智能控制技术第三章作业
- 格式:doc
- 大小:305.00 KB
- 文档页数:7
人体感应智能灯课程设计一、课程目标知识目标:1. 让学生了解并掌握人体感应智能灯的基本原理与功能。
2. 使学生理解智能灯电路的组成,包括传感器、微控制器和执行器。
3. 帮助学生了解智能灯在节能、环保和智能家居领域的重要应用。
技能目标:1. 培养学生动手操作能力,能独立完成人体感应智能灯的组装与调试。
2. 提高学生的问题解决能力,能够分析并解决智能灯使用过程中遇到的问题。
3. 培养学生的团队协作能力,能够在小组合作中发挥个人优势,共同完成任务。
情感态度价值观目标:1. 培养学生对科技创新的兴趣和热情,激发他们探索未知领域的欲望。
2. 培养学生的环保意识,让他们认识到智能灯在节能环保方面的重要性。
3. 培养学生的责任感和自信心,让他们在完成任务的过程中体验到成功的喜悦。
分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够描述人体感应智能灯的工作原理,并解释其在生活中的应用。
2. 学生能够独立组装并调试人体感应智能灯,达到预期效果。
3. 学生能够在小组合作中发挥个人特长,共同解决组装与调试过程中遇到的问题。
4. 学生能够认识到科技创新对生活的影响,培养节能环保意识,并激发对相关领域的兴趣。
二、教学内容1. 理论知识:- 介绍传感器的工作原理,特别是人体红外传感器。
- 智能灯电路的组成与原理,包括微控制器和执行器。
- 智能灯在智能家居系统中的应用及其优势。
2. 实践操作:- 智能灯组装指导,包括电路连接和组件安装。
- 调试技巧,确保人体感应智能灯的正常工作。
- 故障排查,学习分析并解决常见问题。
3. 教学大纲:- 第一课时:介绍传感器原理,分析人体红外传感器特点。
- 第二课时:学习智能灯电路组成,探讨其在生活中的应用。
- 第三课时:动手实践,分组进行智能灯组装。
- 第四课时:调试智能灯,掌握故障排查方法。
- 第五课时:总结反馈,分享学习心得和改进建议。
4. 教材关联:- 《电子技术基础》第四章:传感器及其应用。
建筑行业智能施工与安全管理方案第一章智能施工概述 (3)1.1 智能施工的定义 (3)1.2 智能施工的发展历程 (3)1.2.1 传统施工阶段 (3)1.2.2 信息化施工阶段 (3)1.2.3 智能施工阶段 (3)1.3 智能施工的优势 (3)1.3.1 提高施工效率 (3)1.3.2 降低成本 (3)1.3.3 保障工程质量 (4)1.3.4 提高安全管理水平 (4)1.3.5 促进绿色施工 (4)第二章智能施工技术体系 (4)2.1 信息化技术 (4)2.2 互联网技术 (4)2.3 人工智能技术 (5)第三章施工现场智能化设备 (5)3.1 智能化施工机械 (5)3.1.1 智能挖掘机 (5)3.1.2 智能装载机 (5)3.2 智能化监测设备 (6)3.2.1 建筑物倾斜监测仪 (6)3.2.2 结构应力监测仪 (6)3.3 智能化施工辅助设备 (6)3.3.1 智能焊接 (6)3.3.2 智能喷涂 (7)第四章智能施工管理与组织 (7)4.1 智能施工项目管理 (7)4.2 智能施工团队建设 (7)4.3 智能施工协作与沟通 (8)第五章安全管理概述 (8)5.1 安全管理的定义 (8)5.2 安全管理的重要性 (8)5.3 安全管理的目标 (9)第六章安全风险识别与评估 (9)6.1 安全风险识别方法 (9)6.1.1 概述 (9)6.1.2 现场巡查 (9)6.1.3 安全检查表 (9)6.1.4 专家评审 (10)6.1.5 故障树分析 (10)6.2 安全风险评估模型 (10)6.2.1 概述 (10)6.2.2 层次分析法 (10)6.2.3 模糊综合评价法 (11)6.2.4 神经网络法 (11)6.3 安全风险评估指标体系 (11)6.3.1 概述 (11)6.3.2 安全管理指标 (11)6.3.3 施工现场环境指标 (12)6.3.4 机械设备指标 (12)6.3.5 劳动防护指标 (12)6.3.6 应急处理指标 (12)第七章智能安全管理技术 (12)7.1 互联网安全管理系统 (12)7.2 人工智能在安全管理中的应用 (13)7.3 大数据在安全管理中的应用 (13)第八章施工现场安全监测与预警 (14)8.1 安全监测设备的选择与应用 (14)8.1.1 设备选择原则 (14)8.1.2 常用监测设备 (14)8.1.3 设备应用策略 (14)8.2 安全预警系统的构建 (14)8.2.1 系统架构 (14)8.2.2 系统功能 (15)8.3 预警信息发布与处理 (15)8.3.1 预警信息发布 (15)8.3.2 预警信息处理 (15)第九章安全管理培训与教育 (15)9.1 安全管理培训内容与方法 (15)9.1.1 培训内容 (16)9.1.2 培训方法 (16)9.2 安全教育体系构建 (16)9.2.1 建立健全安全教育制度 (16)9.2.2 构建多元化安全教育平台 (16)9.2.3 加强安全教育队伍建设 (16)9.3 安全管理培训与教育效果评估 (17)9.3.1 评估指标体系 (17)9.3.2 评估方法 (17)9.3.3 评估结果应用 (17)第十章智能施工与安全管理实施策略 (17)10.1 智能施工与安全管理的融合 (17)10.2 智能施工与安全管理的技术创新 (18)10.3 智能施工与安全管理的可持续发展策略 (18)第一章智能施工概述1.1 智能施工的定义智能施工是指在建筑行业中,运用现代信息技术、物联网技术、大数据分析、云计算等先进技术,对施工过程进行实时监控、优化管理、辅助决策的一种新型施工模式。
