智能控制第三章作业1
- 格式:doc
- 大小:35.50 KB
- 文档页数:2
人体感应智能灯课程设计一、课程目标知识目标:1. 让学生了解并掌握人体感应智能灯的基本原理与功能。
2. 使学生理解智能灯电路的组成,包括传感器、微控制器和执行器。
3. 帮助学生了解智能灯在节能、环保和智能家居领域的重要应用。
技能目标:1. 培养学生动手操作能力,能独立完成人体感应智能灯的组装与调试。
2. 提高学生的问题解决能力,能够分析并解决智能灯使用过程中遇到的问题。
3. 培养学生的团队协作能力,能够在小组合作中发挥个人优势,共同完成任务。
情感态度价值观目标:1. 培养学生对科技创新的兴趣和热情,激发他们探索未知领域的欲望。
2. 培养学生的环保意识,让他们认识到智能灯在节能环保方面的重要性。
3. 培养学生的责任感和自信心,让他们在完成任务的过程中体验到成功的喜悦。
分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够描述人体感应智能灯的工作原理,并解释其在生活中的应用。
2. 学生能够独立组装并调试人体感应智能灯,达到预期效果。
3. 学生能够在小组合作中发挥个人特长,共同解决组装与调试过程中遇到的问题。
4. 学生能够认识到科技创新对生活的影响,培养节能环保意识,并激发对相关领域的兴趣。
二、教学内容1. 理论知识:- 介绍传感器的工作原理,特别是人体红外传感器。
- 智能灯电路的组成与原理,包括微控制器和执行器。
- 智能灯在智能家居系统中的应用及其优势。
2. 实践操作:- 智能灯组装指导,包括电路连接和组件安装。
- 调试技巧,确保人体感应智能灯的正常工作。
- 故障排查,学习分析并解决常见问题。
3. 教学大纲:- 第一课时:介绍传感器原理,分析人体红外传感器特点。
- 第二课时:学习智能灯电路组成,探讨其在生活中的应用。
- 第三课时:动手实践,分组进行智能灯组装。
- 第四课时:调试智能灯,掌握故障排查方法。
- 第五课时:总结反馈,分享学习心得和改进建议。
4. 教材关联:- 《电子技术基础》第四章:传感器及其应用。
模糊自适应PID 控制的Matlab 仿真设计研究姓名:陈明学号:201208070103班级:智能1201一、 模糊控制思想、PID 控制理论简介:在工业生产过程中,许多被控对象受负荷变化或干扰因素很多基于模糊自适应控制理论, 设计了一种模糊自适应PID 控制器, 具体介绍了这种PID 控制器的控制特点及参数设计规则, 实现PID 控制器的在线自整定和自调整。
通过matlab 软件进行实例,仿真表明, , 提高控制系统实时性和抗干扰能力,易于实现.便于工程应用。
1.1 模糊控制的思想:应用模糊数学的基本理论和方法, 控制规则的条件、操作用模糊集来表示、并把这些模糊控制规则以及有关信息, 诸如PID 控制参数等作为知识存入计算机知识库, 然后计算机根据控制系统的实际情况(系统的输入, 输出) , 运用模糊推理。
1.2 PID 算法:u(t)=k p * e(t)+k i * ∫e(t)t 0dt +k d *de(t)dt= k p *e(t)+ k i *∑e i (t) + k d * e c (t)其中, u (t) 为控制器输出量, e(t) 为误差信号, e c (t)为误差变化率, k p , k i , k d 分别为比例系数、积分系数、微分数。
然而,课本中,为了简化实验难度,只是考虑了kp ,ki 参数的整定。
1.3 模糊PID 控制器的原理图:二、基于Matlab的模糊控制逻辑模块的设计关于模糊逻辑的设计,主要有隶属函数的编辑,参数的选型,模糊规则导入,生成三维图等观察。
2.1 模糊函数的编辑器的设定:打开matlab后,在命令窗口输入“fuzzy”,回车即可出现模糊函数编辑器,基本设置等。
基于课本的实验要求,我选的是二输入(e, e c)二输出(k p ,k i)。
需要注意的是,在命名输入输出函数的时候,下标字母需要借助下划线的编辑,即e_c 能够显示为e c。
2.2四个隶属函数的N, Z, P 函数设定:在隶属函数的设定中,N 选用的是基于trimf(三角形隶属函数) , Z是基于zmf(Z型隶属函数),P是基于smf(S型隶属函数)。
