正方体与球的截面
- 格式:ppt
- 大小:614.00 KB
- 文档页数:3
正方体内外的球截面专题1、已知球O 是棱长为1的正方体ABCD —A 1B 1C 1D 1的内切球,则平面ACD 1截球O 所得的截面面积为( )A .36π B .6C .9π D .6π2、球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,∆ABC 是边长为2的正三角形,面SAB ⊥面ABC ,则棱锥S —ABC 的体积的最大值为( )A B .13 C D3、一个球的内接正四棱柱的侧面积与上下两底面积的和之比为4∶1,且正四棱柱的体积是42,则这个球的体积是( ) A .3π B .23π C .33π D .43π4、长方体1111ABCD A B C D -的各个顶点都在表面积为16π的球O 的球面上,其中1::AB AD AA =O ABCD -的体积为A.335、将4个半径都是R 的球体完全装入底面半径是2R 的圆柱形桶中,则桶的最小高度是 .6、在等腰梯形ABCD 中, //AB DC ,AB=2DC=2,60DAB ∠=︒,E 是AB 的中点,将,ADE BEC 三角形三角形分别沿ED,EC 向上折起,使A.B 重合于点P, 则三棱锥P- DCE 的外接球的体积为[ ]A B C 17.24D π7、点A 、B 、C 、D 在同一个球的球面上,AB = BC = AC = 2,若四面体ABCD 体积的最大值为23,则这个球的表面积为A .1256πB .8πC .254πD .2516π8、已知正六棱柱的12个顶点都在一个半径为3的球面上,当正棱柱的体积最大值时,其高的值为( )A .. D .9、已知半径为R 的球面上有三点︒=∠60,,,ACB C B A ,3=AB ,2AC =,且球心O 到截面ABC的距离为3,则C A 、两点间球面距离为 ( )A .πB .3π C .32π D .34π10、已知球的直径SC=4,A,B 是球面上的两点AB=2,∠BSC =∠ASC= 45。
专题13 立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。
其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
例1 一个正方体接于一个球,过这个球的球心作一平面,则截面图形不可能...是( )分析 考虑过球心的平面在转动过中,平面在球的接正方体上截得的截面不可能是大圆的接正方形,故选D 。
例2 如图,在透明的塑料制成的长方体ABCD-A 1B 1C 1D 1容器灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:① 水的部分始终呈棱柱状; ② 水面EFGH 的面积不改变; ③ 棱A 1D 1始终与水面EFGH 平行;④ 当容器倾斜到如图5(2)时,BE·BF 是定值; 其中正确的命题序号是______________分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为BC BF BE V ⋅⋅=21水是定值,又BC 是定值,所以BE·BF 是定值,即④正确。
一.方法综述如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力。
研究球与多面体的接、切问题主要考虑以下几个方面的问题:(1)多面体外接球半径的求法,当三棱锥有三条棱垂直或棱长相等时,可构造长方体或正方体. (2)与球的外切问题,解答时首先要找准切点,可通过作截面来解决. (3)球自身的对称性与多面体的对称性;二.解题策略类型一 柱体与球【例1】(2020·河南高三(理))已知长方体1111ABCD A B C D -的表面积为208,118AB BC AA ++=,则该长方体的外接球的表面积为( ) A .116π B .106πC .56πD .53π【答案】A 【解析】【分析】由题意得出11118104AB BC AA AB BC BC AA AB AA ++=⎧⎨⋅+⋅+⋅=⎩,由这两个等式计算出2221AB BC AA ++,可求出长方体外接球的半径,再利用球体表面积公式可计算出结果.【详解】依题意,118AB BC AA ++=,11104AB BC BC AA AB AA ⋅+⋅+⋅=,所以,()()222211112116AB BC AA AB BC AA AB BC BC AA AB AA ++=++-⋅+⋅+⋅=,故外接球半径r ==,因此,所求长方体的外接球表面积24116S r ππ==.故选:A.【点睛】本题考查长方体外接球表面积的计算,解题的关键就是利用长方体的棱长来表示外接球的半径. 【举一反三】1.(2020·2,若与球相关的外接与内切问题该棱柱的顶点都在一个球面上,则该球的表面积为( ) A .73π B .113π C .5π D .8π【答案】D【解析】根据条件可知该三棱柱是正三棱柱,上下底面中心连线的中点就是球心,如图,则其外接球的半径22221123222sin 60R OB OO BO ⎛⎫ ⎪⎛⎫==+=+= ⎪ ⎪︒⎝⎭⎝⎭, 外接球的表面积428S ππ=⨯=.故选:D【指点迷津】直棱柱的外接球的球心在上、下底面的外接圆的圆心的连线上,确定球心,用球心、一底面的外接圆的圆心,一顶点构成一个直角三角形,用勾股定理得关于外接球半径的关系式,可球的半径. 2.(2020·安徽高三(理))已知一个正方体的各顶点都在同一球面上,现用一个平面去截这个球和正方体,得到的截面图形恰好是一个圆及内接正三角形,若此正三角形的边长为a ,则这个球的表面积为( ). A .234a π B .23a π C .26a πD .232a π【答案】D【解析】由已知作出截面图形如图1,可知正三角形的边长等于正方体的面对角线长,正方体与其外接球的位置关系如图2所示,可知外接球的直径等于正方体的体对角线长,设正方体的棱长为m ,外接球的半径为R ,则2a m =,23R m =,所以64R a =,所以外接球的表面积为222634442a S R a πππ⎛⎫==⨯= ⎪ ⎪⎝⎭, 故选:D .【点睛】本题考查正方体的外接球、正方体的截面和空间想象能力,分析出外接球的半径与正三角形的边长的关系是本题的关键,3.(2020·河南高三(理))有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( ) (附:2 1.414,3 1.732,5 2.236≈≈≈) A .22个 B .24个C .26个D .28个【答案】C【解析】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切, 这样,相邻的四个球的球心连线构成棱长为10cm 的正面体,易求正四面体相对棱的距离为52cm ,每装两个球称为“一层”,这样装n 层球, 则最上层球面上的点距离桶底最远为()()10521n +-cm ,若想要盖上盖子,则需要满足()10521100n +-≤,解得19213.726n ≤+≈, 所以最多可以装13层球,即最多可以装26个球.故选:C 类型二 锥体与球【例2】5.已知球O 的半径为102,以球心O 为中心的正四面体Γ的各条棱均在球O 的外部,若球O 的球面被Γ的四个面截得的曲线的长度之和为8π,则正四面体Γ的体积为_________. 【来源】重庆市2021届高三下学期二模数学试题 【答案】182【解析】由题知,正四面体截球面所得曲线为四个半径相同的圆,每个圆的周长为2π,半径为1,故球心O 到正四面体各面的距离为2106122⎛⎫-=⎪⎝⎭,设正四面体棱长为a ,如图所示,则斜高332AE EF a ==,体高63=AF a ,在Rt AEF 和R t AGO 中,13OG EF AO AE ==,即61236632a =-,∴6a =,∴231362618234312V a a =⋅⋅=⋅=. 【举一反三】1.(2020四川省德阳一诊)正四面体ABCD 的体积为,则正四面体ABCD 的外接球的体积为______. 【答案】【解析】如图,设正四面体ABCD 的棱长为,过A 作AD ⊥BC , 设等边三角形ABC 的中心为O ,则,,,即.再设正四面体ABCD 的外接球球心为G ,连接GA , 则,即.∴正四面体ABCD 的外接球的体积为.故答案为:.2.(2020·宁夏育才中学)《九章算术》是我国古代的数学名著,其中有很多对几何体体积的研究,已知某囤积粮食的容器的下面是一个底面积为32π,高为h 的圆柱,上面是一个底面积为32π,高为h 的圆锥,若该容器有外接球,则外接球的体积为 【答案】288π【解析】如图所示,根据圆柱与圆锥和球的对称性知,其外接球的直径是23R h =,设圆柱的底面圆半径为r ,母线长为l h =, 则232r ππ=,解得42r =222(2)(3)l r h +=, 222(82)9h h ∴+=,解得4h =,∴外接球的半径为3462R =⨯=,∴外接球的体积为3344628833R V πππ⨯===.3.(2020·贵阳高三(理))在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD ∆是一个正三角形,若平面PAD ⊥平面ABCD ,则该四棱锥的外接球的表面积为( ) A .143πB .283πC .563πD .1123π【答案】D 【解析】【分析】过P 作PF AD ⊥,交AD 于F ,取BC 的中点G ,连接,PG FG ,取PF 的三等分点H (2PH HF =),取GF 的中点E ,在平面PFG 过,E F 分别作,GF PF 的垂线,交于点O ,可证O 为外接球的球心,利用解直角三角形可计算PO .【详解】如图,过P 作PF AD ⊥,交AD 于F ,取BC 的中点G ,连接,PG FG ,在PF 的三等分点H (2PH HF =),取GF 的中点E ,在平面PFG 过,E F 分别作,GF PF 的垂线,交于点O .因为PAD ∆为等边三角形,AF FD =,所以PF ⊥AD . 