第一章计算机控制系统概述习题及参考答案1.计算机控制系统的控制过程是怎样的?计算机控制系统的控制过程可归纳为以下三个步骤:(1)实时数据采集:对被控量的瞬时值进行检测,并输入给计算机。
(2)实时决策:对采集到的表征被控参数的状态量进行分析,并按已定的控制规律,决定下一步的控制过程。
(3)实时控制:根据决策,适时地对执行机构发出控制信号,完成控制任务。
2.实时、在线方式和离线方式的含义是什么?(1)实时:所谓“实时”,是指信号的输入、计算和输出都是在一定时间范围内完成的,即计算机对输入信息以足够快的速度进行处理,并在一定的时间内作出反应并进行控制,超出了这个时间就会失去控制时机,控制也就失去了意义。
(2)“在线”方式:在计算机控制系统中,如果生产过程设备直接与计算机连接,生产过程直接受计算机的控制,就叫做“联机”方式或“在线”方式。
(3)“离线”方式:若生产过程设备不直接与计算机相连接,其工作不直接受计算机的控制,而是通过中间记录介质,靠人进行联系并作相应操作的方式,则叫做“脱机”方式或“离线”方式。
3.微型计算机控制系统的硬件由哪几部分组成?各部分的作用是什么?由四部分组成。
图1.1微机控制系统组成框图(1)主机:这是微型计算机控制系统的核心,通过接口它可以向系统的各个部分发出各种命令,同时对被控对象的被控参数进行实时检测及处理。
主机的主要功能是控制整个生产过程,按控制规律进行各种控制运算(如调节规律运算、最优化计算等)和操作,根据运算结果作出控制决策;对生产过程进行监督,使之处于最优工作状态;对事故进行预测和报警;编制生产技术报告,打印制表等等。
(2)输入输出通道:这是微机和生产对象之间进行信息交换的桥梁和纽带。
过程输入通道把生产对象的被控参数转换成微机可以接收的数字代码。
过程输出通道把微机输出的控制命令和数据,转换成可以对生产对象进行控制的信号。
过程输入输出通道包括模拟量输入输出通道和数字量输入输出通道。
1、已知某一炉温控制系统,要求温度保持在600度恒定。
针对该控制系统有以下控制经验:(1)若炉温低于600度,则升压;低的越多升压越高。
(2)若炉温高于600度,则降压;高的越多降压越低。
(3)若炉温等于600度,则保持电压不变。
设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。
输入、输出变量的量化等级为7级,取5个模糊集。
试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。
解:1)确定变量定义理想温度为600℃,实际温度为T,则温度误差为E=600-T。
将温度误差E作为输入变量2)输入量和输出量的模糊化将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。
将偏差E的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1所示。
表1 温度变化E划分表控制电压u也分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。
将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。
表2 电压变化u划分表表3 模糊控制规则表E PB PS ZO NS NB u PB PS ZO NS NB2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态误差为零,超调量不大于1%,输出上升时间≤0.3s 。
假定被控对象的传递函数分别为:255.01)1()(+=-s e s G s)456.864.1)(5.0(228.4)(22+++=s s s s G解:在matlab 窗口命令中键入fuzzy ,得到如下键面:设e 的论域范围为[-1 1],de 的论域范围为[-0.1 0.1],u 的论域范围为[0 2]。
将e 分为8个模糊集,分别为NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB;u分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; MATLAB中的设置界面如下:模糊规则的确定:模糊控制器的输出量在simulink中调用模糊控制器,观察输出结果运行结果为ScopeScope1 Scope23、利用去模糊化策略,分别求出模糊集A 的值。
