当前位置:文档之家› 谐振电路的工作原理

谐振电路的工作原理

谐振电路的工作原理
谐振电路的工作原理

浅析谐振电路的工作原理

摘要:在谐振状态下,电路的总阻抗达到极值或近似达到极值。研究谐振的目的就是要认识这种客观现象,并在科学和应用技术上充分利用谐振的特征,同时又要预防它所产生的危害。

关键词:谐振电路;工作;原理

在谐振状态下,电路的总阻抗达到极值或近似达到极值。研究谐振的目的就是要认识这种客观现象,并在科学和应用技术上充分利用谐振的特征,同时又要预防它所产生的危害。在具有电感和电容的电路中,总电压和总电流的相位一般是不同的,若调节电路的l,c或电源频率f,使总电压和总电流达到同相位,这时电路中就产生了谐振现象。处于谐振状态的电路,称为谐振电路。谐振电路在电子技术中有着广泛的应用,例如电视机高频头的调谐电路、收音机的中频放大器等。但在某些电路中由于谐振的发生,也会造成不利的影响,甚至损坏电气设备,应设法加以避免。

常用的谐振电路有串联谐振和并联谐振。

1. 串联谐振电路

在rlc串联电路中曾经讨论过,当xl=xc时,电路的电压和电流的相位相同,电路呈纯电阻性,这种现象叫做串联谐振,

1.1谐振条件和谐振频率

根据串联谐振的定义,当电路发生谐振xl=xc时,因此产生串联谐振的条件为xl=xc

谐振时电源的频率称为谐振频率,以f0表示。

电路交换和分组交换(包交换)的基本原理与区别

从传输技术来说,电话网是采用电路交换方式,即电话通信的电路一旦接通后,电话用户就占用了一个信道,无论用户是否在讲话,只要用户不挂断,信道就一直被占用着。一般情况下,通话双方总是一方在讲话、另一方在听,听的一方没有讲话也占用着信道,而且讲话过程中也总会有停顿的时间。因此用电路交换方式时线路利用率很低,至少有50%以上的时间被浪费掉。而因特网的信息传送是采用分组交换方式,所谓分组交换,是把数字化的信息,按一定的长度“分组”、打“包”,每个“包”加上地址标识和控制信息,在网络中以“存储—转发“的方式传送,即遇到电路有空就传送,并不占用固定的电路或信道,因此被称为是“无连接”的方式。这种方式可以在一个信道上提供多条信息通路;此外在因特网上传送信息通常还采用数据压缩技术,被压缩的语音信息分组在到达目的地后再复原、合成为原来的语音信号送到接收端用户。因此,利用因特网传送语音信息要比电话网传送语音的线路利用率提高许多倍,这也是电话费用大大降低的重要原因。 请简述电路交换和分组交换(包交换)的基本原理与区别 电路交换 每部电话都连接到交换机上,而交换机使用交换的方法,让电话用户之间可以很方便地通信。一百多年来,电话交换机虽然经过了多次更新换代,但交换的方式一直都是电路交换。当电话机数量增多,就使用彼此连接起来的交换机来完成全网的交换工作。注意,是这种交换机采用了电路交换的方式,后来的分组交换也是采用了一样的电信网,只是不一样类型的交换机(当然协议也不同)。 从通信资源的分配角度来看,“交换”就是按照某种方式动态地分配传输线路的资源。 在使用电路交换打电话之前,先拨号建立连接:当拨号的信令通过许多交换机到达被叫用户所连接的交换机时,该交换机就向用户的电话机振铃;在被叫用户摘机且摘机信号传送回到主叫用户所连接的交换机后,呼叫即完成,这时从主叫端到被叫端就建立了一条连接。通话过程。通话结束挂机后,挂机信令告诉这些交换机,使交换机释放刚才这条物理通路。这种必须经过“建立连接--通信--释放连接”三个步骤的连网方式称为面向连接的。电路交换必定是面向连接的。 用户到交换机之间的叫用户线,归电话用户专用。交换机之间、许多用户共享的叫中继线,拥有大量的话路,正在通话的用户只占用其中的一个话路,在通话的全部时间里,通话的两个用户始终占用端到端的固定传输带宽。 以电路联接为目的的交换方式是电路交换方式。电话网中就是采用电路交换方式。我们可以打一次电话来体验这种交换方式。打电话时,首先是摘下话机拨号。拨号完毕,交换机就知道了要和谁通话,并为双方建立连接,等一方挂机后,交换机就把双方的线路断开,为双方各自开始一次新的通话做好准备。因此,我们可以体会到,电路交换的动作,就是