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PF ⊂平面PAD ,所以PF ⊥平面ABCD ,因GF ⊂平面ABCD ,故PF GF ⊥. 又因为四边形ABCD 为正方形,而,G F 为,BC AD 的中点,故FG CD ,故GF AD ⊥,因ADPF F =,故PF ⊥平面PAD .在Rt PGF ∆中,因,OE GF PF GF ⊥⊥,故OE PF ,故OE ⊥平面ABCD ,同理OH ⊥平面PAD .因E 为正方形ABCD 的中心,故球心在直线OE 上,因H 为PAD ∆的中心,故球心在直线OH 上,故O 为球心,OP 为球的半径. 在Rt PGF ∆中,2234343323PH PF ==⨯⨯=,2OH EF ==, 故16282214333OP =+==,所以球的表面积为28112433ππ⨯=. 类型三 构造法(补形法)【例3】已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( ) A .128π B .132πC .144πD .156π【答案】B【解析】PA ⊥平面ABC ,AB AC ⊥,将三棱锥P ABC -补成长方体PQMN ABEC -,如下图所示:设AE BC F =,连接OF 、DF 、OD ,可知点O 为PE 的中点,因为四边形ABEC 为矩形,AE BC F =,则F 为AE 的中点,所以,//OF PA 且12OF PA =,设2PA x =,且2210AE AB BE =+=,222225PE PA AE x ∴+=+所以,球O 的半径为21252R PE x ==+, 在Rt ABE △中,2ABE π∠=,6AB =,10AE =,3cos 5AB BAE AE ∠==,在ADF 中,243AD AB ==,5AF =, 由余弦定理可得222cos 17DF AD AF AD AF BAE =+-⋅∠=,PA ⊥平面ABCD ,OF ∴⊥平面ABCD ,DF ⊂平面ABCD ,则OF DF ⊥,12OF PA x ==,22217OD OF DF x ∴=+=+, 设过点D 的球O 的截面圆的半径为r ,设球心O 到截面圆的距离为d ,设OD 与截面圆所在平面所成的角为θ,则22sin d OD R r θ==-.当0θ=时,即截面圆过球心O 时,d 取最小值,此时r 取最大值,即2max 25r R x ==+;当2πθ=时,即OD 与截面圆所在平面垂直时,d 取最大值,即2max 17d OD x ==+,此时,r 取最小值,即()22min max 22r R d =-=. 由题意可得()()()222max min 1725r r x πππ⎡⎤-=+=⎣⎦,0x,解得22x =.所以,33R =,因此,球O 的表面积为24132S R ππ==.故选:B.【举一反三】1.(2020宁夏石嘴山模拟)三棱锥中,侧棱与底面垂直,,,且,则三棱锥的外接球的表面积等于 .【答案】【解析】把三棱锥,放到长方体里,如下图:,因此长方体的外接球的直径为,所以半径,则三棱锥的外接球的表面积为.2.(2020菏泽高三模拟)已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为A.B.C.D.【答案】C【解析】如图所示,将直三棱柱补充为长方体,则该长方体的体对角线为,设长方体的外接球的半径为,则,,所以该长方体的外接球的体积,故选C.3.(2020·贵州高三月考(理))某几何体的三视图如图所示,则该几何体的体积为()A.43B.53C.83D.163【答案】A【解析】【分析】如图所示画出几何体,再计算体积得到答案.【详解】由三视图知该几何体是一个四棱锥,可将该几何体放在一个正方体内,如图所示:在棱长为2的正方体1111ABCD A B C D -中,取棱11,,,,B C DA AB BC CD 的中点分别为,,,,E M N P Q ,则该几何体为四棱锥E MNPQ -,其体积为()2142233⨯⨯=.故选:A 类型四 与球体相关的最值问题【例4】(2020·福建高三期末(理))在外接球半径为4的正三棱锥中,体积最大的正三棱锥的高h =( ) A .143B .134C .72D .163【答案】D 【解析】【分析】设正三棱锥底面的边长为a ,高为h ,由勾股定理可得22234(4)3h a ⎛⎫=-+ ⎪ ⎪⎝⎭,则22183h h a -=,三棱锥的体积()23384V h h =-,对其求导,分析其单调性与最值即可得解. 【详解】解:设正三棱锥底面的边长为a ,高为h ,根据图形可知22234(4)3h a ⎛⎫=-+ ⎪ ⎪⎝⎭,则22180,3h h a -=>08h ∴<<. 又正三棱锥的体积21334V a h =⨯()2384h h h =-()23384h h =-,则()231634V h h '=-, 令0V '=,则163h =或0h =(舍去), ∴函数()23384V h h =-在160,3⎛⎫ ⎪⎝⎭上单调递增,在16,83⎛⎫⎪⎝⎭上单调递减,∴当163h =时,V 取得最大值,故选:D. 【点睛】本题考查球与多面体的最值问题,常常由几何体的体积公式、借助几何性质,不等式、导数等进行解决,对考生的综合应用,空间想象能力及运算求解能力要求较高. 【举一反三】1.(2020·广东高三(理))我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形,且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,AC BC ⊥,若12AA AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的外接球体积为( )A .22πB .823C .23D .2π【答案】B【解析】依题意可知BC ⊥平面11ACC A .设,AC a BC b ==,则2224a b AB +==.111111323B A ACC V AC AA BC AC BC -=⨯⨯⨯⨯=⨯⨯22114232323AC BC +≤⨯=⨯=,当且仅当2AC BC ==时取得最大值.依题意可知1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B ,故半径221111222OB A B AA AB ==⨯+=.所以外接球的体积为()34π82π233⋅=. 特别说明:由于BC ⊥平面11ACC A ,1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B 为定值,即无论阳马11B A ACC -体积是否取得最大值,堑堵111ABC A B C -外接球保持不变,所以可以直接由直径1A B 的长,计算出外接球的半径,进而求得外接球的体积.故选:B2.(2020·遵义市南白中学高三期末)已知A ,B ,C ,D 四点在同一个球的球面上,6AB BC ==,90ABC ∠=︒,若四面体ABCD 体积的最大值为3,则这个球的表面积为( )A .4πB .8πC .16πD .32π【答案】C 【解析】根据6AB BC ==可得直角三角形ABC ∆的面积为3,其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q , 由于底面积ABC S ∆不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为为133ABC S DQ ∆⨯=,即133,33DQ DQ ⨯⨯=∴=,如图, 设球心为O ,半径为R ,则在直角AQO ∆中,即222(3)(3,)2R R R =∴+=-, 则这个球的表面积为24216S ππ=⨯=,故选C.3.(2020·河南高三(理))菱形ABCD 的边长为2,∠ABC =60°,沿对角线AC 将三角形ACD 折起,当三棱锥D -ABC 体积最大时,其外接球表面积为( ) A .153π B .2153π C .209π D .203π 【答案】D 【解析】【分析】当平面ACD 与平面ABC 垂直时体积最大,如图所示,利用勾股定理得到2223(3)()3R OG =-+和22223()3R OG =+,计算得到答案. 【详解】易知:当平面ACD 与平面ABC 垂直时体积最大. 如图所示:E 为AC 中点,连接,DE BE ,外接球球心O 的投影为G 是ABC ∆中心,在BE 上 3BE =,3DE =,33EG =,233BG =设半径为R ,则2223(3)()3R OG =-+,22223()3R OG =+ 解得:153R =,表面积22043S R ππ== 故选:D三.强化训练一、选择题1.(2020·广西高三期末)棱长为a 的正四面体ABCD 与正三棱锥E BCD -的底面重合,若由它们构成的多面体ABCDE 的顶点均在一球的球面上,则正三棱锥E BCD -的表面积为( ) A .2334a + B .2336a + C .2336a - D .2334a - 【答案】A【解析】由题意,多面体ABCDE 的外接球即正四面体ABCD 的外接球, 由题意可知AE ⊥面BCD 交于F ,连接CF ,则233323CF a a =⋅= 且其外接球的直径为AE ,易求正四面体ABCD 的高为223633a a a ⎛⎫ ⎪ ⎪=⎝⎭-. 设外接球的半径为R ,由2226333R a R a ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭=⎭-⎝-得64R a =. 设正三棱锥E BCD -的高为h ,因为6623AE a a h ==+,所以66h a =. 因为底面BCD ∆的边长为a ,所以2222EB EC ED CF h a ===+=, 则正三棱锥E BCD -的三条侧棱两两垂直.即正三棱锥E BCD -的表面积222121333322224S a a a ⎛⎫+=⨯⨯+⨯= ⎪ ⎪⎝⎭,故选:A .2、(2020辽宁省师范大学附属中学高三)在三棱锥中,,则三棱锥外接球的表面积为( )A.B.C.D.【答案】C【解析】如图,把三棱锥补形为长方体,设长方体的长、宽、高分别为,则,∴三棱锥外接球的半径∴三棱锥外接球的表面积为.故选:C.3.