智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点.4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能.1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。
智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。
智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。
是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。
2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。
(2)人—机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。
(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务.3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。
在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。
在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。
作业11 简述智能控制的概念。
定义一: 智能控制是由智能机器自主地实现其目标的过程。
定义二:K.J.奥斯托罗姆则认为,把人类具有的直觉推理和试凑法等智能加以形式化或机器模拟,并用于控制系统的分析与设计中,以期在一定程度上实现控制系统的智能化,这就是智能控制。
定义三: 智能控制是一类无需人的干预就能够自主地驱动智能机器实现其目标的自动控制,也是用计算机模拟人类智能的一个重要领域。
2 智能控制由哪几部分组成?各自的特点是什么?智能控制由人工智能、自动控制、运筹学组成。
人工智能是一个知识处理系统,具有记忆、学习、信息处理、形式语言、启发推理等功能。
自动控制描述系统动力学特性,是一种动态反馈。
运筹学是一种定量优化的方法。
如线性优化,网络规划,调度管理,优化决策和多目标优化的方法等等。
3 比较智能控制和传统控制的特点?1)传统控制方法在处理复杂性、不确定性方面能力低而且有时丧失了这种能力,智能控制在处理复杂性、不确定性方面能力高2)传统控制是基于被控对象精确模型的控制方式,可谓“模型论”智能控制是智能决策论,相对于“模型论”可称为“控制论”3)传统的控制为了控制必须建模,而利用不精确的模型又采用摸个固定控制算法,使整个的控制系统置于模型框架下,缺乏灵活性,缺乏应变性,因此很难胜任对复杂系统的控制智能控制的可信是控制决策,次用灵活机动的决策方式迫使控制朝着期望的目标逼近。
4)传统控制适用于解决线性、时不变等相对简单的的控制问题智能控制是对传统控制理论的发展,传统控制室智能控制的一个组成部分,是智能控制的低级阶段。
4 智能控制有哪些应用领域?试举出一个应用实例。
应用领域:模糊系统、神经网络、专家控制、工业想、系统、电力系统、机器人等其他领域的控制。
应用实例:模糊控制的交流伺服系统作业21.在完成上次作业的基础上,进一步细化,给出使用智能控制的必要性 ,以及智能控制结果的验证比较方法;传统控制方法包括经典控制和现代控制,是基于被控对象精确模型的控制方式,缺乏灵活性和应变能力,只适用于解决线性、时不变线等相对简单的控制问题。
3-1 模糊逻辑控制器由哪几部分组成各完成什么功能答:模糊控制系统的主要部件是模糊化过程、知识库(数据库和规则库)、推理决策和精确化计算。
1、模糊化过程 模糊化过程主要完成:测量输入变量的值,并将数字表示形式的输入量转化为通常用语言值表示的某一限定码的序数。
2、知识库 知识库包括数据库和规则库。
1)、数据库 数据库提供必要的定义,包含了语言控制规则论域的离散化、量化和正规化以及输入空间的分区、隶属度函数的定义等。
2)、规则库 规则库根据控制目的和控制策略给出了一套由语言变量描述的并由专家或自学习产生的控制规则的集合。
它包括:过程状态输入变量和控制输出变量的选择,模糊控制系统的建立。
3、推理决策逻辑 推理决策逻辑是利用知识库的信息模拟人类的推理决策过程,给出适合的控制量。
(它是模糊控制的核心)。
4、精确化过程 在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程称为精确化过程。
