第4讲地理空间数据模型
- 格式:pptx
- 大小:215.81 KB
- 文档页数:20
重点一空间数据库模型1.空间数据库空间数据库是地理信息系统在计算机物理存储介质上存储的与应用相关的地理空间数据的总和,一般是以一系列特定结构的文件的形式组织在存储介质之上的。
2.空间数据库模型空间数据库模型是关于现实世界中空间实体及其相互间联系的概念,为描述空间数据组织和设计空间数据库模式提供了基本的方法。
一般而言,GIS 空间数据模库型由概念数据库模型、逻辑数据库模型和物理数据库模型三个有机联系的层次所组成。
3.数据库概念模型:( conceptual model)概念模型为了把现实世界中的具体事物抽象、组织为某一数据库管理系统支持的数据模型。
人们常常首先将现实世界抽象为信息世界,然后将信息世界转换为机器世界。
也就是说,首先把现实世界中的客观对象抽象为某一种信息结构,这种信息结构并不依赖于具体的计算机系统,不是某一个数据库管理系统(DBMS)支持的数据模型,而是概念级的模型,称为概念模型。
4.逻辑模型逻辑模型,是指数据的逻辑结构。
在数据库中,逻辑模型有关系、网状、层次,可以清晰表示个个关系。
在管理信息系统中,逻辑模型:是着重用逻辑的过程或主要的业务来描述对象系统,描述系统要“做什么”,或者说具有哪些功能。
1)关系数据模型是把数据的逻辑结构归结为满足一定条件的二维表格,每个二维表格称为一个关系。
关系模型以记录组或数据表的形式组织数据,便于利用各种地理实体与属性之间的关系进行存储和变换,不分层也无指针,是建立空间数据和属性数据之间关系的一种非常有效的数据组织方法。
2)关系数据库:是建立在关系数据库模型基础上的数据库,借助于集合代数等概念和方法来处理数据库中的数据。
目前主流的关系数据库有oracle 、SQL、access 、db2 等。
3)对象—关系管理模式是指在关系型数据库中扩展,通过定义一系列操作空间对象(如点、线、面)的API 函数,来直接存储和管理非结构化的空间数据的空间数据库管理模式。
5.物理模型,在管理信息系统中,物理模型:描述的是对象系统“如何做”、“如何实现”系统的物理过程。
初中地理常见几何基本模型及结论
地理学是研究地球表层现象及其规律的学科,其中几何模型在
地理学中具有重要的作用。
本文将介绍初中地理中常见的几何基本
模型及相应的结论。
1. 平面几何模型
平面几何模型是描述地表特征的常见模型,其主要包括以下几
个基本模型:
- 圆形模型:地理学中常用来描述湖泊、盆地等自然地理要素。
圆形模型的结论是,湖泊或盆地的形状通常近似于圆形。
- 矩形模型:地理学中常用来描述田地、建筑物等人文地理要素。
矩形模型的结论是,田地或建筑物的形状通常接近于矩形。
2. 空间几何模型
空间几何模型是描述地球内部结构和地理空间关系的模型,主
要包括以下几个基本模型:
- 球体模型:地理学中常用来描述地球的整体形状。
球体模型
的结论是,地球的整体形状近似于一个球体。
- 锥体模型:地理学中常用来描述河流的流域和山脉的形状。
锥体模型的结论是,河流的流域和山脉的形状通常呈锥状。
3. 空间位置关系模型
空间位置关系模型是描述地理要素之间相对位置关系的模型,
主要包括以下几个基本模型:
- 上下游模型:用来描述河流沿着水流方向的位置关系。
上下
游模型的结论是,河流的上游位于源头,下游位于河口。
- 东西方向模型:用来描述地理要素在东西方向上的位置关系。
东西方向模型的结论是,东方位于太阳升起的一侧,西方位于太阳
落山的一侧。
以上是初中地理常见的几何基本模型及相应的结论。
通过理解
和应用这些模型,可以更好地理解地理现象和地球的空间关系。