全热交换器的工作原理

全热交换器的工作原理 2003年出现的SARS疫情,使我们人类的健康面临严峻的挑战,2009年又爆发了猪流感,于是关于人居环境的空气品质问题多有讨论,提出健康空调是今后空调的发展方向。 但究竟什么是健康的空调,怎样去实现健康舒适的空调,关于这个问题,舒适100也进行了一些分析,指出全空气系统是最佳的空调系统,它可以实现对建筑热湿控制及空气品质的全面控制,同时也为充分利用自然资源,进行全新风运行提供条件。 加大新风量是实现良好空气品质的最好方法,只从空气品质的角度来说,进行全新风运行的空调系统才是最好的系统,可是由此带来的能量消耗确实是非常大的。根据武汉的气象资料计算,当室内设计值在26℃,60%时,对于公共建筑,处理1m3/h新风量,整个夏季需要投入的冷能能耗累计约9.5kw·h左右。可见加大新风量后,能量消耗就有很大增加。因此,需要在新风与排风之间加设能量回收设备。 1 目前市场上的能量回收设备有两类: 一类是显热回收型,一类是全热回收型。显热回收型回收的能量体现在新风和排风的温差上所含的那部分能量;而全热回收型体现在新风和排风的焓差上所含的能量。单从这个角度来说,全热性回收的能量要大于显热回收型的能量,这里没有考虑回收效率的因素。因此全热回收型是更加节能的设备。 按结构分,热回收器分为以下几种: (1)回转型热交换器

(2)热回收环热交换器 (3)热管式热交换器 (4)静止型板翅式热交换器 在以上几种热交换器中,热回收环型和热管型一般只能回收显热。回转型是一种蓄热蓄湿型的全热交换器,但是它有转动机构,需要额外的提供动力。而静止型板翅式全热交换器属于一种空气与空气直接交换式全热回收器,它不需要通过中间媒质进行换热,也没有转动系统,因此,静止型板翅式全热交换器(也叫固定式全热交换器)是一种比较理想的能量回收设备。 2 固定式全热交换器的性能 2.1 固定式全热交换器 固定式全热交换器是在其隔板两侧的两股气流存在温差和水蒸 气分压力差时,进行全热回收的。它是一种透过型的空气——空气全热交换器。 这种交换器大多采用板翅式结构,两股气流呈交叉型流过热交换器,其间的隔板是由经过处理的、具有较好传热透湿特性的材料构成。 2.2 三种效率的定义 全热交换器的性能主要通过显热、湿交换效率和全热交换效率来评价,它们的计算公式为: 显热交换效率:SE= 湿交换效率:ME= 全热交换效率:EE=

占空比可调的方波振荡电路工作原理及案例分析

占空比可调的方波振荡电路工作原理及案例分析 参考电路图5.12所示,测试电路,计算波形出差频率。 电容 图5.12 方波发生电路(multisim) 通过上述电路调试,发现为方波发生器。 一、电路组成 如图5.13,运算放大器按照滞回比较器电路进行链接,其输出只有两种可能的状态:高电平或低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动的产生相互变换,所以电路中必须引入反馈;因为输出状态应按一定的时间,间隔交替变化,即产生周期性的变化,所以电路中要有延迟环节来确定每种状态维持的时间。 电路组成:如图所示为矩形波发生电路,它由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充、放电实现输出状态的自动转换。电压传输特性如图6.8所示: U 0 U N U P U z U c R 3 R 2 R 1 R 图5.13方波发生电路 二、工作原理 从图5.13可知,设某一时刻输出电压U O =+U Z ,则同相输入端电位U P =+U T 。U O 通过R 对电容C 正向充电。反相输入端电位U N 随时间t 增长而逐渐升高,当t 趋近于无穷时,U N 趋于+U z ;