{模糊控制器采用数字计算机。
它具有三个重要功能:1) 把系统的偏差从数字量转化为模糊量(模糊化过程、数据库两块); 2) 对模糊量由给定的规则进行模糊推理(规则库、推理决策完成); 3)把推理结果的模糊输出量转化为实际系统能够接受的精确数字量或模拟量(精确化接口)。
3-2 模糊逻辑控制器常规设计的步骤怎样应该注意哪些问题 答:常规设计方法设计步骤如下:1、 确定模糊控制器的输入、输出变量2、 确定各输入、输出变量的变化范围、量化等级和量化因子3、 在各输入和输出语言变量的量化域内定义模糊子集。
4、 模糊控制规则的确定5、 求模糊控制表 3-3 已知由极大极小推理法得到输出模糊集为:0.30.810.50.112345C =++++-----.试用重心法计算出此推理结果的精确值z 。
重心法重心法 是取模糊隶属度函数的曲线与横坐标围城面积的重心为模糊推理最终输出值。
连续:0()()v VvVv v dvv v dvμμ=⎰⎰ 离散:101()()mkvkk mvkk v v v v μμ===∑∑采用离散重心法:101()()0.3(1)0.8(2)1(3)0.5(4)0.1(5)0.30.810.50.10.3(1)0.8(2)1(3)0.5(4)0.1(5)2.7=-2.7407mkvkk mvkk v v v v μμ===⨯-+⨯-+⨯-+⨯-+⨯-=++++⨯-+⨯-+⨯-+⨯-+⨯-=∑∑3-5 设在论域(){42024}e =--误差,,,,和控制电压{024,6,8}u =,,上定义的模糊子集的隶属度函数分别如图3-21、图3-22所示。
智能控制题目及解答 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制2.智能控制系统有哪几种类型,各自的特点是什么3.比较智能控制与传统控制的特点。
4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么5.智能控制有哪些应用领域试举出一个应用实例,并说明其工作原理和控制性能。
1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。
智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。
智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。
是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。
2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。
(2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。
(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务。
3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。
在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。
智能控制原理课程设计教案一、课程目标知识目标:1. 理解智能控制原理的基本概念,掌握智能控制系统的主要组成部分;2. 学会分析智能控制系统的基本工作原理,了解不同类型的智能控制算法;3. 掌握智能控制技术在现实生活中的应用,了解其在我国科技发展中的重要性。
技能目标:1. 能够运用智能控制原理解决实际问题,进行简单的智能控制系统设计;2. 培养学生的团队协作能力,通过小组讨论、实践操作等方式,提高问题解决能力;3. 培养学生运用信息技术手段获取、处理和分析智能控制相关资料的能力。
情感态度价值观目标:1. 培养学生对智能控制技术的兴趣,激发学生探索未知、创新实践的欲望;2. 增强学生的国家认同感,认识到我国在智能控制领域取得的成就,树立民族自豪感;3. 培养学生具备良好的科学素养,遵循科学道德,尊重知识产权,形成正确的价值观。
课程性质:本课程为理论与实验相结合的课程,注重培养学生的实践操作能力和创新能力。
学生特点:学生具备一定的物理、数学和信息技术基础,对智能控制领域有一定的了解,但实践经验不足。