空间数据模型空间数据模型可以分为三种:场模型:用于描述空间中连续分布的现象;要素模型:用于描述各种空间地物;网络模型:可以模拟现实世界中的各种网络;在各种模型中,又介绍了相关的概念,如空间划分,空间关系,以及拓扑关系的形式化描述——9交模型等。
最后讲述了普通的二维数据模型在空间上和时间上的扩展,时间数据模型和三维数据模型。
值得注意的是,本章谈到的场模型和要素模型类同于后面提及的栅格数据和矢量数据,但是前者是概念模型;后者是指其在信息系统中的实现。
1.空间数据模型的基本问题人类生活和生产所在的现实世界是由事物或实体组成的,有着错综复杂的组成结构。
从系统的角度来看,空间事物或实体的运动状态(在特定时空中的性状和态势)和运动方式(运动状态随时空变化而改变的式样和规律)不断发生变化,系统的诸多组成要素(实体)之间又存在着相互作用、相互制约的依存关系,表现为人口、物质、能量、信息、价值的流动和作用,反映出不同的空间现象和问题。
为了控制和调节空间系统的物质流、能量流和人流等,使之转移到期望的状态和方式,实现动态平衡和持续发展,人们开始考虑对其中诸组成要素的空间状态、相互依存关系、变化过程、相互作用规律、反馈原理、调制机理等进行数字模拟和动态分析,这在客观上为地理信息系统提供了良好的应用环境和重要发展动力。
1.1概念地理数据也可以称为空间数据(Spatial Data)。
地理空间是指物质、能量、信息的存在形式在形态、结构过程、功能关系上的分布方式和格局及其在时间上的延续。
地理信息系统中的地理空间分为绝对空间和相对空间两种形式。
绝对空间是具有属性描述的空间位置的集合,它由一系列不同位置的空间坐标值组成;相对空间是具有空间属性特征的实体的集合,由不同实体之间的空间关系构成。
在地理信息系统应用中,空间概念贯穿于整个工作对象、工作过程、工作结果等各个部分。
空间数据就是以不同的方式和来源获得的数据,如地图、各种专题图、图像、统计数据等,这些数据都具有能够确定空间位置的特点。
地理概念模型是地理信息系统(GIS)中用于描述地理概念和现象的一种模型。
这种模型基于地理学、环境科学、空间科学等学科的理论和知识,通过一系列的符号、语言和结构来表达地理实体和现象之间的空间关系和属性关系。
在地理概念模型中,地理实体被抽象为具有属性、行为和空间关系的概念,例如点、线、面、拓扑关系等。
这些概念可以用图形、表格等形式表示,并且可以被存储在计算机系统中,通过GIS软件进行可视化、分析和操作。
地理概念模型是GIS的重要基础之一,它可以帮助人们更好地理解和表达地理空间关系和属性关系,提高空间数据的精度、可靠性和一致性。
同时,地理概念模型也是实现地理信息共享、地理信息服务和地理信息应用的重要工具之一。
在构建地理概念模型时,需要遵循一定的原则和方法,例如概念化、抽象化、形式化等。
同时,还需要根据具体的应用需求和数据来源进行选择和优化,以确保模型的实用性和有效性。
《地理信息系统概论》教学大纲课程类别:专业基础课(必修)课程代码:总学时:72 学分:4适用专业:地理教育、地理信息系统、资源环境与城乡规划管理先修课程:地图学一、课程的地位、性质与任务地理信息系统(GIS)是集计算机科学、地理科学、测绘学、遥感学、环境科学、空间科学、信息科学、管理科学等学科为一体的新兴边缘学科。
它从20世纪60年代问世,至今已经跨越了40多个春秋,却始终发展迅猛。
地理信息系统不但与全球定位系统(GPS)和遥感(RS)相结合,构成三S集成系统,而且与CAD、多媒体、通信、因特网、办公自动化、虚拟现实等多种技术相结合,构成了综合的信息技术。
《地理信息系统概论》作为全国高等学校地理类专业公共核心课程,主要介绍了地理信息系统的基础理论、技术体系及其应用方法。
通过本课程的学习,可以让地理类专业的学生掌握地理信息系统的基础理论和知识。