智能控制作业学生姓名: 学号: 专业班级:(一)7-2 采用BP网路、RBF网路、DRNN网路逼近线性对象, 分别进行matlab 仿真。
(二)采用BP网络仿真网络结构为2-6-1。
采样时间1ms, 输入信号, 权值的初值随机取值, 。
仿真m文件程序为:%BP simulationclear all;clear all;xite=0.5;alfa=0.5;w1=rands(2,6); % value of w1,initially by randomw1_1=w1;w1_2=w1;w2=rands(6,1); % value of w2,initially by randomw2_1=w2;w2_2=w2_1;dw1=0*w1;x=[0,0]';u_1=0;y_1=0;I=[0,0,0,0,0,0]'; % input of yinhanceng cellIout=[0,0,0,0,0,0]'; % output of yinhanceng cellFI=[0,0,0,0,0,0]';ts=0.001;for k=1:1:1000time(k)=k*ts;u(k)=0.5*sin(3*2*pi*k*ts);y(k)=(u_1-0.9*y_1)/(1+y_1^2);for j=1:1:6I(j)=x'*w1(:,j);Iout(j)=1/(1+exp(-I(j)));endyn(k)=w2'*Iout; %output of networke(k)=y(k)-yn(k); % error calculationw2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2for j=1:1:6FI(j)=exp(-I(j))/(1+exp(-I(j))^2);endfor i=1:1:2for j=1:1:6dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation endendw1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1% jacobian informationyu=0;for j=1:1:6yu=yu+w2(j)*w1(1,j)*FI(j);enddyu(k)=yu;x(1)=u(k);x(2)=y(k);w1_2=w1_1;w1_1=w1;w2_2=w2_1;w2_1=w2;u_1=u(k);y_1=y(k);endfigure(1);plot(time,y,'r',time,yn,'b');xlabel('times');ylabel('y and yn');figure(2);plot(time,y-yn,'r');xlabel('times');ylabel('error');figure(3);plot(time,dyu);xlabel('times');ylabel('dyu');运行结果为:(三)采用RBF网络仿真网路结构为2-4-1, 采样时间1ms, 输入信号, 权值的初值随机取值, , 高斯基函数初值, 。
作业11 简述智能控制的概念。
定义一: 智能控制是由智能机器自主地实现其目标的过程。
定义二:K.J.奥斯托罗姆则认为,把人类具有的直觉推理和试凑法等智能加以形式化或机器模拟,并用于控制系统的分析与设计中,以期在一定程度上实现控制系统的智能化,这就是智能控制。
定义三: 智能控制是一类无需人的干预就能够自主地驱动智能机器实现其目标的自动控制,也是用计算机模拟人类智能的一个重要领域。
2 智能控制由哪几部分组成?各自的特点是什么?智能控制由人工智能、自动控制、运筹学组成。
人工智能是一个知识处理系统,具有记忆、学习、信息处理、形式语言、启发推理等功能。
自动控制描述系统动力学特性,是一种动态反馈。
运筹学是一种定量优化的方法。
如线性优化,网络规划,调度管理,优化决策和多目标优化的方法等等。
3 比较智能控制和传统控制的特点?1)传统控制方法在处理复杂性、不确定性方面能力低而且有时丧失了这种能力,智能控制在处理复杂性、不确定性方面能力高2)传统控制是基于被控对象精确模型的控制方式,可谓“模型论”智能控制是智能决策论,相对于“模型论”可称为“控制论”3)传统的控制为了控制必须建模,而利用不精确的模型又采用摸个固定控制算法,使整个的控制系统置于模型框架下,缺乏灵活性,缺乏应变性,因此很难胜任对复杂系统的控制智能控制的可信是控制决策,次用灵活机动的决策方式迫使控制朝着期望的目标逼近。
4)传统控制适用于解决线性、时不变等相对简单的的控制问题智能控制是对传统控制理论的发展,传统控制室智能控制的一个组成部分,是智能控制的低级阶段。
4 智能控制有哪些应用领域?试举出一个应用实例。