教学要求:结合学生特点,注重理论与实践相结合,通过案例分析和实验操作,使学生更好地掌握智能控制原理及其应用。
在教学过程中,关注学生的个体差异,激发学生的学习兴趣,提高学生的综合素质。
将课程目标分解为具体的学习成果,以便于教学设计和评估。
二、教学内容1. 智能控制原理概述:介绍智能控制的基本概念、发展历程、应用领域及发展趋势,对应教材第一章内容;- 智能控制基本概念及其与传统控制的区别;- 智能控制的发展历程及主要成就;- 智能控制的应用领域及前景展望。
2. 智能控制系统组成与分类:分析智能控制系统的结构、功能及分类,对应教材第二章内容;- 智能控制系统的基本结构及其功能;- 常见智能控制系统的分类及特点;- 智能控制系统的性能评价指标。
3. 智能控制算法及其应用:学习常用智能控制算法原理及其在实际工程中的应用,对应教材第三章内容;- 模糊控制、神经网络控制、自适应控制等算法的原理及优缺点;- 智能控制算法在工业、交通、医疗等领域的应用案例;- 智能控制算法的编程实现及调试方法。
题目1:求取模糊控制表(课本62-67页,matlab编程求解)解:MATLAB编程如下:%实现功能:计算模糊控制表clcclear%x的隶属度表,其中x代表的是误差eX=[1.0 0.8 0.7 0.4 0.1 zeros(1,8);0.2 0.7 1.0 0.7 0.3 zeros(1,8);0 0.1 0.3 0.7 1.0 0.7 0.2 zeros(1,6);zeros(1,4) 0.1 0.6 1.0 zeros(1,6);zeros(1,6) 1.0 0.6 0.1 zeros(1,4);zeros(1,6) 0.2 0.7 1.0 0.7 0.3 0.1 0;zeros(1,8) 0.2 0.7 1.0 0.7 0.3;zeros(1,8) 0.1 0.4 0.7 0.8 1.0];%y的隶属度表,其中y表示的是误差的导数Y=[1.0 0.7 0.3 zeros(1,10);0.3 0.7 1.0 0.7 0.3 zeros(1,8);0 0 0.3 0.7 1.0 0.7 0.3 zeros(1,6);zeros(1,4) 0.3 0.7 1.0 0.7 0.3 zeros(1,4);zeros(1,6) 0.3 0.7 1.0 0.7 0.3 0 0;zeros(1,8) 0.3 0.7 1.0 0.7 0.3;zeros(1,10) 0.3 0.7 1];%z的隶属度表,其中z表示的是控制量uZ=Y;%模糊控制规则表%其中: 1代表NB,2代表NM,3代表NS% 4代表ZE,5代表PS,6代表PM,7代表PBrule=[1 1 1 1 2 4 4;1 1 1 12 4 4;2 2 2 2 4 5 5;2 23456 6;2 23456 6;3 34 6 6 6 6;4 4 6 7 7 7 7;4 4 6 7 7 7 7];Set=[-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6]; %模糊集合control_data=[]; %control_data待求的模糊控制表for i=1:13 %控制模糊表的行变量control=[];for j=1:13 %控制模糊表的列变量x0=Set(i);y0=Set(j);CCC=[]; %存放Ci;CCC矩阵将来存放的是56*13维的矩阵for m=1:8 %模糊控制规则表的行变量Ai=X(m,:); %Ai为列向量for n=1:7 %模糊控制规则表的列变量Bi=Y(n,:); %Bi为列向量Ci=Z(rule(m,n),:); %模糊控制规则表的控制变量%得到RiA矩阵RiA=zeros(13,13);for p=1:13for q=1:13RiA(p,q)=min(Ai(p),Ci(q));endend%AA表示A' 矩阵AA=zeros(1,13);[a1,b1]=find(x0==Set);AA(a1,b1)=1;%最小最大原则求取CiACIA_temp=zeros(13,13);for ii=1:13CIA_temp(:,ii)=min(AA',RiA(:,ii));%先取小endCIA=max(CIA_temp);%再取大%%%%%%%%%%%%%%%%%%%%%%%%%得到RiB矩阵RiB=zeros(13,13);for p=1:13for q=1:13RiB(p,q)=min(Bi(p),Ci(q));endend%BB表示B' 矩阵BB=zeros(1,13);[a2,b2]=find(y0==Set);BB(a2,b2)=1;%最小最大原则求取CiBCIB_temp=zeros(13,13);for ii=1:13CIB_temp(:,ii)=min(BB',RiB(:,ii));endCIB=max(CIB_temp);%求CIA和CIB的交C=min(CIA,CIB);CCC=[CCC;C];endend%求出56个Ci的并C_max=max(CCC);%利用重心法解模糊temp=C_max.