(2020·安徽高三期末)如果一个凸多面体的每个面都是全等的正多边形,而且每个顶点都引出相同数目的棱,那么这个凸多面体叫做正多面体.古希腊数学家欧几里得在其著作《几何原本》的卷13中系统地研究了正多面体的作图,并证明了每个正多面体都有外接球.若正四面体、正方体、正八面体的外接球半径相同,则它们的棱长之比为()A23B.223C.22D.223【答案】Ba b c R【解析】设正四面体、正方体、正八面体的棱长以及外接球半径分别为,,,则2223,23,22R a R b R c =⨯==, 即222,,2::2:2:333R R a b c R a b c ===∴=故选:B 4.(2020·北京人大附中高三)如图,在四棱锥S ABCD -中,四边形ABCD 为矩形,23AB =,2AD =,120ASB ∠=︒,SA AD ⊥,则四棱锥外接球的表面积为( )A .16πB .20πC .80πD .100π 【答案】B【解析】由四边形ABCD 为矩形,得AB AD ⊥,又SA AD ⊥,且SA AB A ⋂=,∴AD ⊥平面SAB ,则平面SAB ⊥平面ABCD ,设三角形SAB 的外心为G ,则23322sin 2sin12032AB GA ASB ====∠︒. 过G 作GO ⊥底面SAB ,且1GO =,则22215OS =+=.即四棱锥外接球的半径为5. ∴四棱锥外接球的表面积为24(5)20S ππ=⨯=.故选B .5.(2020河南省郑州市一中高三)在三棱锥中,平面,M 是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是( ) A . B .C .D .【答案】C【解析】解:如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以,在中,设外接圆的直径为,则:,所以外接球的半径,则:,故选:C.6、(2020河南省天一大联考)某多面体的三视图如图所示,其中正视图是一个直角边为2的等腰直角三角形,侧视图是两直角边分别为2和1的直角三角形,俯视图为一矩形,则该多面体的外接球的表面积为()A.B.C.D.【答案】C【解析】由三视图可得,该几何体为一个三棱锥,放在长、宽、高分别为2,1,2的长方体中,此三棱锥和长方体的外接球是同一个,长方体的外接球的球心在体对角线的中点处,易得其外接球的直径为,从而外接球的表面积为.故答案为:C.7.(2020·江西高三期末(理))如图,三棱锥P ABC -的体积为24,又90PBC ABC ∠=∠=︒,3BC =,4AB =,410PB =,且二面角P BC A --为锐角,则该三棱锥的外接球的表面积为( )A .169πB .144πC .185πD .80π【答案】A【解析】因90PBC ABC ∠=∠=︒,所以BC ⊥平面PAB ,且PBA ∠为二面角P BC A --的平面角, 又3BC =,4AB =,410PB =,由勾股定理可得13PC =,5AC =, 因为1sin 8102PAB S PB AB PBA PBA ∆⋅=⋅∠=∠,所以三棱锥的体积1181032433PAB V S BC PBA ∆=⋅=⨯∠⨯=,解得310sin PBA ∠=,又PBA ∠为锐角,所以10cos 10PBA ∠=, 在PAB ∆中,由余弦定理得2101601624410144PA =+-⨯⨯=, 即12PA =,则222PB PA AB =+,故PA AB ⊥, 由BC ⊥平面PAB 得BC PA ⊥,故PA ⊥平面ABC ,即PA AC ⊥,取PC 中点O , 在直角PAC ∆和直角PBC ∆中,易得OP OC OA OB ===,故O 为外接球球心, 外接圆半径11322R PC ==,故外接球的表面积24169S R ππ==.故选:A. 8.(2019·湖南长沙一中高三)在如图所示的空间几何体中,下面的长方体1111ABCD A B C D -的三条棱长4AB AD ==,12AA =,上面的四棱锥1111P A B C D -中11D E C E =,1111PE A B C D ⊥平面,1PE =,则过五点A 、B 、C 、D 、P 的外接球的表面积为( )A .311π9B .311π18C .313π9D .313π18【答案】C【解析】问题转化为求四棱锥P ABCD -的外接球的表面积.4913PC =+=,∴3sin 13PCD ∠=.所以PCD ∆外接圆的半径为131336213r ==⨯,由于PE ⊥平面1111D C B A ,则PE ⊥平面ABCD ,PE ⊂平面PCD ,所以平面PCD ⊥平面ABCD , 所以外接球的222169313243636R r =+=+=.所以2313π4π9S R ==球表面积.9.三棱锥P —ABC 中,底面ABC 满足BA=BC , ,点P 在底面ABC 的射影为AC 的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P 到底面ABC 的距离为( ) A .3 B .C .D .【答案】B【解析】设外接球半径为,P 到底面ABC 的距离为,,则,因为,所以, 因为,所以当时,,当时,,因此当时,取最小值,外接球的表面积取最小值,选B.10.(2019·河北高三月考)在平面四边形ABCD 中,AB ⊥BD ,∠BCD =30°,2246AB BD +=,若将△ABD 沿BD 折成直二面角A -BD -C ,则三棱锥A-BDC 外接球的表面积是( ) A .4π B .5πC .6πD .8π【答案】C【解析】取,AD BD 中点,E F ,设BCD ∆的外心为M ,连,,MB MF EF , 则01,30,22MF BD BMF DMB BCD BM BF BD ⊥∠=∠=∠=∴== 分别过,E M 作,MF EF 的平行线,交于O 点, 即//,//OE MF OM EF ,,BD AB E ⊥∴为ABD ∆的外心,平面ABD ⊥平面BCD ,AB ⊥平面BCD ,//,EF AB EF ∴⊥平面BCD ,OM ∴⊥平面BCD ,同理OE ⊥平面ABD ,,E M 分别为ABD ∆,BCD ∆外心,O ∴为三棱锥的外接球的球心,OB 为其半径, 22222221342OB BM OM BD EF BD AB =+=+=+=, 246S OB ππ=⨯=球.故选:C11.(2020·梅河口市第五中学高三期末(理))设三棱锥P ABC -的每个顶点都在球O 的球面上,PAB ∆是面积为3的等边三角形,45ACB ∠=︒,则当三棱锥P ABC -的体积最大时,球O 的表面积为( ) A .283π B .10πC .323π D .12π【答案】A【解析】如图,由题意得2334AB =,解得2AB =.记,,AB c BC a AC b ===, 12sin 24ABC S ab C ab ∆==,由余弦定理2222cos c a b ab C =+-,得224222a b ab ab ab =+-≥-,42(22)22ab ≤=+-,当且仅当a b =时取等号.所以CA CB =且平面PAB ⊥底面ABC 时,三棱锥P ABC -的体积最大.分别过PAB ∆和ABC ∆的外心作对应三角形所在平面的垂线,垂线的交点即球心O , 设PAB ∆和ABC ∆的外接圆半径分别为1r ,2r ,球O 的半径为R ,则123r =,21222sin 45r =⨯=︒.故222211172233R r r ⎛⎫=+=+= ⎪⎝⎭, 球O 的表面积为22843R ππ=.故选:A.12.(2020四川省成都外国语学校模拟)已知正方形ABCD 的边长为4,E ,F 分别是BC ,CD 的中点,沿AE ,EF ,AF 折成一个三棱锥P-AEF (使B ,C ,D 重合于P ),三棱锥P-AEF 的外接球表面积为( )A .B .C .D .【答案】C 【解析】如图,由题意可得,三棱锥P-AEF 的三条侧棱PA ,PE ,PF 两两互相垂直, 且,,把三棱锥P-AEF 补形为长方体,则长方体的体对角线长为, 则三棱锥P-AEF 的外接球的半径为,外接球的表面积为.故选:C .13.已知球O 夹在一个二面角l αβ--之间,与两个半平面分别相切于点,A B .若2AB =,球心O 到该二面角的棱l 的距离为2,则球O 的表面积为( ) A .8πB .6πC .4πD .2π【来源】江西省萍乡市2021届高三二模考试数学(文)试题 【答案】A【解析】过,,O A B 三点作球的截面,如图:设该截面与棱l 交于D ,则OA l ⊥,OB l ⊥,又OA OB O =,所以l ⊥平面AOB ,所以OD l ⊥,所以||2OD =,依题意得,OA AD OB BD ⊥⊥,所以,,,O A D B 四点共圆,且OD 为该圆的直径,因为||2||AB OD ==,所以AB 也是该圆的直径,所以四边形OADB 的对角线AB 与OD 的长度相等且互相平分,所以四边形OADB 为矩形,又||||OA OB =,所以该矩形为正方形,所以2||||22OA AB ==,即圆O 的半径为2,所以圆O 的表面积为24(2)8ππ⨯=. 故选:A14.已知点,,A B C 在半径为2的球面上,满足1AB AC ==,3BC =,若S 是球面上任意一点,则三棱锥S ABC -体积的最大值为( ) A .32312+ B .3236+ C .23312+ D .3312+ 【答案】A【解析】设ABC 外接圆圆心为O ',三棱锥S ABC -外接球的球心为O ,1AB AC ==,设D 为BC 中点,连AD ,如图,则AD BC ⊥,且O '在AD 上,221()22BC AD AB =-=, 设ABC 外接圆半径为r ,222231()()()242BC r AD r r =+-=+-,解得1r =, 22||23OO r '∴=-=要使S ABC -体积的最大,需S 到平面ABC 距离最大, 即S 为O O '32,所以三棱锥S ABC -体积的最大值为11112)2)3322ABCS ⨯=⨯⨯⨯=故选:A15.