应用领域:模糊系统、神经网络、专家控制、工业想、系统、电力系统、机器人等其他领域的控制。
应用实例:模糊控制的交流伺服系统作业21.在完成上次作业的基础上,进一步细化,给出使用智能控制的必要性 ,以及智能控制结果的验证比较方法;传统控制方法包括经典控制和现代控制,是基于被控对象精确模型的控制方式,缺乏灵活性和应变能力,只适用于解决线性、时不变线等相对简单的控制问题。
智能控制题目及解答 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制2.智能控制系统有哪几种类型,各自的特点是什么3.比较智能控制与传统控制的特点。
4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么5.智能控制有哪些应用领域试举出一个应用实例,并说明其工作原理和控制性能。
1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。
智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。
智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。
是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。
2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。
(2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。
(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务。
3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。
在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。
《智能控制技术概论》教学案例一、教学目标1.让学生了解智能控制的基本概念和原理。
2.掌握常见的智能控制算法和实际应用。
3.培养学生的创新思维和实践能力。
二、教学内容1.智能控制的基本概念和原理。
2.模糊控制、神经网络控制、深度学习等常见的智能控制算法。
3.智能控制在各个领域的应用案例。
三、教学方法1.理论讲解:通过课堂讲解、PPT演示等方式,让学生了解智能控制的基本概念和原理,常见的智能控制算法等。
2.案例分析:通过分析实际案例,让学生了解智能控制在各个领域的应用,加深对智能控制的理解。
3.实践操作:通过实验、编程等方式,让学生亲自实践智能控制算法的实现,培养其创新思维和实践能力。
四、教学流程1.导入新课:通过实例或问题导入,激发学生对智能控制的兴趣。
2.理论讲解:讲解智能控制的基本概念和原理,常见的智能控制算法等。
3.案例分析:分析智能控制在各个领域的应用案例,如机器人控制、智能家居等。
4.实践操作:进行实验或编程,让学生实践智能控制算法的实现。
5.课堂讨论:让学生分组讨论,分享对智能控制的理解和应用经验。
6.小结与布置作业:总结本节课的重点和难点,布置作业,让学生进一步巩固所学知识。
五、评价与反馈1.课堂表现:观察学生在课堂上的表现,包括听讲、参与讨论、实验操作等情况。
2.作业评价:根据学生的作业情况,评价学生对智能控制的理解和应用能力。
3.期末考试:通过期末考试,检查学生对智能控制理论和实践的掌握情况。
4.学生反馈:听取学生对教学的反馈和建议,不断改进教学方法和内容。
3-1 模糊逻辑控制器由哪几部分组成?各完成什么功能?
答:模糊控制系统的主要部件是模糊化过程、知识库(数据库和规则库)、推理决策和精确化计算。
1、模糊化过程
模糊化过程主要完成:测量输入变量的值,并将数字表示形式的输入量转化为通常用语言值表示的某一限定码的序数。
2、知识库
知识库包括数据库和规则库。
1)、数据库
数据库提供必要的定义,包含了语言控制规则论域的离散化、量化和正规化以及输入空间的分区、隶属度函数的定义等。
2)、规则库
规则库根据控制目的和控制策略给出了一套由语言变量描述的并由专家或自学习产生的控制规则的集合。
它包括:过程状态输入变量和控制输出变量的选择,模糊控制系统的建立。
3、推理决策逻辑
推理决策逻辑是利用知识库的信息模拟人类的推理决策过程,给出适合的控制量。
(它是模糊控制的核心)。
4、精确化过程
在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程称为精确化过程。
{模糊控制器采用数字计算机。
它具有三个重要功能:
1)把系统的偏差从数字量转化为模糊量(模糊化过程、数据库两块);
2)对模糊量由给定的规则进行模糊推理(规则库、推理决策完成);
3)把推理结果的模糊输出量转化为实际系统能够接受的精确数字量或模拟量(精确化接口)。
}
3-2 模糊逻辑控制器常规设计的步骤怎样?应该注意哪些问题?