*Set;control_temp=sum(temp)/sum(C_max);control=[control,control_temp];endcontrol_data=[control_data;control];enddisp('模糊控制表如下:');control_data=roundn(control_data,-2) %保留2位小数且四舍五入fid=fopen('kongzhi.txt','w');count=fprintf(fid,'%d\n',control);fclose(fid);运行结果如下:题目二:被控对象)14)(12(20)(++=s s s G 给定为100,设计一个模糊控制器实现对象系统的控制。
一.全自动洗衣机的模糊控制分析摘要: 对全自动洗衣机的模糊控制进行了分析,详细介绍了如何定义洗衣机的模糊控制输入、输出量.根据专家知识和手动操作人员长期积累的经验,给出了模糊控制的具体规则.以确定洗衣机洗涤时间为例,利用Matlab进行了仿真研究,采用取小运算对模糊规则进行推理,并采用最大平均法得到反模糊化结果,所得结果与理论计算结果接近相同.关键词: 全自动洗衣机; 模糊控制; 模糊推理1.全自动洗衣机的一般模糊控制原理1. 1模糊控制输入量模糊控制输入量是模糊推理的前件,对于全自动洗衣机模糊控制器而言,主要有衣质、衣量、脏污程度和脏污性质4个输入量.这4个输入量的模糊子集隶属函可定义为:衣质,论域的语言值定义为棉、棉纤、纤3 种; 衣量,论域的语言值定义为多、中多、中少、少4种; 脏污程度,论域的语言值定义为很脏、一般脏不太脏3 种; 脏污性质,论域的语言值定义为油性、中性和泥性3种1. 2模糊控制的输出量模糊控制的输出是模糊推理的后件, 对于全自动洗衣机模糊控制器而言, 主要包括水位、洗涤时间、洗涤剂投放量和水流强度4个量.这4个输出量的模糊子集隶属函数可定义为:洗涤剂投放量,论域的语言值定义为很少、少、中、多和很多5种;洗涤时间,论域的语言值定义为很短、短、中、长、很长5种;水位高低, 论域的语言值定义为很低、低、高、很高4种;水流强度,论域的语言值定义为弱、中和强3种.1. 3模糊控制规则模糊控制器的规则库是基于专家知识和手动操作人员长期积累的经验, 是按人的直觉推理的一种语言表示形式. 通常有一系列的关系词连接而成, 如IF-THEN, ELSE 等. 为了简明表示模糊规则,将上述模糊控制输出量用数字表示. 例如: 洗涤时间(很短、短、中、长、很长) = ( 1、2、3、4、5), 其余3个输出量表示与此类似, 当输出量论域为3 种时,则用3个数字表示. 根据专家的经验并结合衣物的实际洗涤情况, 可得到表1所示的模糊控制规则.表1,全自动洗衣机模糊控制规则衣物很脏一般脏不太脏衣质衣量油污泥污油污泥污油污泥污棉多 4 553 4 553 4 353 4 353 4 343 4 343中多 3 553 3 453 3 342 3 332 3 232 3 232中少 2 453 2 342 2 342 2 342 2 232 2 122少 1 342 1 232 1 232 1 222 1 111 1 111棉纤多 4 553 4 453 4 353 4 343 4 342 4 242中多 3 553 3 453 3 442 3 342 3 232 3 232中少 2 442 2 342 2 332 2 232 2 221 2 111少 1 332 1 232 1 221 1 221 1 111 1 111纤多 4 553 4 553 4 442 4 342 4 332 4 232中多 3 552 3 442 3 432 3 332 3 232 3 222中少 2 442 2 332 2 332 2 222 2 211 2 111少 1 331 1 231 1 221 1 221 1 111 1 111表1中每一项有4位数字,从左到右依次代表水位、洗涤剂投放量、冼涤时间、水流方式4 个输出变量,每位数的取值代表相应的输出所取的模糊子集.