已知半球O 与圆台OO '有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为( )A B C .6D 【答案】D【解析】如图1所示,设BC x =,CO r '=,作CF AB ⊥于点F ,延长OO '交球面于点E ,则1BF r =-,OO CF '===2得CO O D ''⋅=()()11O E O H OO OO ''''⋅=+⋅-,即((211r =+⋅,解得212x r =-,则圆台侧面积(2π1102x S x x ⎛⎫=⋅+-⋅<< ⎪⎝⎭,则'2322S x ππ=-,令'0S =,则3x =或x =,当0x <<时,'0S >x <<'0S <,所以函数2π112x S x ⎛⎫=⋅+-⋅ ⎪⎝⎭在⎛ ⎝⎭上递增,在⎝上递减,所以当3x =时,S 取得最大值.当3x BC ==时,21123x r =-=,则213BF r =-=.在轴截面中,OBC ∠为圆台母线与底面所成的角,在Rt CFB △中可得cos 3BF OBC BC ∠==故选:D .16.(2020·重庆八中高三)圆柱的侧面展开图是一个面积为216π的正方形,该圆柱内有一个体积为V 的球,则V 的最大值为 【答案】323π【解析】设圆柱的底面直径为2r ,高为l ,则222π16πr l l =⎧⎨=⎩,解得24πr l =⎧⎨=⎩.故圆柱的底面直径为4,高为4π,所以圆柱内最大球的直径为4,半径为2,其体积为34π32π233⨯=. 17.(2020·江西高三)半正多面体(semiregular solid )亦称“阿基米德多面体”,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为2,则该二十四等边体外接球的表面积为【答案】8π【解析】2,侧棱长为2的正四棱柱的外接球,2222(2)(2)(2)2R ∴=++,2R ∴,∴该二十四等边体的外接球的表面积24πS R =24π(2)8π=⨯=.18.(2020·福建高三期末(理))在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别为1AA ,BC 的中点,点M 在棱11B C 上,11114B M BC =,若平面FEM 交11A B 于点N ,四棱锥11N BDD B -的五个顶点都在球O 的球面上,则球O 半径为 【答案】2293【解析】如图1,2,,B M F 三点共线,连结22,B E B MF ∈从而2B ∈平面FEM ,则2B E 与11A B 的交点即为点N ,又12Rt B B N ∆与1Rt A EN ∆相似,所以1112112A E A NB B NB ==; 如图2,设11B D N ∆的外接圆圆心为1O ,半径为r ,球半径为R ,在11B D N ∆中,111445,103NB D D N ︒∠==,由正弦定理得453r =,所以1853D P =,在1Rt DD P ∆中,解得4293DP =,即42293R =,所以所求的球的半径为2293.19.(2020·黑龙江高三(理))设,,,A B C D 是同一个半径为4的球的球面上四点,在ABC 中,6BC =,60BAC ∠=︒,则三棱锥D ABC -体积的最大值为【答案】183【解析】ABC 中,6BC =,60BAC ∠=︒,则643223sin sin 60a r r A ===∴=︒,22max 6h R r R =-=,222222cos 36a b c bc A b c bc bc bc =+-=+-≥∴≤ ,1sin 932S bc A =≤ 当6a b c ===时等号成立,此时11833V Sh ==20.(2020·河北承德第一中学高三)正三棱锥S -ABC 的外接球半径为2,底边长AB =3,则此棱锥的体积为【答案】934或334【解析】设正三棱锥的高为h ,球心在正三棱锥的高所在的直线上,H 为底面正三棱锥的中心因为底面边长AB=3,所以2222333332AH AD ⎛⎫==-= ⎪⎝⎭当顶点S 与球心在底面ABC 的同侧时,如下图此时有222AH OH OA += ,即()()222322h +-=,可解得h=3因而棱柱的体积113393333224S ABC V -=⨯⨯⨯⨯=当顶点S 与球心在底面ABC 的异侧时,如下图有222AH OH OA +=,即()222322h +-=,可解得h=1所以113333313224S ABC V -=⨯⨯⨯⨯=9333421.(2020·江西高三(理))已知P,A,B,C 是半径为2的球面上的点,PA=PB=PC=2,90ABC ∠=︒,点B 在AC 上的射影为D ,则三棱锥P ABD -体积的最大值为 【答案】338【解析】如下图,由题意,2PA PB PC ===,90ABC ∠=︒,取AC 的中点为G ,则G 为三角形ABC 的外心,且为P 在平面ABC 上的射影,所以球心在PG 的延长线上,设PG h =,则2OG h =-,所以2222OB OG PB PG -=-,即22424h h --=-,所以1h =. 故G CG 3A ==,过B 作BD AC ⊥于D ,设AD x =(023x <<),则23CD x =-,设(03)BD m m =<≤,则~ABD BCD ,故23m xx m-=, 所以()223m x x =-,则()23m x x =-,所以ABD 的面积()3112322S xm x x ==-,令()()323f x x x =-,则()2'634f x x x =-(),因为20x >,所以当3032x <<时,()'0f x >,即()f x 此时单调递增;当33232x ≤<时,()'0f x ≤,此时()f x 单调递减.所以当332x =时,()f x 取到最大值为24316,即ABD 的面积最大值为1243932168=.当ABD 的面积最大时,三棱锥P ABD -体积取得最大值为19333388⨯=.22.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.【来源】宁夏固原市第五中学2021届高三年级期末考试数学(文)试题 【答案】163π【解析】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=,所以球O 的半径为2323x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 23.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =,M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___【答案】π 【解析】PA ⊥平面ABC ,AB BC ⊥,将三棱锥P ABC -补成长方体ABCD PEFN -,则三棱锥P ABC -的外接球直径为22222223R PC PA AB AD PA AC ==++=+=,所以,3R =,设球心为点O ,则O 为PC 的中点,连接OM ,O 、M 分别为PC 、BC 的中点,则//OM PB ,且2211222OM PB PA AB ==+=, 设过点M 的平面为α,设球心O 到平面α的距离为d . ①当OM α⊥时,2d OM ==;②当OM 不与平面α垂直时,2d OM <=. 综上,2d OM ≤=.设过点M 的平面截三棱锥P ABC -的外接球所得截面圆的半径为r ,则221r R d =-≥,因此,所求截面圆的面积的最小值为2r ππ=.24.若正四棱锥P ABCD -的底面边长和高均为8,M 为侧棱PA 的中点,则四棱锥M ABCD -外接球的表面积为___________.【来源】山西省运城市2021届高三上学期期末数学(文)试题 【答案】132π【解析】在正四棱锥P ABCD -中M 为侧楼PA 中点,∴四棱锥M ABCD -外接球即为棱台MNEF ABCD -的外接球,如图,四棱锥P ABCD -的底面边长和高均为8,1214,42AB O N O M ===∴ 212242AO MO ==∴设球心为O ,则图中12,OO A OMO △△均为直角三角形, 设1OO h =,222(42)OA h ∴=+,222(22)(4)OM h =++,A , M 都在球面上,222O O M R A =∴=,解得21,33h R =∴=,24132S R ππ∴==球25.已知P 为球O 球面上一点,点M 满足2OM MP =,过点M 与OP 成30的平面截球O ,截面的面积为16π,则球O 的表面积为________.【来源】广西钦州市2021届高三第二次模拟考试数学(理)试题 【答案】72π 【解析】如图所示:设截面圆心为1O , 依题意得130OMO ∠=, 设1OO h =,则2OM h =, 又2OM MP =,所以3OP h =,即球的半径为3h ,所以3ON h =,又截面的面积为16π,所以()2116O N ππ=,解得14O N =,在1Rt OO N 中,()22316h h =+, 解得2h =,所以球的半径为32, 所以球的表面积是()243272S ππ==,故答案为: 72π 26.如图是数学家GeminadDandelin 用来证明一个平面截圆锥得到的截面是椭圆的模型(称为丹德林双球模型):在圆锥内放两个大小不同的小球,使得它们分别与圆锥侧面、截面相切,设图中球1O 和球2O 的半径分别为1和3,128O O =,截面分别与球1O 和球2O 切于点E 和F ,则此椭圆的长轴长为___________.【来源】江苏省盐城市阜宁县2020-2021学年高三上学期期末数学试题【答案】15【解析】如图,圆锥面与其内切球12,O O 分别相切与,B A ,连接12,O B O A ,则12,O B AB O A AB ⊥⊥,过1O 作12O D O A 于D ,连接12,,O F O E EF 交12O O 于点C ,设圆锥母线与轴的夹角为α,截面与轴的夹角为β,在Rt △12O O D 中,2312DO ,22182215O D11221515cos 84O D O O α===128O O = , 218CO O C =-,△2EO C △1FO C ,11218O C O C EO O F -= 解得12O C =,26O C = 222211213CF O C FO ∴=-=-= ,即13cos 2CFO C , 所以椭圆离心率为cos 25cos 5c e aβα=== 在△2EO C 中223cos cos 2EC ECO O C β=∠== 解得33EC =,432EF c ==2325155a a =⇒= 2215a ∴=故答案为:21527.