答:常规设计方法
设计步骤如下:
1、确定模糊控制器的输入、输出变量
2、确定各输入、输出变量的变化范围、量化等级和量化因子
3、在各输入和输出语言变量的量化域内定义模糊子集。
4、模糊控制规则的确定
5、求模糊控制表
3-3 已知由极大极小推理法得到输出模糊集为:0.30.810.50.1 12345
C=++++
-----
.试用重心法计算出此推理结果的精确值z。
重心法
重心法是取模糊隶属度函数的曲线与横坐标围城面积的重心为模糊推理最终输出值。
连续:0()()v V
v
V
v v dv
v v dv
μμ=
⎰⎰
离散:101
()
()
m
k
v
k
k m
v
k
k v v v v μμ===
∑∑
采用离散重心法:
离散:
101
()
()
0.3(1)0.8(2)1(3)0.5(4)0.1(5)0.30.810.50.1
0.3(1)0.8(2)1(3)0.5(4)0.1(5)2.7
=-2.7407
m
k
v
k
k m
v
k
k v v v v μμ===
⨯-+⨯-+⨯-+⨯-+⨯-=
++++⨯-+⨯-+⨯-+⨯-+⨯-=
∑∑ 3-5 设在论域(){42024}e =--误差,,,,和控制电压{024,6,8}u =,,上定义的模糊子集的隶
属度函数分别如图3-21、图3-22所示。
已知模糊控制规则:
规则1:如果误差e为ZE,则u为ZE;
规则2:如果误差e为PS,则u为NS;
e=时,输出电压u=?(精确化计算采用重心法)试应用玛达尼推理法计算当输入误差0.6
回顾:
削顶推理法
整个推理过程其几何意义是分别在不同规则中用各自推理嵌件的总隶属度去切割本推理规则中后件的隶属度函数以得到输出结果。
这种推理方法步骤是
1、在推理前件中选取各个条件中最不适配的隶属度(隶属度最小的值,也就是从推理嵌件
到后件削顶进行“与”运算);
2、对所有规则的结论部选取最大适配度的隶属度(隶属度最大的值,也就是从对所有结论
进行“并”运算)。
例2-15 对于二输入二规则的推理过程
解:
根据输入和输出变量的个数,所需规则的最大数目。
由于
规则1:如果误差e为ZE,则u为ZE;
规则2:如果误差e为PS,则u为NS;
控制规则表
解:
1) 模糊化过程
当输入误差e 为0.6,
看图1,0.6e =,正小10.625μ=;零20.375μ=
(,),(2,0),(0,1)20
1010.60.7
e e e e e e μμμ-=
--==当时
(,),(0,0),(0,2)2000
0.60.3
e e
e e e
e μμμ-=
-==当时
2) 模糊逻辑推理
根据已知模糊控制规则:
规则1: 如果误差e 为ZE ,则u 为ZE ; 规则2: 如果误差e 为PS ,则u 为NS ;
对应规则库
对应规则1:误差e 为ZE 的隶属度是0.7,那么u 为ZE 的隶属度0.7μ= 对应规则2:误差e 为PS 的隶属度是0.3,那么u 为NS 的隶属度0.3μ= 3) 精确化计算: 重心法
输出的阀门流量u 为
0.6
2.6
3.4
4.662
00.6 2.6 3.4 4.60.6 2.6 3.4 4.6600.6 2.6 3.4 4.6()()1260.30.7()222126
0.30.7()2228.06 2.42003.3306
U
u U
u u udu u u du
u u u du udu udu udu udu u u udu du du du du μ
μ
=
--++++-=--++++-=
=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 阀门的确切开度为3.3306。