参考文献:[ 1] 经顺林, 潘皓炫, 肖健华. 全自动洗衣机的自适应模糊控制方法[ J] . 计算机技术与自动化1999, 18( 4): 13- 17.[ 2] 彭小娟. 智能洗衣机的模糊控制系统[ J] . 新余高专学报, 2001, 6( 2) : 17- 18.[ 3] 冯海涛. 智能模糊技术在全自动洗衣机中的应用[ J]. 家用电器, 2002( 6): 30- 31.[ 4] 张道德, 杨光友, 周国柱, 等. 工业洗衣机模糊控制的设计[ J]. 微计算机信息, 2005, 21( 7): 37- 39二.全自动洗衣机的自适应模糊控制方法摘要本文分析了模糊控制技术在全自动洗衣机的应用及其不足,提出了一种可行的自适应模糊控制法,应用该方法可使全自动洗衣机在保证洗涤质量的前提下,降低生产成本。
《智能控制及应用》—人工神经网络学号姓名指导老师2013-12-16目录一、设计题目 (3)二、任务解答 (3)2.1任务一解答 (3)2.1.1逻辑“与”的计算原理 (3)2.1.2感知器的学习算法 (4)2.1.3训练c++程序 (4)2.2任务二解答 (7)一、设计题目1、设计一个实现逻辑“与”的单计算层感知器,并写出其学习算法和程序。
2、紧密结合自己的专业背景、科研方向或解决问题的经历,说明人工神经网络在解决与你有关的某个工程技术问题上的应用概况。
要求:说明自己的科研或专业背景,所关注的工程技术问题,人工神经网络在该问题上的应用概况,指出采用神经网络法比传统方法的优势所在。
二、任务解答2.1任务一解答2.1.1逻辑“与”的计算原理实现逻辑“与”计算的真值表:由真值表可以看出,4个样本的输出分为两类,一类输出为0,另一类输出为1。
据此,画出逻辑“与”的运算分类图:由图可知,应用感知器学习规则进行训练得到的连接权值和阈值并不会单一,只需要保证输入输出满足真值表即可,利用符号函数对各点计算,符号函数为sgn:2.1.2感知器的学习算法感知器训练按如下步骤进行:(1)给定权初值w i (0)(较小的随机非零值,包括阈值w 0= -θ,阈值并入权W 中),学习次数k=0;(2)输入一个样本X p 和d p ,计算输出(f 为符号函数);(3)修正权 w i (k+1)= w i (k) +α(d p -y p ) x pi ,i=0,1,2,…,n ,学习率0<α<=1,用于控制修正速度;(4)选另外一组样本,k 增1,重复(2)~(4),直到w i (k+1)对一切样本均稳定不变(即dp=yp )为止。
2.1.3训练c++程序(Qt 下开发)#include <QCoreApplication> #include<QTextStream> #include<QTextCodec>double alpha=0.2; //学习率,用于控制学校速度 //根据输入得到函数输出值 int f(double w[],double x[]){ double y=0;for(int i=0;i<3;i++) y+=w[i]*x[i]; return y>=0?1:0; }//根据结果调整权值void revise(double x[],double w[],int yp,int dp){ for(int k=0;k<3;k++)w[k]+=alpha*(dp-yp)*x[k]; }int main(int argc, char *argv[]) {QCoreApplication a(argc, argv);QTextStream cout(stdout,QIODevice::WriteOnly); int i;double w[3]={0,1,1}; //阈值初试值,权值初始值 cout<<"**********************"<<endl; cout<<"**********************"<<endl;00()(1,01np i pi p p i y f w x x X ===∑设取的第个分量总为)cout<<"**********************"<<endl;cout<<"alpha="<<w[0]<<endl;cout<<"w:"<<endl;cout.setRealNumberPrecision(4);cout<<"w1="<<w[1]<<" w2="<<w[2]<<endl;cout<<"**********************"<<endl;cout<<"**********************"<<endl;double x1[3]={1,1,1}; //输入值double x2[3]={1,0,1};double x3[3]={1,1,0};double x4[3]={1,0,0};int dp[4]={1,0,0,0}; //期望输出值int yp[4]={0,0,0,0};cout<<"training....."