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.【来源】江苏省六校2021届高三下学期第四次适应性联考数学试题 【答案】16538【解析】如图所示:平面ABMN 将长方体分成两部分,MN 有可能在平面11CDD C 上或平面1111A D C B 上,根据对称性知,两球半径和的最大值是相同的,故仅考虑在平面11CDD C 上的情况,延长11B C 与BM 交于点P ,作1O Q BC ⊥于Q 点,设1CBP BPB α∠=∠=,圆1O 对应的半径为1r ,根据三角形内切圆的性质, 在1Rt O QB 中,12QBO α∠=,15BQ BC CQ r =-=-,111tan 25O Q r BQ r α==-, 则15tan5251tan 1tan 22r ααα==-++,又当BP 与1BC 重合时,1r 取得最大值,由内切圆等面积法求得1512251213r ⨯≤=++,则2tan 23α≤ 设圆2O 对应的半径为2r ,同理可得266tan2r α=-, 又252r ≤,解得7tan 212α≥. 故1255566tan 176(1tan )221tan 1tan 22r r αααα+=-+-=--+++,72tan 1223α≤≤, 设1tan 2x α=+,则195[,]123x ∈,()5176f x x x=--, 由对号函数性质易知195[,]123x ∈,函数()f x 单减,则19519165()()1761912123812f x f ≤=--⨯=,即最大值为16538 故答案为:16538 28.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为___________.【来源】江苏省南京市秦淮中学2021届高三下学期期初学情调研数学试题【答案】183【解析】ABC 为等边三角形且其面积为93,则23934ABC SAB ==,6AB ∴=,如图所示,设点M 为ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===, 点M 为三角形ABC 的重心,2233BM BE ∴==, Rt OMB ∴中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,所以三棱锥D ABC -体积的最大值19361833D ABC V -=⨯=29.已知四面体ABCD 的棱长均为6,,EF 分别为棱,BC BD 上靠近点B 的三等分点,过,,A E F 三点的平面与四面体ABCD 的外接球O 的球面相交,得圆'O ,则球O 的半径为___________,圆'O 的面积为__________.【来源】河南省九师联盟2021届高三下学期3月联考理科数学试题【答案】3 8π【解析】。
正方体截面的探究教学设计无为县襄安中学李向林背景介绍为了使课改工作开展的更有成效,很重要的方面,就是要重构课堂,在现代课堂的教学中,我们应该清楚地认识到:1.课堂不是教师表演的舞台,而是师生之间交流、互动的舞台。
2.课堂不是对学生进行训练的场所,而是引导学生发展的场所。
3.课堂不只是传授知识的场所,而更应该是探究知识的基地。
4.课堂不是教师教学行为模式化运作的天堂,而是教师教育智慧充分展现的竞技场。
在进行立体几何中“如何求作平面与平面的交线”这部分内容的教学时,为了提高学生学习立体几何的兴趣,帮助一些学生克服对立体几何的畏惧心理,我适时补充了“正方体的截面”这个内容。
考虑到要通过会“求作平面与平面的交线”从而学会“过已知点求作正方体的截面”对学生而言是有一定难度的。
因此,能否通过这节课的学习让学生体会到数学知识就在我们身边、感悟到数学的美,激发出学生学习数学的兴趣和强烈的求知欲望,初步培养学生动手实验、观察比较、归纳总结的能力和探究意识、创新意识,就成为这节课首要解决的问题。
为了更好地突破以上难点,落实新课标的精神,我运用"学生为主体,教师为引导,问题为核心,体验为红线"的探究性学习方式,逐步培养学生的创造性思维;在教学策略上我通过实物操作与电脑演示相结合的方法帮助学生了解正方体截面的各种可能的形状以及有否特殊的形状。
教材分析《正方体截面的探究》是人民教育出版社《普通高中课程标准实验教科书·数学·必修2》关于正方体的“截面”问题的教学设计。
本课是在学生已经学习了平面的三个基本性质的基础上,为了更深刻地理解平面图形与立体图形之间的关系及求作平面与平面的交线,帮助学生初步建立空间观念,发展几何直觉,而安排的一节以实验操作为主的探究课。
新课程标准强调课程实施应从学生的学习兴趣,生活经验和认知水平出发,倡导体验、实践、参与、交流的学习方式和任务型的教学途径,发展学生的主动思维能力和大胆实践的创新精神。
1.3 截一个几何体一、单选题1.如图,一个有盖..的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是A.B.C.D.【答案】D【解析】【分析】根据圆柱体的截面图形可得.【详解】解:将这杯水斜着放可得到A选项的形状,将水杯倒着放可得到B选项的形状,将水杯正着放可得到C选项的形状,不能得到三角形的形状,故选D.【点睛】本题主要考查认识几何体,解题的关键是掌握圆柱体的截面形状.2.粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线【答案】B【解析】【分析】点动线,线动成面,将滚筒看做线,在运动过程中形成面.【详解】解:滚筒看成是线,滚动的过程成形成面,故选:B.【点睛】本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键.3.用一个平面取截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆柱B.球体C.圆锥D.以上都有可能【答案】A【解析】【分析】根据圆柱、球体、圆锥的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.【详解】解:A、用一个平面去截一个圆柱,得到的图形可能是四边形,故A选项符合题意;B、用一个平面去截一个球体,得到的图形可能是圆,故B选项不合题意;C、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项不符合题意;D、因为A选项符合题意,故D选项不合题意;故选A.【点睛】本题考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.4.如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是()A.圆B.长方形C.椭圆D.平行四边形【答案】B【解析】分析:此题实质是垂直圆柱底面的截面形状;解:水面的形状就是垂直圆柱底面的截面的形状,即为长方形;故选B.5.用一个平面去截几何体,截面不可能是三角形的是()A.圆柱B.圆锥C.三棱柱D.正方体【答案】A【解析】【分析】根据正方体、球体、棱柱、圆柱的形状特点判断即可.【详解】A、圆柱的截面跟圆、四边形有关,截面不可能是三角形,符合题意;B、过圆锥的顶点和下底圆心的面得到的截面是三角形,不符合题意;C、过三棱柱的三个面得到的截面是三角形,不符合题意;D、过正方体的三个面得到的截面是三角形,不符合题意.故选:A.【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,从中学会分析和归纳的思想方法.6.用一个平面去截一个几何体,其截面形状是圆,则原几何体可能为()①圆柱①圆锥①球①正方体①长方体A.①①B.①①①C.①①①①D.①①①①①【答案】B【解析】【分析】根据圆柱、圆锥、球、正方体、长方体的形状进行判断即可,可用排除法.【详解】解:①圆柱的截面形状可能是圆,符合题意;①圆锥的截面形状可能是圆,符合题意;①球的截面形状一定是圆,符合题意;①正方体的截面形状不可能是圆,不符合题意;①长方体的截面形状不可能是圆,不符合题意;故选B.【点睛】本题考查了用平面去截一个几何体,截面的形状即与被截的几何体有关,还与截面的角度和方向有关.7.如图所示,用一个平面去截一个圆柱,则截得的形状应是(①A.B.C.D.【答案】B【解析】【分析】当截面的角度和方向不同时,圆柱体的截面不相同进行判断即可.【详解】解:平面平行圆柱底面截圆柱可以得到一个圆,而倾斜截得到椭圆,所以B选项是正确的.【点睛】本题考查的是截面位置与截面的关系, 解答的关键是知道截面位置不同所得截面可能不同;8.一个几何体的一个截面是三角形,则原几何体一定不是下列图形中的( )A.圆柱和圆锥B.球体和圆锥C.球体和圆柱D.正方体和圆锥【答案】C【解析】【分析】观察题目,每个选项中都有圆锥,而圆锥的截面可能是三角形,故可以判断A①B①D;根据圆柱的截面可能是圆,长方形,不会是三角形,球体的截面永远是圆对C选项进行判断.【详解】圆柱的截面可能是圆,长方形,不会是三角形,球体的截面永远是圆,也不会是三角形.故选C①【点睛】本题主要考查的是几何体的有关知识,熟练掌握常见几何体截面的形状是解答本题的关键.9.用一个平面去截圆锥,截面图形不可能是()A.B.C.D.【答案】C【解析】试题分析:根据圆锥的形状特点判断即可,也可用排除法.解:如果用平面取截圆锥,平面过圆锥顶点时得到的截面图形是一个等腰三角形,如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆,如果不与底面平行得到的就是一个椭圆或抛物线与线段组合体,所以不可能是直角形.故选;C.点评:此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.10.