运筹学(最优化方法)第一章 引言
- 格式:pptx
- 大小:816.69 KB
- 文档页数:20
第1章 最优化问题的基本概念§1.1最优化的概念最优化就是依据最优化原理和方法,在满足相关要求的前提下,以尽可能高的效率求得工程问题最优解决方案的过程。
§1.2最优化问题的数学模型1.最优化问题的一般形式⎪⎪⎩⎪⎪⎨⎧===≤q v x x x h p u x x x g t s x x x f x x x find n v n u nn,,2,10),,,(,,2,10),,,(..),,,(min ,,,212121212.最优化问题的向量表达式⎪⎪⎩⎪⎪⎨⎧=≤0)(0)(..)(min X H X G t s X f X find式中:T n x x x X ],,,[21 =T p X g X g X g X G )](,),(),([)(21 = T p X h X h X h X H )](,),(),([)(21 =3.优化模型的三要素设计变量、约束条件、目标函数称为优化设计的三要素!设计空间:由设计变量所确定的空间。
设计空间中的每一个点都代表一个设计方案。
§1.3优化问题的分类按照优化模型中三要素的不同表现形式,优化问题有多种分类方法: 1按照模型中是否存在约束条件,分为约束优化和无约束优化问题 2按照目标函数和约束条件的性质分为线性优化和非线性优化问题 3按照目标函数个数分为单目标优化和多目标优化问题4按照设计变量的性质不同分为连续变量优化和离散变量优化问题第2章 最优化问题的数学基础§2.1 n 元函数的可微性与梯度一、可微与梯度的定义1.可微的定义设)(X f 是定义在n 维空间n R 的子集D 上的n 元实值函数,且D X ∈0。
若存在n 维向量L ,对于任意n 维向量P ,都有0)()(lim 000=--+→P P L X f P X f T P 则称)(X f 在0X 处可微。
2.梯度设有函数)(X F ,T n x x x X ],,,[21 =,在其定义域内连续可导。
第一章绪论§1.1引言最优化:就是从所有可能的方案中,选出最合理的,达到事先规定的最优目标的学科。
这样的问题称为最优化问题,达到最优目标的方案称为最优方案,寻找最优方案的方法称为最优化方法。
广义上:运筹学(Operation Research)狭义上:数学规划(programming)发展:(1)最优化问题是一个古老的问题。
早在17世纪,Newton和Leibniz已经提出了函数的极值问题,但没有系统的理论.因为算法不完善及计算工具不先进,以后二、三百年发展缓慢。
(2)第二次世界大战中由于军事上(战略、战术)的需要,如资源调配问题运输问题提出了许多不能用古典方法解决的问题,从而产生了线性规划,非线性规划、动态规划、组合优化等新方法,产生运筹学,(3)但直到20世纪40年代,最优化的理论和算法才得以迅速发展,并不断完善,逐步成为一门系统的学科。
在实际中最优化方法发挥的作用越来越大,其应用越来越广泛,尤其是在工程设计中的应用。
重要性:因为应用广泛所需数学知识:高等数学、线性代数§1.2 优化问题的模型举例例1 产品调运问题设某产品有个产地,各产地产品的产量分别为m 12,,,m a a a 有n 个销售地,每个销地的销量分别为12,,,n b b b 设由第i 个产地到第j 个销地的运费单价为ijc 问如何安排运输计划,使总运费最小(假设产销平衡)。
ij x 解设由第i 个产地到第j 个销地的运输量为1n j =∑1m i =∑min1(1,2,,)n ij i j x a i m ===∑ 1(1,2,,)m ij j i x b j n ===∑ ..s t ij ij c x 1a i a m a 1b j b n b ij c ij x例2将非线性方程组的求解转化为一优化问题。
11221212(,,,)0(,,,)0(,,,)0n n n n f x x x f x x x f x x x =⎧⎪=⎪⎨⎪⎪=⎩212121min (,,,)(,,,)nn i n i x x x f x x x ϕ==∑ 解非线性方程组在有解的情况下,等价于§1.3 优化问题的模型与分类1 根据问题不同特点的分类(1)无约束优化问题(unconstraint optimizationproblem )12min (,,,)n f x x x 12(,,,)Tn x x x = x min ()n x R f ∈x min (),nf R ∈x x (P)(P)min ()..()0,1,2,,j f s t h j l ⎧⎨==⎩ x x min ()..()0,1,2,,i f s t g i m ⎧⎨≥=⎩ x x min ()..()0,1,2,,,()0,1,2,,i j f s t g i m h j l⎧⎪≥=⎨⎪==⎩ x x x (2)约束优化问题(constraint optimization problem )(P 1)(P 2)(P 3)12(,,,)T n x x x = x 称为决策变量()f x 称为目标函数()j h x 称为约束函数()0(1,2,,),()0(1,2,,)i j g i m h j l ≥=== x x 称为约束条件()i g x 满足约束条件的点称为可行解(feasible solution ){}|()0,1,2,,;()0,1,2,,i j R g i m h j l =≥=== x x x (P3)的可行域(feasible region )2 根据函数类型分类1)线性规划(linear programming).2)二次规划。