本课程的教学,应当使学生掌握地理信息系统的基本概念、基础理论和方法。
同时,《地理信息系统概论》又是一门实践性较强的课程,通过实践教学,使学生更直观地掌握地理信息系统的构成、地理信息系统产品的制作;了解地理信息系统软件和常用的信息检索方法,使学生的实践能力和创新能力得到一定的培养。
二、课程教学的基本要求通过对本课程的学习,使学生牢固掌握地理信息系统得基本概念:如数据和信息、地理信息系统、地理信息系统空间数据库等。
使学生掌握地理信息系统的基础理论和方法,如数据结构、空间分析的原理与方法、常用的应用模型等。
使学生了解地理信息系统的相关知识,如空间数据的处理、产品的制作与显示。
总之,通过学习本课程,使学生掌握地理信息系统的基本概念、基础理论和应用方法,为今后其他专业课程和软件的学习打下坚实的基础。
三、理论教学内容与学时分配第1章导论(8学时)掌握数据与信息、地理信息与地理信息系统的概念。
掌握地理信息系统的基本构成和基本功能。
了解地理信息系统的应用功能。
了解地理信息系统的发展概况和基础理论。
地理信息系统课程大纲一、课程目标与背景地理信息系统(Geographic Information System,简称GIS)是一种通过收集、管理、分析、可视化地理空间数据的技术和工具。
本课程旨在帮助学生理解GIS的基本原理、技术和应用,掌握GIS软件的使用方法,并能够运用GIS技术解决实际的地理问题。
二、课程内容与安排1. GIS基础知识1.1 GIS定义和发展历史1.2 地理数据的类型和特点1.3 坐标系统和地图投影1.4 数据获取与处理方法2. GIS数据管理2.1 数据质量和完整性控制2.2 数据存储和组织2.3 数据查询和检索2.4 数据更新和维护3. 地理数据库设计3.1 数据模型和关系型数据库 3.2 空间数据模型3.3 数据库设计原则和规范3.4 数据库查询和优化4. 空间分析与建模4.1 空间关系与拓扑关系4.2 空间分析方法和工具4.3 空间插值和表面分析4.4 空间建模和预测5. GIS应用领域5.1 城市规划和土地管理5.2 环境保护和资源管理5.3 遥感影像解译和地表监测5.4 灾害风险评估和应急管理三、课程教学方法与评估方式1. 教学方法本课程将采用理论讲解、实例演示和实践操作相结合的方式进行教学。
学生将通过课堂学习、课后练习和实验实践来加深对GIS技术的理解和应用。
2. 评估方式学生的成绩将通过平时表现、实验报告和期末考试来综合评估。
平时表现占30%的成绩,实验报告占40%的成绩,期末考试占30%的成绩。
四、参考教材与学习资源1. 参考教材-《地理信息系统原理与应用》-《地理数据库原理与应用》-《ArcGIS教程》2. 学习资源- ArcGIS软件及相关教学视频- GIS数据集和示例数据五、教学团队与联系方式本课程的教学团队由地理信息系统领域的专家和资深从业人员组成。
如有任何问题,可通过电子邮件或办公时间拜访与教师进行交流。
六、参考文献- Goodchild, M. F., & Janelle, D. G. (Eds.). (2010). Spatially Integrated Social Science. Oxford University Press.- Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic Information Science and Systems (4th ed.). Wiley.七、其他说明本课程需要学生具备一定的地理学和计算机科学基础,建议先修相关课程或具备相关背景知识的学生报名。
1、信息系统的四大功能为数据采集、_管理_______、_____分析____、和__表达_______。
2、第一偏心率计算公式(a^2-b^2)/a^2___________。