一个正方体锯掉一个角后,顶点的个数是① ①A.7个或8个B.8个或9个C.7个或8个或9个D.7个或8个或9个或10个【答案】D【解析】如下图,一个正方体锯掉一个角,存在以下四种不同的情形,新的几何体的顶点个数分别为:7个、8个、9个或10个.故选D.二、填空题11.正方体的截面中,边数最多的是________边形.【答案】六【解析】解:①用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,①最多可以截出六边形.故答案为:六.12.在“长方体、圆柱、圆锥”三种几何体中,用一个平面分别去截三种几何体,则截面的形状可以截出长方形也可以截出圆形的几何体是_____.【答案】圆柱【解析】【分析】首先当截面的角度和方向不同时,长方体的截面始终不是圆,无论什么方向截取圆锥都不会截得长方形,从而可用排除法可得答案.【详解】解:用一个平面截长方体,不管角度与方向,始终截不到圆,所以排除长方体,用一个平面截圆锥,不管角度与方向,始终截不到长方形,所以排除圆锥,用一个平面截圆柱,可以截到长方形与圆.故答案为:圆柱.【点睛】本题考查的是对基本的几何立体图形的认识,掌握长方体,圆柱,圆锥的特点是解题的关键.13.用一个平面去截下列几何体,截面可能是圆的是__________.(填写序号)①三棱柱;①圆柱;①圆锥;①长方体;①球【答案】①①①【解析】【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【详解】用一个平面去截球,截面是圆,用一个平面去截圆锥或圆柱,截面可能是圆,但用一个平面去截棱柱,截面不可能是圆.故答案为:①①①【点睛】本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.14.小华用一个平面去截圆柱体,所得到的截面形状可能是_______(写出一个即可).【答案】长方形或梯形或椭圆或圆【解析】【分析】用平面取截一个圆柱体,横着截时截面是椭圆或圆(截面与上下底平行),竖着截时,截面是长方形(截面与两底面垂直)或梯形.【详解】用平面取截一个圆柱体,横着截时截面是椭圆或圆(截面与上下底平行).竖着截时,截面是长方形(截面与两底面垂直)或梯形.故答案为:长方形或梯形或椭圆或圆.【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.15.下列说法:①球的截面一定是圆;①正方体的截面可以是五边形;①棱柱的截面不可能是圆;①长方体的截面一定是长方形,其中正确的有___________个【答案】3【解析】【分析】根据用一个平面截几何体,从不同角度截取所得形状会不同,进而分析得出答案.【详解】解::①球的截面一定是圆,说法正确;①正方体的截面可以是五边形,说法正确;①棱柱的截面不可能是圆,说法正确;①长方体的截面中,边数最多的多边形是六边形,也可以是三角形,故说法错误;故答案为:3.【点睛】本题考查了截面的形状.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.主要考查学生的观察图形的能力、空间想象能力和动手操作能力.16.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.【答案】三角形【解析】【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键.17.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n棱柱,最多可以截得________边形.n .【答案】五,六,七,2【解析】【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.18.一块方形蛋糕,一刀切成相等的两块,两刀最多切成4块,试问:五刀最多可切成__ 块相等体积的蛋糕,十刀最多可切成____块(要求:竖切,不移动蛋糕).【答案】16 56【解析】当切1刀时,块数为1+1=2块;当切2刀时,块数为1+1+2=4块;当切3刀时,块数为1+1+2+3=7块;…当切n刀时,块数=1+①1+2+3…+n①=1+()12n n+.n=5代入公式得16,n=10,代入公式得56.点睛:找规律题需要记忆常见数列1①2①3①4……n.1①3①5①7……2n-1.2①4①6①8……2n.2①4①8①16①32……2n.1①4①9①16①25 (2)2①6①12①20……n(n+1).学会常见数列的变形,才能具体问题找到规律.三、解答题19.(1)用一个平面去截一个几何体,可以得到圆形的截面的几何体有?(2)用一个平面去截一个几何体,可以得到三角形的截面的几何体有?【答案】(1)球,圆柱,圆锥;(2)三棱柱,三棱锥,正方体.【解析】(1)根据截面是圆,可得几何体是旋转体,根据旋转得到的几何体,可得答案;(2)根据截面与几何体的三个面相交,可得截面是三角形.【详解】(1)用一个平面去截一个几何体,可以得到圆形的截面的几何体有球,圆柱,圆锥;(2)用一个平面去截一个几何体,可以得到三角形的截面的几何体有三棱柱,三棱锥,正方体,故答案为:(1)球,圆柱,圆锥;(2)三棱柱,三棱锥,正方体.【点睛】此题考查截一个几何体,解题关键在于掌握图形的形状结构.20.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少?【答案】(1)()254πcm ;(2)能截出截面最大的长方形,长方形面积的最大值为:()236cm 【解析】【分析】(1)用圆柱上下底面积加上侧面积即可;(2)当截得的面积最大时,长方形的长为底面直径,宽为6,可得面积最大值.解:(1)圆柱体的表面积为:232236ππ⨯⨯+⨯⨯1836ππ=+;()254π=cm ;(2)能截出截面最大的长方形.该长方形面积的最大值为:()2(32)636⨯⨯=cm .【点睛】本题考查了圆柱表面积的求法和截几何体,根据截面的形状既与被截的几何体有关,还与截面的角度和方向有关,得出这个圆柱体的截面面积最大是长方形是本题的关键.21.如图,图①1①是正方体木块,把它切去一块,可能得到①2①①①3①①①4①①①5①所示的图形,问①2①①①3①①①4①①①5①图中切掉的部分可能是其他几块中的哪一块?【答案】①2①图切掉的部分可能是①3①图和①5①图,①3①图切掉的部分可能是①2①图,①5①图切掉的部分可能是①2①图.【解析】试题分析:如图所示,图(3)可能是通过如下图(6①方法切割得到的,切下去的就是图(2①①图(5)可通过如下图(7)方法切割得到的,切下的是图(2①.试题解析:(2)图切掉的部分可能是(3)图和(5)图,(3)图切掉的部分可能是(2)图,(5)图切掉的部分可能是(2)图.22.如图,用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,请回答下列问题:(1)截面一定是什么图形?(2)剩下的几何体可能有几个顶点?【答案】(1)三角形;(2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点.【解析】【分析】①1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形;①2)当截面截取由三个顶点组成的面时可以得到三角形,剩下的几何体有7个点,当截面截取一棱的一点和两底点组成的面时可剩下几何体有8个点,当截面截取由2条棱中点和一顶点组成的面时剩下几何体有9个顶点.当截面截取由三棱中点组成的面时,剩余几何体有10个顶点.【详解】①1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形;①2)剩下的几何体可能有7个顶点、或8个顶点、或9个顶点、或10个顶点,如图所示:【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.23.一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体.问:其中三面都涂色的小正方体有多少个?两面都涂色的小正方体有多少个?只有一面涂色的小正方体有多少个?各面都没有涂色的小正方体有多少个?【答案】8,12,6,1【解析】试题分析:在大正方体的顶点处的小正方体的三面都有色;有一条棱在大正方体的棱上的小正方体的两面有色,与大正方体没有公共棱的小正方体有一面有色,在大正方体的中心的小正方体各面都无色.试题解析:解:由题意知,各顶点处的小正方体的三面都涂色,共有8个;有一条边在棱上的小正方体有12个,是两面涂色;每个面的正中间有一个只有一面涂色的,有6个;正方体正中心处有1个小正方体,它的各面都没有涂色.因此三面涂色的小正方体有8个,两面涂色的小正方体有12个,只有一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个.24.如图①是一个正方体,不考虑边长的大小,它的平面展开图为图①,四边形APQC是截正方体的一个截面.问截面的四条线段AC,CQ,QP,PA分别在展开图的什么位置上?【答案】线段AC,CQ,QP,PA分别在展开图的面ABCD,BCGF,EFGH,EFBA上.【解析】【分析】把立体图形表面的线条画在平面展开图上,找到四边形APQC四个顶点所在的位置这个关,再进一步确定四边形的四条边所在的平面即可①【详解】根据四边形所在立体图形上的位置,确定其顶点所在的点和棱,以及四条边所在的平面:顶点:A−A①C−C①P在EF边上,Q在GF边上.边AC在ABCD面上,AP在ABFE面上,QC在BCGF面上,PQ在EFGH面上.如图:【点睛】此题考查正方体的展开图,解决此题的关键是抓住四边形APQC四个顶点所在的位置,再进一步确定四边形的四条边所在的平面就可容易地画出.。
FE 1Q1几何体中的的截面问题1.定义及相关要素用一个平面去截几何体,此平面与几何体的交集,叫做这个几何体的截面.此平面与几何体表面的交集(交线)叫做截线.此平面与几何体的棱的交集(交点)叫做截点. 2.作多面体的截面方法(交线法):该作图关键在于确定截点,有了位于多面体同一表面上的两个截点即可连结成截线,从而求得截面.题型一、截面的形状1.P 、Q 、R 三点分别在直四棱柱AC 1的棱BB 1、CC 1和DD 1上,试画出过P 、Q 、R 三点的截面.1解答:(1)连接QP 、QR 并延长,分别交CB 、CD (2)连接EF 交AB 于T,交AD 于S .(3)连接RS 、TP 。