当U N =+U T ,再稍增大,U O 就从+U Z 越变为-U Z ,与此同时U p 从+U T 越变为-U T 。随后,U O 又通过R 对电容C 放电。 反相输入端电位U N 随时间t 增长而逐渐降低,当t 趋近于无穷时,U N 趋于-U Z ;当U N =-U T ,稍减小,U O 就从-U Z ,于此同时,U p 从-U T 跃变为+U T ,电容又开始正向充电。 上述过程周而复始,电路产生了自激振荡。 三、波形分析及主要参数 由于矩形波发生电路中电容正向充电与反向充电的时间常数均等于R3C,而且充电的总幅值也相等因而在一个周期内U O =+U Z 的时间与U O =-U Z 的时间相等,U O 对称的方波,所以也称该电路为对称方波发生电路。电容上电压U C 和电路输出电压U O 波形如图所示。矩形波的宽度T k 与周期T 之比称为占空比,因此U O 是占空比为1/2的矩形波。 利用一阶RC 电路的三要素法可列出方程,求出振荡周期。 3122(12/)T R C R R =+ 振荡频率为: 1/f T = 调整电压比较器的电路参数R 1,R 2和U Z 可以改变方波发生电路的振荡幅值,调整电阻R 1,R 2,R 3和电容C 的数值可以改变电路的振荡频率。 四、占空比可调电路 占空比的改变方法:使电容的反向和正向充电时间常数不同。利用二极管的单向导电性可以引导电流流经不同的通路,占空比可调的矩形波发生电路如图2-5所示,电容上电压和输出波形的如图 6.19 Z U ±O 图 5.14占空比可调电路 电路工作原理:当U O =+U Z 时,通过RW1,D1,和R3对电容C 正向充电,若忽略二极管导通时的等效电阻,则时间常数为:

新风换气机原理

新风换气机工作原理 (型号:YH--600) 全热新风换气机的核心器件是全热交换器,室内排出的污浊空气和室外送入的新鲜空气既通过传热板交换温度,同时又通过板上的微孔交换湿度,从而达到既通风换气又保持室内温、湿度稳定的效果。这就是全热交换过程。当全热交换器在夏季制冷期运行时,新风从排风中获得冷量,使温度降低,同时被排风干燥,使新风湿度降低;在冬季运行时,新风从排风中获得热量,使温度升高,同时被排风加湿。

新风换气机是一种将室外新鲜气体经过过滤、净化,热交换处理后送进室内,同时又将室内受污染的有害气体经过过滤、净化。热交换处理后排出室外,而室内的温度基本不受新风影响的一种高效节能,环保型的高科技产品。 一、新风换气机大基本结构 新风换气机主要由热交换系统、动力系统、过滤系统、控制系统、降噪系统及箱体组成。 1、热交换系统 目前,无论在国内或是国外,在新风换气机上采用的热交换器有静止和旋转两种形式其中转轮式热交换器也属于旋转式类型。从正常使用和维护角度出发,静止式优于旋转式,但大于2×10000m3/h的大型机来说,一般只能靠转轮式热交换器才能实现,因此可以说静止式和旋转式各有优缺点。 为了易于布置设备内的气流通道,以缩小整机体积,新风换气机采用了叉流、静止板式热交换器。亦即:冷热气体的运动方向相互垂直,其气流属于湍流边界层内的对流换热性质。 因此充分的热交换可以达到较高的节能效果。 2、动力系统 新风换气机动力部分采用的是高效率、降噪音风机。将经过过滤、净化和热交换处理后的室外新鲜空气强制性送入室内,同时把经过过滤,净化和热交换处理后的室内有害气体强制性排出室外。 3、过滤系统 新风换气机的过滤系统分为初效、中效、亚高效和高效四种过滤器。换气机在两个进风口处分别设置空气过滤器,可有效过滤空气中的灰尘粒子、纤维等杂质,有效地阻止室外空气中的尘埃等杂质进入室内达到净化的目的,并确保主机的热交换部件被污物附着而影响设备性能。 4、控制系统 ①新风换气机选用可靠的电器组件,以安全可靠长寿名运行实现不同风量的

