续步骤同GM(1,1)模型。
③用②计算出的最新结果再次替换最初信息(0)(2)x 得到新序列重复步骤②,以此类推,将计算结果制表并分析。
3、波形预测波形预测, 是对一段时间内行为特征数据波形的预测。
当原始数据频频摆动且摆动幅度较大时,可以考虑根据原始数据的波形预测未来的行为数据发展变化, 以便进行决策。
从本质上来看,波形预测是对一个变化不规则的行为数据列的整体发展进的预测。
模型的应用①区域降水量预测(下载文档)②运量需求不平衡航线下客流量预测(下载文档) ③网络舆情危机预警(下载文档) 步骤①求出序列折线由原始数据列((1),(2),,())x x x x n =得出序列X 的k 段折线图形为[]()()(1)()k x x k x k x k x k '=+-+-序列X 的折线为[]{}()()(1)()|1,2,,1kxx k x k x k x k k n '=+-+-=-②选取等高线令{}{}max min 11(),()max min k nk nx k x k σσ≤≤≤≤==则有0min 1max min min 1max min min min max min max 1,(),,(),,1(),(0,1,2,,)s s is ss i s sγσγσσσγσσσγσσσγσ==-+=-+-=++==如果k x 的i 段折线上有γ等高点,则坐标为()(,)(1)()x i i x i x i γγ-++-。
③等高点的计算解方程k x =γ得到折线k x 与γ的交点(0)()x i =(,())(1,2,)i i x x x i ''=,即γ等高点。
④(0)()x i 构成等高时刻序列,求出各等高时刻序列的GM(1,1)预测。
⑤得出波形预测画出波形图,并分析。
4、Verhulst 模型Verhulst 模型主要用来描述具有饱和状态的过程,即S 型过程。
常用于人口预测、生物生长、繁殖预测和产品经济寿命预测等。
(例如B 题艾滋病疗法的评价及治疗预测) 步骤①模型的建立对原始数据(0)(0)(0)(0)((1),(2),,())x x x x n =作一次累加得(1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),,())(11+(2),,(1)()).x x x x n x x x x x n ==++(),()令(1)(1)(1)()0.5()0.5(1),2,3,,,z k x k x k k n =+-=得(1)x 的均值生成序列为(1)(1)(1)(1)((2),(3),,()).z z z z n =则得到灰色Verhulst 模型为(0)(1)(1)2()x az b z +=灰色Verhulst 模型的白化方程为(1)(1)(1)2()dx ax b x dt+= (2) ②参数求解构造数据矩阵B 及数据向量Y(1)(1)2(1)(1)2(1)(1)2(2)(2)(3)(3)),()())z z z z B z n z n ⎡⎤- ( )⎢⎥- (⎢⎥=⎢⎥ ⎢⎥⎢⎥- (⎣⎦(0)(0)(0)(2)3()x x Y x n ⎡⎤⎢⎥⎢⎥=⎢⎥ ⎢⎥⎢⎥⎣⎦() 由1ˆˆ()ˆT T auB B B Y b -⎡⎤==⎢⎥⎣⎦求得估计值ˆa= ˆb = ③解微分方程(2)得灰色Verhulst 模型的时间序列响应为(0)(1)ˆ(0)(0)ˆ(1)(1),ˆˆˆ(1)(1)ak axx k bx abx e +=⎡⎤+-⎣⎦通过累减还原得(0)(1)(1)ˆˆˆ(1)(1)().xk x k x k +=+-④精度检验和预测 同GM(1,1)模型。
例题:某地区年平均降雨量数据如表1。
规定ξ= 320,并认为(0)()x i ξ≤为旱灾。
预测下一次发生的时间。
表1 某地区年平均降雨量数据解:模型的建立:①列出原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =,确定在(0)320x s ≤的条件下的下限灾变数列0x ξ与其相对应的时刻数列(0)t 。
计算光滑比(0)1(0)1()()()k i t k p k ti -==∑判断序列(0)t 是否满足满足[](1)1,2,3,,5;()()0,,3,4,5;0.5.p k k p k p k k ϕϕ+<=∈=<②对数列(0)t 做1次累加,得(1)t 。
③建立GM(1,1)模型。
(1)(1),dt at b dt+= (1) ④构造数据矩阵B 及数据向量Y(1)(1)(1)(2)1(3)1,()z z B z n ⎡⎤- ⎢⎥- ⎢⎥=⎢⎥ ⎢⎥⎢⎥- 1⎣⎦(0)(0)(0)(2)3()x x Y x n ⎡⎤⎢⎥⎢⎥=⎢⎥ ⎢⎥⎢⎥⎣⎦() 其中:(1)(1)(1()0.5()0.5(1),2,3,,5.z k t k t k k =+-=)⑤由1ˆˆ()ˆT T auB B B Y b -⎡⎤==⎢⎥⎣⎦求得估计值ˆa,ˆb 。
⑥由微分方程(1)得生成序列预测值为ˆ(1)(0)ˆˆˆ(1)(1)k 0,1,,1,,ˆˆak b b xk x e n a a -⎛⎫+=-+=- ⎪ ⎪⎝⎭,则模型还原值为(0)(1)(1)ˆˆˆ(1)(1),1,2,,1,.xk x k x k n +=+-=-预测到第6个和第7个数据。
模型的求解(1)根据题得:原始数据列(0)x =,412,320,,,,553,310, 561,300,632,540,,,576,,因为当(0)320x s ≤时的(0)()x i 为异常值,可得下限灾变数列为0x ξ=(320,310,300,,与其相对应的时刻数列为: (0)t = (3,8,10,14,17) 利用matlab 计算得出序列光滑。
(2)对数列(0)t 做1次累加,得(1)t =(3,11,21,35,52)(3)由步骤③,④,⑤并利用matlab 解得ˆa = ˆb = (4)由步骤⑥,预测得到第6个和第7个数据为(0)(0)(6)22.034,(7)28.3946t t ==由于与17相差这表明下一次旱灾将发生在五年以后。