则多边形PQRST 即为所求截面。
2.已知P 、Q 、R 分别是四棱柱ABCD ―A 1B 1C 1D 1的棱CD 、DD 1和AA 1上的点,且QR与AD 不平行,求作过这三点的截面.2解答: (1)连接QP 并延长交DA 延长线于点I 。
(2)在平面ABCD 内连接PI 交AB 于点M 。
(3)连接QP 、RM 。
则四边形PQRM 即为所求。
注:①若已知两点在同一平面内,只要连接这两点,就可以得到截面与多面体的一个面的截线。
②若面上只有一个已知点,应设法在同一平面上再找出第二确定的点。
③若两个已知点分别在相邻的面上,应找出这两个平面的交线与截面的交点。
3.一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能...是D3答案:D解析:考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D 。
题型二、截面面积、长度等计算4.过正方体1111D C B A ABCD -的对角线1BD 的截面面积为S ,S max 和S min 分别为S 的最大值和最小值,则minmaxS S 的值为 ( ) A .23 B .26 C .332 D .362 4答案:C解析:设M 、N 分别为AA 1、CC 1的中点.易证截面BMD 1N1D1D 5. 如图,已知球O 是棱长为1 的正方体ABCD ﹣A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为 . 5答案:解析:平面ACD 1是边长为的正三角形,且球与以点D 为公共点的三个面的切点恰为三角形ACD 1三边的中点,故所求截面的面积是该正三角形的内切圆的面积,则由图得,△ACD 1内切圆的半径是×tan30°=,则所求的截面圆的面积是π××=.6.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( )A .1 BCD .26答案:C解析:1O 与2O 的公共弦为AB ,球心为O,AB 中点为C , 则四边形C OO O 21为矩形,12||||,OO OC =||2,OA =所以||1,||AC AC OC OC =⊥∴== 7.已知正四棱锥P —ABCD 的棱长都等于a ,侧棱PB 、PD 的中点分别为M 、N ,则截面AMN 与底面ABCD 所成二面角大小的正切值为 . 7答案:12O2OCO2解析:过A 在平面ABCD 内作直线l BD //,连接AC,BD 交于O ,连接PO ,MN .记PO 、MN 交于O‘.因为PB 、PD 的中点分别为M 、N ,所以MN //BD ,因为l BD //,所以l MN //,A l ∈,所以l ⊂平面AMN , l =平面AMN∩平面ABCD .易知O AO '∠即为面AMN 与底面ABCD 所成二面角的平面角.1tan 242AO PO a O O a O AO ''==⇒=⇒= 8.如图,正方体1111ABCD A BC D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S 。
球的截面与外接问题一、截面性质:当截面圆为小圆时有:球心和截面圆心的连线 截面圆;球心到截面的距离d 与球的半径R 及截面的半径r 有下面的关系: ;(计算公式)二、多面体的外接球(转化成截面问题)(一)、特殊几何体的外接球:1、长(正)方体的外接球直径等于长(正)方体的对角线!(二)直棱柱的外接球:1、球心为直棱柱上下两底面外心连线的中点;2、222R r d =+中:22h l d ==(为直棱柱高的一半),r 为底面多边形外接圆的半径;d 为心距! (三)圆锥的外接球:1、球心在圆锥的高上,且有h R d =+h 为圆锥的高,2、222R r d =+:R 为外接球的半径,r 为底面圆的半径,d 为心距)(四)正棱锥的外接球:1、球心在正棱锥的高上(即顶点与底面中心的连线),且有h R d =+(h 为圆锥的高);2、222R r d =+:r 为底面多边形外接圆的半径,d 为心距)(五)有三条侧棱互相垂直的三棱锥(直三棱锥):补形为一个长(正)方体,练习二1、一球的球心为O ,R=4,圆C 是该球的一个截面圆,圆心为C ,且|OC |=3,则圆C 的面积为 ;2、三棱锥ABCD 中,ABC ∆为边长为6的正三角形,AD ABC ⊥面且AD=4,则该三棱锥的外接球体积为 ;3、正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为_________.4.表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积 ;5、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 6、已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163 ,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 。
7、正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .8、若三棱锥P-ABC 的三条侧棱PA,PB,PC 两两互相垂直且长相等,其外接球半径为2,则三棱锥的表面积为;9、(不规则几何体:确定球心位置法)在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为A.12512π B.1259π1253π10.半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体棱长为,求半球的表面积和体积.11、(13全国2)已知正四棱锥O ABCD -的体积为,则以O 为球心,OA 为半径的球的表面积为________。
第3讲 球与截面面积一.选择题(共8小题)1.(2020•宜昌模拟)已知正方体1111ABCD A B C D -的棱长为2,点M 为棱1DD 的中点,则平面ACM 截该正方体的内切球所得截面面积为( ) A .3πB .23π C .π D .43π 【解析】解:设圆心到截面距离为d ,截面半径为r , 由O ACM M AOC V V --=,即1111122212233323AMC AOC S d S ∆∆===, 2ACMd S ∆∴=,122362ACM S ∆==, 故d =,又221d r +=,213r ∴=,所以截面的面积为23r ππ=,故选:A .2.(2020秋•葫芦岛期末)如图所示,已知球O 为棱长为3的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为( )A .32πB .3πCD .【解析】解:根据题意知,平面1ACD = 且球与包含上三角形的三边的平面的切点恰好在此三线段的中点, 故所求截面的面积是该正三角形的内切圆的面积, 则由图得,1ACD ∆内切圆的半径是:r =, ∴平面1ACD 截球O 的截面面积为:232S ππ=⨯=. 故选:A .3.(2021•达州模拟)如图(二),需在正方体的盒子内镶嵌一个小球,使得镶嵌后三视图均为图(一)所示,且面11A C B 截得小球的截面面积为23π,则该小球的体积为( )A .6π B .43π C .32?3πD 【解析】解:设正方体盒子的棱长为2a ,则内接球的半径为a ,平面11A BC 是边长为的正三角形,且球与以点1B 为公共点的三个面的切点恰为△11A BC 三边的中点,∴所求截面的面积是该正三角形的内切圆的面积,则由图得,△11A BC tan 30⨯︒=,则所求的截面圆的面积是222133a a πππ=== ∴该小球的体积为344133V ππ=⋅=球.故选:B .4.(2020秋•山西期中)一平面过半径为R 的球O 的半径OA 的中点,且垂直于该半径OA ,则该平面截球的截面面积为( )A .212R πB 2RC .2R πD .234R π【解析】解:设球的半径为R ,截面半径为R 由图可知,22214R R r =+,2234r R ∴=.2234S r R ππ∴==.故选:D .5.(2021•南昌校级二模)已知棱长等于1111ABCD A B C D -,它的外接球的球心为O ,点E 是AB 的中点,则过点E 的平面截球O 的截面面积的最小值为( ) A .πB .2πC .3πD .4π【解析】解:棱长等于1111ABCD A B C D -,它的外接球的半径为3,||OE =当过点E 的平面与OE 垂直时,截面面积最小,r =33S ππ=⨯=, 故选:C .6.(2021春•沈阳校级期末)棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E ,F 分别为棱AB ,11A D 的中点,则经过E ,F 球的截面面积的最小值为( ) A .38πB .2π C .58πD .78π【解析】解:因为正方体内接于球,所以2R =R =, 过球心O 和点E 、F 的大圆的截面图如图所示,则直线被球截得的线段为QR ,过点O 作OP QR ⊥,垂足为点P ,EF =,OF =OP =所以,在QPO ∆中,QP =. 所以所求经过E 、F 的平面截球O 所得的截面的面积的最小值是:2105()8ππ=.故选:C .7.(2021•宝清县一模)已知球O 是棱长为1的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为( ) A .πB .2πC .3π D .6π【解析】解:根据题意知,平面1ACD 且球与以点D 为公共点的三个面的切点恰为三角形1ACD 三边的中点, 故所求截面的面积是该正三角形的内切圆的面积,则由图得,1ACD ∆tan 30︒=,则所求的截面圆的面积是6ππ=. 故选:D .8.