环形振荡器的工作原理

环形振荡器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

环形振荡器的工作原理 环形振荡器是利用门电路的固有传输延迟时间将奇数个反相器首尾相接而成,该电路没有稳态。因为在静态(假定没有振荡时)下任何一个反相器的输入和输出都不可能稳定在高电平或低电平,只能处于高、低电平之间,处于放大状态。 假定由于某种原因v11产生了微小的正跳变,经G1的传输延迟时间tpd后,v12产生了一个幅度更大的负跳变,在经过G2的传输延迟时间tpd后,使v13产生更大的正跳变,经G3的传输延迟时间tpd后,在vo产生一个更大的负跳变并反馈到G1输入端。可见,在经过3tpd后,v11又自动跳变为低电平,再经过3tpd之后,v11又将跳变为高电平。如此周而复始,便产生自激振荡。如图2所示,可见振荡周期为 T=6tpd 环形振荡器的改进原因 环形振荡器的突出优点是电路极为简单,但由于门电路的传输延迟时间极短,TTL门电路只有几十纳秒,CMOS电路也不过一二百纳秒,难以获得较低的振荡频率,而且频率不易调节,为克服这个缺点,有几种改进电路,下面给出对照图。如图3和图4所示。 环形振荡器的改进原理 接入RC 电路以后,不仅增大了门G2的传输延迟时间tpd2有助于获得较低的振荡频率。而且通过改变R 和C 的数值可以很方便地实现对频率的调节。 环形振荡器的实用电路 如图4,为了进一步加大RC和G2的传输延迟时间,在实用电路中将电容C 的接地端改接G1的输出端。如图10.3.5所示。例如当v12处发生负跳变时,经过电容C使v13首先跳变到一个负电平,然后再从这

热交换新风机工作原理

热交换新风机工作原理 进入21世纪,随着城市PM2.5的不断加剧,在空气净化行业出现了一颗炙手可热的新星——热交换新风机。那么,热交换新风机的工作原理是怎样的呢? 热交换新风机是一种高效节能型空调通风装置,其核心功能是利用室内、外空气的温差和湿差,通过能量回收机芯良好的换能特性,在双向置换通风的同时,产生能量交换,使新风有效获取排风中的可用物质,从而大大节约了新风预处理的能耗,达到节能换气的目的,其节能效果非常显著。 夏季,使用全热交换器时通过热交换芯体把室外将室内的炎热、潮湿空气中的温度和湿度,传导至排出室外的室内凉爽、干燥、污浊的空气中去。 冬季,使用热交换器换气时,通过热交换芯体用室内温度的污浊空气中的温度预热将要送入室内的室外寒冷的新鲜空气。并将湿气一并导入将要送入室内的室外干燥的空气中。 广州快净环保科技有限公司生产的快净热交换新风机作为当前最受欢迎的新风系统,拥有非常突出的优势,主要包括以下几点: 一、换热效率高。产品采用先进的逆流结构设计,能够大大的提高换热效率; 二、外形紧凑小巧。全热交换器的外形为六边形,降低了模块的厚度,特殊的通风孔道有利于模块比交叉流机芯做得更短; 三、性能稳定、无需清洁。通风孔道采用了流线设计,可以有效地防止着尘,无需对交叉流机芯进行定期的清洁; 四、使用寿命长。采用了ABS框架结构,非常坚固而耐用,使用寿命相比交叉流机芯增加了一倍。 热交换新风机适用范围: 适合于住宅、写字楼、宾馆、医院、实验室、机房、棋牌室、餐饮、办公、娱乐几乎所有场所,可以根据不同户型面积、人口数量、周边环境设计不同方案,适合各种建筑和人群。 空气是每个人每时每刻都要呼吸的必需品,如果离开清新、自然的空气我们的生活将面临很多健康安全问题,只有保证室内良好的空气质量,才能营造更为舒适健康的居住环境,热交换新风机运用高新技术,可以轻松帮你实现室内空气流通,让您畅享自然健康生活。