3、地图投影按构成方法分为:___几何投影__________________和__________非几何投影___________4、地理信息中的数据来源和数据类型很多,概括起来主要有以下5种:几何图形数据、影像数据、元数据、地形数据、和属性数据。
5、线面的关系包括邻接、相交、_相离_____________和______包含________。
6、矢量格式向栅格格式转换的方法有内部点扩散法、复数积分算法、____射线算法和扫描法__________和_______边界代数算法_______。
7、高斯—克吕格投影的变形特征是:在同一条经线上,长度变形随纬度的降低而增大,在同一纬线上,长度变形随经差的增加而增大。
8、缓冲区计算的基本方法是:__角平分线法______________和凸角圆弧法。
9、地理信息系统叠加分析可以分为以下几类:视觉信息叠加、栅格图像叠加、点与多边形叠加、线与多边形叠加和多边形叠加。
10、ArcGIS中网络分析包括__路径分析和资源分配_。
1.数据:是指未经加工的原始资料。
(1分)或指人类在认识世界的过程中,定性或定量描述认识目标的直接记录或原始资料(3分)。
2.矢量数据结构:通过记录坐标方式,尽可能精确无误地表现点、线、面的地理实体。
其坐标空间假定为连续空间,不必像栅格数据结构那样进行量化处理。
3.数字高程模型(DEM) :DEM模型是新一代的地形图,它通过存储在介质上的大量地面点空间数据和地形属性数据,以数字形式来描述地貌4.地图投影:球面上的个点的大地坐标,按照一定的数学法则,变换为平面上相应点的平面直角坐标5.高斯-克吕格投影:是一种等角投影,高斯投影采用分带投影,将椭球面按一定经差分段,分别进行投影。
地理信息系统中常⽤的空间数据模型有哪些?之前在百度知道上看到了这个问题——“地理信息系统中常⽤的空间数据模型有哪些?”今天就针对这个问题做了⼀些整理,看看能不能帮到⼤家。
空间数据模型是指利⽤特定的数据结构来表达空间对象的空间位置、空间关系和属性信息;是对空间对象的数据描述。
空间数据模型是地理信息系统的基础,它不仅决定了系统数据管理的有效性,⽽且是系统灵活性的关键。
⽬前,与GIS设计有关的空间数据模型主要有⽮量模型,栅格模型,数字⾼程模型,⾯向对象模型,⽮量和栅格的混合数据模型等。
前⾯四种模型属于定向性模型,在模型设计时只包括与应⽤⽬标有关的实体及其相互关系,⽽混合模型的设计则包括所有能够指出的实体及其相互关系。
就⽬前的应⽤现状⽽⾔,⽮量模型、栅格模型、数字⾼程模型相当成熟(⽬前成熟的商业化GIS主要采⽤这三类模型),⽽其它模型,特别是混合模型则处于⼤⼒发展之中。
⼀、⽮量模型(vector model)⽮量模型是利⽤边界或表⾯来表达空间⽬标对象的⾯或体要素,通过记录⽬标的边界,同时采⽤标识符(Identifier)表达它的属性来描述空间对象实体。
⽮量模型能够⽅便地进⾏⽐例尺变换、投影变换以及图形的输⼊和输出。
⽮量模型处理的空间图形实体是点(point)、线(line)、⾯(area)。
⽮量模型的基本类型起源于“Spaghetti”模型。
在Spaghetti模型中,点⽤空间坐标对表⽰,线由⼀串坐标对表⽰,⾯是由线形成的闭合多边形。
CAD等绘图系统⼤多采⽤Spaghetti模型。
GIS的⽮量数据模型与Spaghetti模型的主要区别是,前者通过拓扑结构数据来描述空间⽬标之间的空间关系,⽽后者则没有。
在⽮量模型中,拓扑关系是进⾏空间分析的关键。
在GIS的拓扑数据模型中,与点、线、⾯相对应的空间图形实体主要有结点(node)、弧段(arc)、多边形(polygon),多边形的边界被分割成⼀系列的弧和结点,结点、弧、多边形间的空间关系在数据结构或属性表中加以定义。