(2020秋•晋中期末)如图,表面积为12π的球O 内切于正方体1111ABCD A B C D -,则平面1ACD 截球O 的截面面积为( )ABC .2πD .4π【解析】解:设球的半径为r ,由球O 得表面积为12π,得2412r ππ=,则r =,即正方体棱长为根据题意知,平面1ACD 是边长为且球与以点D 为公共点的三个面的切点恰为三角形1ACD 三边的中点, 故所求截面的面积是该正三角形的内切圆的面积,则由图得,1ACD ∆tan30︒=则所求的截面圆的面积是22ππ⨯=. 故选:C .二.填空题(共11小题)9.(2020秋•钦州月考)已知P 为球O 球面上一点,点M 满足2OM MP =,过点M 与OP 成30︒的平面截球O ,截面的面积为16π,则球O 的表面积为 72π .【解析】解:如图,设截面为圆1O ,依题意,130OMO ∠=︒,设1OO h =,则2OM h =, 又2OM MP =,则3OP h =,即球O 的半径为3h ,则3ON h =, 因为截面的面积为16π,故21()16O N ππ⋅=,解得14O N =,在Rt △1OO N 中,由勾股定理有22(3)16h h =+,解得h所以球O 的半径为2472ππ⋅=. 故答案为:72π.10.(2020秋•海门市校级月考)已知球O 为棱长为1的正方体1111ABCD A B C D -的内切球,则平面11B CD 截球O 的截面面积为 6π. 【解析】解:如图,正方体1111ABCD A B C D -的内切球切正方体的六个面于各面的中心, 则平面11B CD 截球O 的截面为正三角形11B CD 的内切圆,正方体1111ABCD A B C D -的棱长为1,∴正三角形11B CD ,设其内切圆的半径为r ,则1122r =⨯,即r =.∴平面11B CD 截球O 的截面面积为26ππ⨯=. 故答案为:6π. 11.(2020秋•忻府区校级期末)已知球O 是棱长为6的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为 6π .【解析】解:根据题意知,平面1ACD 是边长为D 为公共点的三个面的切点恰为三角形1ACD 三边的中点故所求截面的面积是该正三角形的内切圆的面积,则由图得,1ACD ∆内切圆的半径是6tan30︒= 则所求的截面圆的面积是6π. 故答案为:6π.12.(2020秋•昆明校级月考)已知球O 与棱长均为ABCD 的各条棱都相切,则平面ABC 截球的截面面积为83π .【解析】解:将正四面体ABCD ,补成正方体,则正四面体ABCD 的棱为正方体的面上对角线.正四面体ABCD 的棱长为∴正方体的棱长为4球O 与正四面体的各棱都相切, ∴球O 的直径为正方体的棱长4,设平面ABC 截球O 的截面圆的圆心为M ,圆M 与AB 相切于点N ,则OM ⊥平面ABC ,如图2所示,由正方体性质知M 为体对角线PD 与平面ABC 的交点,且1166OM PD ==⨯=,在Rt OMN ∆中,MN == ∴平面ABC 截球的截面面积为83π.故答案为:83π.13.(2020秋•芜湖校级模拟)已知底面是正方形的长方体1111ABCD A B C D -的底面边长6AB =,侧棱长1AA =,它的外接球的球心为O ,点E 是AB 的中点,点P 是球O 上任意一点,有以下判断: ①PE 长的最大值是9;②三棱锥P EBC -体积最大值是15+; ③存在过点E 的平面,截球O 的截面面积是8π;④Q 是球O 上另一点,8PQ =,则四面体ABPQ 体积的最大值为56;⑤过点E 的平面截球O 所得截面面积最大时,1B C 垂直于该截面. 其中判断正确的序号是 ①②④ .【解析】解:①底面是正方形的长方体1111ABCD A B C D -的底面边长6AB =,侧棱长1AA =,∴外接10=,半径为5,点E 是AB 的中点,4OE ∴=,PE ∴长的最大值是459+=,故正确;②P 到平面EBC 的最大值为5+EBC ∆的面积为9,∴三棱锥P EBC -体积最大值是15+,故正确;③过点E 的平面,截球O 的截面面积最小是9π,故不正确;④当PQ 中点与11C D 中点重合,且PQ 垂直于平面11ABC D 时,则四面体ABPQ 体积为56,故正确; ⑤过侧面11C CB B 是矩形,1CB 不垂直1C B ,1BC 不可能垂直于11ABC D ,故不正确. 故答案为:①②④.14.已知球O 是正方体1111ABCD A B C D -的内切球,且平面1ACD 截球O 的截面面积为6π,则正方形外接球的表面积为 3π .【解析】解:设正方体的棱长为a ,则根据题意知,平面1ACD 的正三角形,且球与以点D 为公共点的三个面的切点恰为三角形1ACD 三边的中点,故所求截面的面积是该正三角形的内切圆的面积,则由图得,1ACD ∆tan30⨯︒=, 平面1ACD 截球O 的截面面积为6π, ∴26()6a ππ=, 1a ∴=,∴∴正方形外接球的表面积为234()3ππ=. 故答案为:3π.15.(2020•桂林二模)如图,已知球O 是棱长为1的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为6π.【解析】解:根据题意知,平面1ACD D 为公共点的三个面的切点恰为三角形1ACD 三边的中点,故所求截面的面积是该正三角形的内切圆的面积,则由图得,1ACD ∆tan 30︒=,则所求的截面圆的面积是6ππ=. 故答案为:6π.16.(2020•宜宾一模)已知正四棱柱1111ABCD A B C D -的底面边长6AB =,侧棱长1AA =,它的外接球的球心为O ,点E 是AB 的中点,点P 是球O 的球面上任意一点,有以下判断, (1)PE 长的最大值是9;(2)三棱锥P EBC -的最大值是323;(3)存在过点E 的平面,截球O 的截面面积是3π;(4)三棱锥1P AEC -体积的最大值是20.正确的是 (1)(4) .10=半径是5,(1)PE长的最大值是:59+=,正确;(2)P 到平面EBC的距离最大值是55+=(3)球的大圆面积是25π,过E 与球心连线垂直的平面是小圆,面积为9π,因而(3)是错误的.(4)三棱锥1P AEC -体积的最大值是111138520(332AEC V S h h =⋅=⨯⨯⨯⨯=最大是半径)正确. 故答案为:(1)(4)17.(2020•萧县校级三模)已知正四棱柱1111ABCD A B C D -的底面边长6AB =,侧棱长1AA =,它的外接球的球心为O ,点E 是AB 的中点,点P 是球O 的球面上任意一点,有以下判断:(1)PE 长的最大值是9;(2)P 到平面EBC的距离最大值是4+(3)存在过点E 的平面截球O 的截面面积是3π;(4)三棱锥1P AEC -体积的最大值是20.其中正确判断的序号是 (1)(4) .10=半径是5,(1)PE长的最大值是:59+=,正确;(2)P 到平面EBC的距离最大值是55+=(3)球的大圆面积是25π,过E 与球心连线垂直的平面是小圆,面积为9π,因而(3)是错误的.(4)三棱锥1P AEC -体积的最大值是111138520(332AEC V S h h =⋅=⨯⨯⨯⨯=最大是半径)正确. 故答案为:(1)(4)18.(2020秋•长沙县校级月考)已知球O 是棱长为1的正方体1111ABCD A B C D -的外接球,P 为棱1DD 中点,现在棱AD 和棱CD 上分别取点M ,N ,使得平面MNP 与正方体各棱所成角相等,则平面MNP 截球O 的截面面积是 512π .【解析】解:正方体1111ABCD A B C D -中,P 是棱1DD 中点,M ,N 分别为棱AD ,CD 上任意点, 正方体1111ABCD A B C D -中,有1111//////AB CD A B C D ,1111//////AD BC B C A D ,1111//////AA BB CC DD若平面MNP 与正方体各棱所成角相等,只需平面MNP 与AD ,DC ,1DD 所成角相等即可,∴四面体D MNP - 中,DN ,DM ,DP 与面MNP 所成角相等,设DM a =,DN b =,过D 作DE ⊥面MNP ,如下图所示:DN ∴与面MNP 所成角为DNE ∠,DM 与面MNP 所成角为DM E ∠,DP 与面MNP 所成角为DPE ∠, 则sin DE DNE DN ∠=,sin DE DME DM ∠=,sin DE DPE DP∠=, 由所成角相等,得12DN DM DP ===, 即M ,N ,P 分别为AD ,DC ,1DD 的中点,//MN AC ∴,1//MP AD ,故面//MNP 面1AD C ,连接1DB ,1A D ,1AD ,DB ,AC ,在正方体1111ABCD A B C D -中,11A D AD ⊥,又11A B ⊥平面11A ADD ,111A B AD ∴⊥,而1111A D A B A =,1AD ∴⊥平面11A B D ,则1AD ⊥平面11A B D ,1//MP AD ,MP ∴⊥平面11A B D ,则1MP B D ⊥,同理1MN B D ⊥,MP M N M =,且MP ,MN ⊂平面MNP ,1B D ∴⊥平面MNP ,球O 是正方体1111ABCD A B C D -的外接球且正方体棱长为1,O ∴为1B D的中点,1B D =设1B D ⋂面MNP O =',则O '为截面圆圆心且OO '⊥面MNP ,OO O N ∴'⊥', 因此222111()()()263OO ON NO '=-'=-=, 设截面圆的半径r ,OD 为球的半径R,则112R B D ==222()R r OO ∴-=', 故222315()4312r R OO =-'=-=, ∴截面面积为2512r ππ=. 故答案为:512π.19.(2021春•永川区期末)球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45︒角,则这个平面截球的截面面积为 32π .【解析】解:平面与球截面的圆上作经过这个点的直径,则该圆的直径与球经过两个端点的半径组成了一个三角形.容易证明这个三角形与平面垂直,三角形过该点的角为45度,所以三角形为等腰直角三角形,可得圆的半径为截面圆的面积为232ππ=.故答案为:32π.。