振荡电路的原理

高频放大器 使用高频功率放大器的目的是放大高频大信号使发射机末级获得足够大的发射功率。 高频放大器的工作状态是由负载阻抗Rp、激励电压vb、供电电压VCC、VBB等4个参量决定的。如果VCC、VBB、vb 3个参变量不变,则放大器的工作状态就由负载电阻Rp决定。此时,放大器的电流、输出电压、功率、效率等随Rp而变化的特性,就叫做放大器的负载特性。 原理 放大电路所需的通频带由输入信号的频带来确定,为了不失真地放大信号,要求放大电路的通频带应大于信号的频带。如果放大电路的通频带小于信号的频带,由于信号的低频段或高频段的放大倍数下降过多,放大后的信号不能重现原来的形状,也就是输出信号产生了失真。这种失真称为放大电路的频率失真,由于它是线性的电抗元件引起的,在输出信号中并不产生新的频率成分,仅是原有各频率分量的相对大小和相位发生了变化,故这种失真是一种线性失真。 For personal use only in study and research; not for commercial use 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻变换和选频滤波功能。高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 本级振荡电路 本级振荡电路图 本级振荡电路采用改进型晶体振荡电路(克拉伯振荡电路),振荡频率由晶振决定,为6MHz,三极管的静态工作点由RP0控制,集电极电流ICQ,一般取0.5mA~4mA,ICQ过大会产生高次谐波,导致输出波形失真。调节RP1可使输出波形失真较小、波形较清晰,RP2用来调节本振信号的幅值,以便得到适当幅值的本振信号作为载波。 混频器 工作频率 混频器是多频工作器件,除指明射频信号工作频率外,还应注意本振和中频频率应用范围。

电路交换和分组交换的区别及优缺点(知识浅析)

从多方面比较电路交换、报文交换和分组交换的主要优缺点。 答:一、电路交换的优点: 1.在通话的全部时间内用户独占分配的传输线路,采用的静态分配策略 2.通信双方建立的通路中任何一点出现故障,就需要重新拨号建立连接才可以继续通话 3.计算机网络中传输的数据往往是突发式的,并且通信时线路上的很多时候都是空闲的,会造成资源的浪费。另外,由于各异的计算机和终端的传输数据的速率不相同,采用电路交换就很难相互通信。 电路交换的缺点: 1、虽然信息传输的时延较小,但是电路的接续时间较长 电路资源被通信双方独占,整个电路利用率低 3、有呼损,即可能出现由于对方用户终端设备忙或交换网负载过重而呼叫不通 二、报文交换的优点: 1、报文交换是以报文为单位的存储转发原理,根据目的地址的不同转发到不同线路上发送 2、在报文交换的过程中,没有电路接续的过程,来自不同用户的报文可以在一条线路上以报文为单位进行多路复用,线路可以以它的最高传输能力工作,大大提高线路的利用率

3、无须预约传输带宽,动态逐段利用传输带宽对突发式数据通信效率高,通信迅速。 报文交换的缺点: 1、信息通过交换机的时延大,并且时延的变化也大 2、交换机要有能力对报文进行存储。其中有的报文可能很长,要求交换机要有较强的处理能力和存储容量。 3、报文交换不运用于即时交互式数据通信 三、分组交换的优点: 1、 优点所采用的手段 高效在分组传输的过程中动态分配传输带宽,对通信链路是逐段占用 灵活为每一个分组独力地选择转发路由 迅速以分组为为传送单位,可以不先建立连接就能向其他主机发送分组 可靠保证可靠性的网络协议,分布式多路由的分组交换网,使网络有很好的生存性 分组交换的缺点: 1、分组在各路由器存储转发时需要排队,这就会造成一定的时延。此外还无法确保通信时端到端所需要的带宽。

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

RC正弦波振荡电路图文分析原理

RC正弦波振荡电路图文分析原理参考电路图5.7所示,搭建一个100KHz的正弦波振荡电路。 U O (a)测试电路(b)输出波形 图5.7 RC正弦波振荡电路(multisim) LC振荡电路的振荡频率过低时,所需的L和C就很大,这将使振荡电路结构不合理,经济不合算,而且性能也变坏,在几百千赫兹以下的振荡电路常采用RC振荡电路。由RC 元件组成的选频网络有RC称相型,RC串并联型,RC双T型等结构。这里主要介绍RC串并联型网络组成的振荡电路,即RC桥式正弦波振荡电路。 一、RC串并联型网络的选频特性 RC桥式电路如图5.8所示,设R1=R2=R,C1=C2=C, 11 1 2 1 2 11 1 2 11 2 j CR Z R j C j C R j C R Z j CR R j C ω ωω ω ω ω + =+= == + + 则反馈系数 2 12 1 1 3() f o U Z F U Z Z j CR CR ω ω === ++-