<<endl;//周而复始的进行训练while(dp[0]!=yp[0]||dp[1]!=yp[1]||dp[2]!=yp[2]||dp[3]!=yp[3]) {yp[0]=f(w,x1);revise(x1,w,yp[0],dp[0]);yp[1]=f(w,x2);revise(x2,w,yp[1],dp[1]);yp[2]=f(w,x3);revise(x3,w,yp[2],dp[2]);yp[3]=f(w,x4);revise(x4,w,yp[3],dp[3]);}cout<<"result>>"<<endl;cout<<"**********************"<<endl;cout<<"alpha="<<w[0]<<endl;cout<<"w:"<<endl;cout.setRealNumberPrecision(4);cout<<"w1="<<w[1]<<" w2="<<w[2]<<endl;cout<<"**********************"<<endl;cout.setRealNumberPrecision(8);cout<<"--real--"<<"--hope--"<<endl;cout.setRealNumberPrecision(10);for(i=0;i<4;i++)cout<<yp[i]<<" "<<dp[i]<<endl;return a.exec();}输出结果如下图所示。
西南大学网络与继续教育学院1085 《智能控制》作业答案1、下列有关推理机说法不正确的是()A. 推理机是用于对知识库中的知识进行推理来得到结论的“思维”机构。
B. 推理机包括三种推理方式,即正向推理、反向推理和双向推理。
C. 推理机和知识库构成了专家系统D. 推理机是指专家系统中无需任何知识就能完成推理功能的组成部分。
答:d2、下列不属于知识库所包含的是()A. 基于专家经验的判断性规则。
B. 用于推理、问题求解的控制性规则。
C. 用于说明问题的状态、事实和概念以及当前的条件和常识等的数据。
D. 所涉及的领域广泛、普遍的常识和数据。
答:d3、下列不属于智能控制的特点的是()A. 自组织功能和优化能力B. 完全具有人的智能C. 学习功能D. 适应功能答:b4、下列有关智能控制的组成正确的是()A. 智能控制由人工智能,自动控制,运筹学组成。
B. 智能控制由人工智能和自动控制组成C. 智能控制由自动控制和运筹学组成D. 智能控制由运筹学和人工智能组成答:a5、下列有关智能控制的概念说法准确的是()A. 所谓智能控制,即设计一个控制器(或系统),使之具有学习、抽象、推理、决策等功能,并能根据环境(包括被控对象或被控过程)信息的变化作出适应性反应,从而实现由人来完成的任务。
B. 所谓智能控制,就是将控制系统进行智能化,使之完全具有人的智能。
C. 所谓智能控制,就是控制过程中,就是人参与控制,从而具有人的智能。
D. 所谓智能控制,就是所设计的控制系统具有很高的智能。
答:a6、下列哪位人物提出模糊集合理论,奠定了模糊控制的基础()A. 美国加州大学自动控制系的L.A.ZedehB. 伦敦大学的Mamdani博士C. 美国的J.H.Holland教授D. 著名的Hopfield教授答:a7、下列不是决定神经网络性能的要素是()A. 神经元(信息处理单元)的特性。
B. 神经元之间相互连接的形式——拓扑结构。
C. 为适应环境而改善性能的学习规则。
