运筹学(最优化方法)第一章 引言
- 格式:pptx
- 大小:816.69 KB
- 文档页数:20
第1章 最优化问题的基本概念§1.1最优化的概念最优化就是依据最优化原理和方法,在满足相关要求的前提下,以尽可能高的效率求得工程问题最优解决方案的过程。
§1.2最优化问题的数学模型1.最优化问题的一般形式⎪⎪⎩⎪⎪⎨⎧===≤q v x x x h p u x x x g t s x x x f x x x find n v n u nn,,2,10),,,(,,2,10),,,(..),,,(min ,,,212121212.最优化问题的向量表达式⎪⎪⎩⎪⎪⎨⎧=≤0)(0)(..)(min X H X G t s X f X find式中:T n x x x X ],,,[21 =T p X g X g X g X G )](,),(),([)(21 = T p X h X h X h X H )](,),(),([)(21 =3.优化模型的三要素设计变量、约束条件、目标函数称为优化设计的三要素!设计空间:由设计变量所确定的空间。
设计空间中的每一个点都代表一个设计方案。
§1.3优化问题的分类按照优化模型中三要素的不同表现形式,优化问题有多种分类方法: 1按照模型中是否存在约束条件,分为约束优化和无约束优化问题 2按照目标函数和约束条件的性质分为线性优化和非线性优化问题 3按照目标函数个数分为单目标优化和多目标优化问题4按照设计变量的性质不同分为连续变量优化和离散变量优化问题第2章 最优化问题的数学基础§2.1 n 元函数的可微性与梯度一、可微与梯度的定义1.可微的定义设)(X f 是定义在n 维空间n R 的子集D 上的n 元实值函数,且D X ∈0。
若存在n 维向量L ,对于任意n 维向量P ,都有0)()(lim 000=--+→P P L X f P X f T P 则称)(X f 在0X 处可微。
2.梯度设有函数)(X F ,T n x x x X ],,,[21 =,在其定义域内连续可导。
第一章绪论§1.1引言最优化:就是从所有可能的方案中,选出最合理的,达到事先规定的最优目标的学科。
这样的问题称为最优化问题,达到最优目标的方案称为最优方案,寻找最优方案的方法称为最优化方法。
广义上:运筹学(Operation Research)狭义上:数学规划(programming)发展:(1)最优化问题是一个古老的问题。
早在17世纪,Newton和Leibniz已经提出了函数的极值问题,但没有系统的理论.因为算法不完善及计算工具不先进,以后二、三百年发展缓慢。
(2)第二次世界大战中由于军事上(战略、战术)的需要,如资源调配问题运输问题提出了许多不能用古典方法解决的问题,从而产生了线性规划,非线性规划、动态规划、组合优化等新方法,产生运筹学,(3)但直到20世纪40年代,最优化的理论和算法才得以迅速发展,并不断完善,逐步成为一门系统的学科。
在实际中最优化方法发挥的作用越来越大,其应用越来越广泛,尤其是在工程设计中的应用。
重要性:因为应用广泛所需数学知识:高等数学、线性代数§1.2 优化问题的模型举例例1 产品调运问题设某产品有个产地,各产地产品的产量分别为m 12,,,m a a a 有n 个销售地,每个销地的销量分别为12,,,n b b b 设由第i 个产地到第j 个销地的运费单价为ijc 问如何安排运输计划,使总运费最小(假设产销平衡)。
ij x 解设由第i 个产地到第j 个销地的运输量为1n j =∑1m i =∑min1(1,2,,)n ij i j x a i m ===∑ 1(1,2,,)m ij j i x b j n ===∑ ..s t ij ij c x 1a i a m a 1b j b n b ij c ij x例2将非线性方程组的求解转化为一优化问题。
11221212(,,,)0(,,,)0(,,,)0n n n n f x x x f x x x f x x x =⎧⎪=⎪⎨⎪⎪=⎩212121min (,,,)(,,,)nn i n i x x x f x x x ϕ==∑ 解非线性方程组在有解的情况下,等价于§1.3 优化问题的模型与分类1 根据问题不同特点的分类(1)无约束优化问题(unconstraint optimizationproblem )12min (,,,)n f x x x 12(,,,)Tn x x x = x min ()n x R f ∈x min (),nf R ∈x x (P)(P)min ()..()0,1,2,,j f s t h j l ⎧⎨==⎩ x x min ()..()0,1,2,,i f s t g i m ⎧⎨≥=⎩ x x min ()..()0,1,2,,,()0,1,2,,i j f s t g i m h j l⎧⎪≥=⎨⎪==⎩ x x x (2)约束优化问题(constraint optimization problem )(P 1)(P 2)(P 3)12(,,,)T n x x x = x 称为决策变量()f x 称为目标函数()j h x 称为约束函数()0(1,2,,),()0(1,2,,)i j g i m h j l ≥=== x x 称为约束条件()i g x 满足约束条件的点称为可行解(feasible solution ){}|()0,1,2,,;()0,1,2,,i j R g i m h j l =≥=== x x x (P3)的可行域(feasible region )2 根据函数类型分类1)线性规划(linear programming).2)二次规划。
第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。
取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。
目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。
2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。