令 01C R ω= ,即 012f RC π= 则式(7-13)可写为 000 001 1 3( )3() F f f j j f f ωωωω = = +-+- 其频率特性曲线如图5.9(a )、(b )所示。 从图中可看出,当信号频率f =f 0时,u f 与u 0同相,且有反馈系数 01 3 f U F U = =为最大。 (a)幅频特性 (b)相频特性 图5.8 RC 串并联网络 图5.9RC 串并联网络的频率特性 二、RC 桥式振荡电路 1、电路组成 图5.9所示电路是文氏电桥振荡电路的原理图,它由同相放大器A 及反馈网络F 两部分组成。图中RC 串并联电路组成正反馈选频网络,电阻R f 、R 是同相放大器中的负反馈回路,由它决定放大器的放大倍数。 RC 桥式振荡电路的起振条件 同相放大器的输出电压0U 与输入电压i U 同相,即0a ?=,从分析RC 串并联网络的选频特性知,当输入RC 网络的信号频率f =f 0时,0U 与f U 同相,即0f ?=,整个电路的相移0f a ???=+=,即为正反馈,满足相位平衡条件。 放大器的放大倍数1f u R A R =+ ,从分析RC 串联网络的选频特性知,在R 1=R 2=R ,C 1=C 2=C 的条件下,当f=f 0时,反馈系数F=1/3达到最大,此时,只要放大器的电压放大倍数略大 于连(即R f ≥2R ),就能满足AF >1的条件,振荡电路能自行建立振荡。 R 1 C 1R 1 C 2 -U o + - + U f Z 1 Z 2

电路交换和分组交换

电路交换和分组交换.txt爱情是彩色气球,无论颜色如何严厉,经不起针尖轻轻一刺。一流的爱人,既能让女人爱一辈子,又能一辈子爱一个女人!电路交换和分组交换 电路交换技术很少用于数据业务网络,主要是因为其资源利用效率和可靠性低。分组交换技术通过统计复用方式,提高了资源利用效率。而且当出现线路故障时,分组交换技术可通过重新选路重传,提高了可靠性。但是现实情况是:许多线路资源由于缺少交换能力而未被使用,使用的线路资源利用率往往不到百分之十,路由器平均一年的宕机时间不到5秒,发生故障的概率很小。因此上述原因对于当今选择交换技术没有意义。 而另一个方面,分组交换是非面向连接的,对于一些实时性业务有着先天的缺陷,虽然有资源预留等一系列缓解之道,但并不足以解决根本问题。因此这些业务的QoS问题较为复杂。而电路交换技术是面向连接的,很适合用于实时业务,其QoS问题要简单得多。同时,与分组交换技术相比,电路交换技术实现简单且价格低廉,易于用硬件高速实现。且由于其不需要缓冲区,而光缓冲技术似乎还比较遥远,因此它更易于与光技术融合。当然,电路交换技术的用户与WDM之间的流量粒度不匹配问题也有待进一步解决。如果抛开现有的设施,从头组网的话,相信大家选择电路交换技术的可能性要大得多。这里可以举出一个例子对电路交换技术和分组交换技术做一个比较。假设一个服务器通过一条1Mbit/s的链路与100个用户连接,其结果如表1所示。 表1 1Mbit/s链路与100个用户连接结果表: 电路交换分组交换 带宽 1Mbit/s 10Kbit/s 平均时延 50s 100s 最大时延 100s 100s 电路交换 每部电话都连接到交换机上,而交换机使用交换的方法,让电话用户之间可以很方便地通信。一百多年来,电话交换机虽然经过了多次更新换代,但交换的方式一直都是电路交换。当电话机数量增多,就使用彼此连接起来的交换机来完成全网的交换工作。注意,是这种交换机采用了电路交换的方式,后来的分组交换也是采用了一样的电信网,只是不一样类型的交换机(当然协议也不同)。 从通信资源的分配角度来看,“交换”就是按照某种方式动态地分配传输线路的资源。 在使用电路交换打电话之前,先拨号建立连接:当拨号的信令通过许多交换机到达被叫用户所连接的交换机时,该交换机就向用户的电话机振铃;在被叫用户摘机且摘机信号传送回到主叫用户所连接的交换机后,呼叫即完成,这时从主叫端到被叫端就建立了一条连接。通话过程。通话结束挂机后,挂机信令告诉这些交换机,使交换机释放刚才这条物理通路。这种必须经过“建立连接--通信--释放连接”三个步骤的连网方式称为面向连接的。电路交换必定是面向连接的。 用户到交换机之间的叫用户线,归电话用户专用。交换机之间、许多用户共享的叫中继线,