1. 解决自动控制面临问题的一条有效途径就是把人工智能等技术用于自动控制系统,其核心是()A. 控制算法B. 控制结构C. 控制器智能化D. 控制系统仿真正确答案:C 满分:2 分2. 一种值得研究的新型智能控制是()A. 机器人控制B. 反馈控制C. 进化控制D. 在线控制正确答案:C 满分:2 分3. 成为“专家控制先行者”的科学家是()A. P.H.WinstonB. N.J.NilssonC. K.J.AstromD. E.A.Feigenbaum正确答案:D 满分:2 分4. 最早提出人工神经网络思想的学者是()A. McCulloch-PittsB. HebbC. Widrow-HoffD. Rosenblatt正确答案:A 满分:2 分5. 递阶控制系统的结构是根据下列原理设计的()A. 精度随智能降低而提高B. 精度随智能提高而提高C. 精度随智能降低而降低D. 精度与智能无关正确答案:A 满分:2 分6. 建立专家系统最艰难的任务是()A. 知识表示B. 知识应用C. 知识推理D. 知识获取正确答案:A 满分:2 分7. 被称为“智能控制先驱”的科学家是()A. G-N-SaridisB. K-S-FuC. K-J-AstromD. N-Wiener正确答案:B 满分:2 分8. 智能控制成为国际上独立新学科的时间为20世纪()A. 60年代B. 70年代C. 80年代D. 90年代正确答案:C 满分:2 分9. 智能控制的“四元交集结构”的四元,指的是()A. 计算机科学、自动控制、人工智能、神经网络B. 人工智能、自动控制、信息论、系统论C. 人工智能、自动控制、信息论、机器学习D. 自动控制、人工智能、信息论、运筹学正确答案:D 满分:2 分10. 增强学习属于()A. 自主学习B. 有师学习C. 主动学习D. 无师学习正确答案:B 满分:2 分11. 基于模式识别的控制系统属于()A. 学习控制系统B. 专家控制系统C. 进化控制系统D. 模糊控制系统正确答案:A 满分:2 分12. 模糊控制是以模糊集合为基础的,提出模糊集合的科学家是()A. N.J.NilsonB. L.A.ZadehC. A.TuringD. H.A.Simon正确答案:B 满分:2 分13. 一般认为,人工神经网络适用于()A. 线性系统B. 多变量系统C. 多输入多输出系统D. 非线性系统正确答案:D 满分:2 分14. 智能自动化研究开发与应用应当面向()A. 生产系统B. 复杂系统C. 管理系统D. 非线性系统正确答案:B 满分:2 分15. 能够在系统运行过程中估计未知信息,并据之进行优化与控制,以便逐步改进系统性能的控制叫做()A. 最优控制B. 反馈控制C. 随机控制D. 学习控制正确答案:D 满分:2 分16. 学习控制具有()等功能。
1、模糊控制器有哪几部分组成?各完成什么功能?
答:模糊控制器主要是由模糊化、知识库、模糊推理和去模糊化四个功能模块组成。
模糊化:为实现模糊控制而将精确的输入量进行模糊化处理,是将精确量转化为模糊量的过程。
模糊化模块在不同的阶段有不同的作用:a、确定符合模糊控制器要求的输入量和输出量。
b、对输入输出变量进行尺度变换,使之落于各自的论域范围内。
c、对已经论域变换的输入量进行模糊化处理,包括模糊分割和隶属函数的确定。
知识库:知识库通常由数据库和规则库组成,包含了具体应用领域的知识和要求。
其中,数据库主要包含输入输出变量的尺度变换因子、输入输出空间的模糊分割以及模糊变量的模糊取值及相应的隶属度函数选择和形状等方面的内容。
规则库包含了用模糊语言描述专家的经验知识,来表示一系列控制规则。
它们反映了控制专家的经验和知识。
模糊推理:是一种近似推理,根据模糊控制规则库和当前系统状态推断出应施加的控制量的过程,由推理机完成。
去模糊化:由于控制器输出到具体的执行机构的信号必须是清晰的精确量,因此,需要一个与输入模糊化相反的过程,即把模糊推理结果转变为清晰量,他实现从输出论域上输出模糊空间到输出精确空间的映射。
2、模糊控制器设计的步骤怎样?
答:模糊控制器的设计包括以下几个方面的内容;
①、输入变量和输出变量的确定。
②、输入输出变量的论域和模糊分割,以及包括量化因子和比例因子在内的控制
参数的选择。
③、输入变量的模糊化和输出变量的清晰化。
④、模糊控制规则的设计以及模糊推理模型的选择。
⑤、模糊控制程序的编制。
3、清晰化的方法有哪些?
答:清晰化的方法:
①、最大隶属度法:这种方法将模糊推理得到的结论中最大隶属度值最对应的元
素作为控制器输出的精确值,如果有多个最大点,则取其平均值。
②、加权平均法
③、面积等分法:把输出的模糊集合所对应的隶属函数与横坐标之间围成的面子分成两部分,那么该方法得到的精确值应满足使该两部分的面积相等。
④、由于Tsukamoto模型和Takagi-Sugeno模型输出本身就是清晰量,则不需要去模糊化。