全热交换器技术参数

全热交换器技术参数 1.概述 1.1 工作原理 XFHQ系列全热交换器采用先进科技及工艺,芯体用特殊纸质经过化学处理加工而成,对温度、湿度、冷热能量回收起到最佳效果。 高效换热芯体,当室内空调排风与室外新风分别呈交叉方式流经换热芯体时,由于平隔板两侧气流存在温度差,产生传热,夏季运行时,新风从空调排风获得冷能,使温度降低;在冬季运行时,新风从空调排风中获得热能,使温度升高,这样通过换热芯体的热交换过程使新风从空调排风中回收了能量。 1.2特点 双向换气功能 将室外新风空气经过过滤后送入室内的同时,将室内污浊空气排出室外,彻底改善室内空气品质; 静音设计 内置空调专用低噪音离心风机,机箱内部覆有高效的吸音材料,全静音设计,人性化体现; 能量回收 机组内置高效的热交换器,将排出去的室内空气与送进来的室外空气进行冷热交换,在提供舒适温度空气的同时回收能量,节约能源; 控制方便 电气系统采用二次回路设计,使用开关面板,启动停止机组安全快速简单,可选择远程集中控制系统,与多联机室内机联网控制。 317

MDV4+i 直流变频智能多联中央空调 318 1.3 命名法 A,B,……Z 设计序列 S-三相,单相缺省 Z-纸芯式、L-轮转式、P-普通式 D-吊顶式、L-立柜式 新风量,单位100m 3 /h XFH-显换热式新风机 XFHQ-全换热式新风机

MDV4+i直流变频智能多联中央空调 2.参数 2.200~1200m3/h的产品采用发泡风道,具备旁通功能;2500~12000m3/h机型不带网络集中控制功能。 3.表中噪音是在额定静压安装条件半消音室测得,实际使用条件下的运行噪音可能高于此值,请根据设计安装具体条件,考虑相应的消音措施。 319

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

容积式热交换器的工作原理

容积式热交换器的工作原理1.自动控温节能型容积式热交换器,它充分利用蒸汽能源,高效、节能是一种新型热水器。普通热交换器一般需要配置水水热交换器来降低蒸汽凝结水温度以便回用。而节能型热交换器凝结出水温度在75℃左右,可直接回锅炉房重复使用。这样减少了设备投资,节约热交换器机房面积,从而降低基建造价:因此节能型容积式热交换器深受广大设计用户单位欢迎。 2.节能型容积式热交换器工作原理详图示。有立式、卧式两种类型,其技术参数详后项图表,本厂生产规格齐全,还可按用户单位特殊需要设计、加工。 3.本热交换器适用于一般工业及民用建筑的热水供应系统。热媒为蒸汽,加热排管工作压力为<0.6MPa,壳体工作压力为0~1.6MPa,出口热水温度为65℃。 4.节能型容积式热交换器,壳体材料有三种:碳素钢Q235-A、B,不锈钢IGr18Ni9Ti,碳素钢内衬铜,U型管材料有,紫铜管T2及不锈钢管ICr18Ni9Ti,可按需要加以选用。 5.卧式节能型式为钢制鞍式支座。与国际S154、S165相同。立式为柱脚支座。 6.热交换器必须设置安全装置,下列三种安全装置可选择其中一种装设于交换器上: (1)在交换器顶装安全阀,安全阀压力须与热交换器的最高工作压力相适应(向安全阀生产厂订货时需加以申明)。安全阀的安装与使用应符合劳动人事部《压力容器安全技术监督规程》的规定。 (2)在交换器顶部装设接通大气的引出管(在有条件的场合)。 (3)设膨胀水箱,与水加热器相连,以放出膨胀水量。 7.若水中含有硬度、盐类,使用热交换器时,器壁和管壁会形成水垢,导致换热率降低,能耗增加,因而影响使用,故应采用一定的软化措施。 8.钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水水质良好。钢壳内衬铜的厚度一般为 1.2mm。钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。此阀除非定期检修是绝对不能取消的。部分真空的形成原因可能是排水不当,低水位时从热交换器抽水过度,或者排气系统不良。水锤或突然的压力降也是造成负压的原因。 信息来源:51承压设备论坛https://www.doczj.com/doc/3b11977021.html, 原文链接:https://www.doczj.com/doc/3b11977021.html,/thread-25638-1-1.html

振荡电路工作原理详细分析

振荡电路工作原理详细分析注:这只是我个人的理解,仅供参考,如不正确,请原谅! 1、电路图和波形图 2、工作原理:晶体管工作于共发射极方式。集电极电压通过变压器反馈回基级,而变压器绕组的接法实现正反馈。其工作过程根据三极管的工作状态分为三个阶段:t1、t2、t3(如上图): 说明:此分析过程是在电路稳定震荡后,以一个完整波形周期为例进行分析,即起始Uce=12v。而对于电路刚接通时,工作原理完全相同,只是做波形图时,起始电压Uce=0v。 1)、电路接通后,进入t1阶段(晶体管为饱和状态)。 在t1的初始阶段,电路接通,流过初级线圈的电流不能突变,使得集电极电压Uce急速减小,由于时间很短,在波形中表现为下降沿很陡。而经过线圈耦合,会使基极电压Ube急速增大。此时,三极

管工作在饱和状态(Ube>=Uce)。基极电流ib失去对集电极电流ic 的控制。之后,随着时间增加,Uce会逐渐增加,Ube通过基极与发射机之间的放电而逐渐减少。基极电压Ube下降使得ib减小。 2)、当ib减小到ic /β时, 晶体管又进入放大状态,即t2阶段。 于是,ib的减小引起ic的减小,造成变压器绕组上感应电动势方向的改变,这一改变的趋势进一步引起ib的减小。如此又开始强烈的循环,直到晶体管迅速改变为截止状态。这一过程也很快,对应于脉冲的下降沿。在此过程中,电流强烈的变化趋势使得感应线圈上出现一个很大的感应电动势,Ube变成一个很大的负值。 3)、当晶体管截止后(t3阶段),ic=0,Uce经初级线圈逐渐上升到12v(变压器线圈中储存有少量能量,逐渐释放)。此时,直流12v电源通过27欧电阻和反馈线圈对基极电压充电,Ube逐渐上升,当Ube上升到0.7v左右时,晶体管重新开始导通(硅管完全导通的电压大约是0.7v)。于是下一个周期开始,重复上述各个阶段。其震荡周期T=t1+t2+t3;

网络通信的工作原理教案

第三章第二节课题:3.2 网络通信的工作原理 教学目标:1.了解OSI模型中的各个层次;2.了解TCP/IP协议在OSI模型的位置;3.了解数据交换技术的电路交换、报文交换、分组交换的工作原理,能进行不同的数据交换技术比较;4.使用数据交换技术的电路交换、报文交换、分组交换的工作原理解释生活中技术问题,培养学生探究能力,合作能力、观察能力;5.通过体验、感悟电路交换、报文交换、分组交换的工作原理的学习过程,体验技术发展的过程和思维,体验突破技术,改造技术、创新技术的成就感。 教学重点:OSI模型的理解、TCP/IP协议的重要地位、电路交换、报文交换、分组交换三者的特点与区别 教学难点:OSI模型的理解 课时安排:2课时 教学方法:演示法,讲授法,任务驱动法 教学过程: 第一课时:数据传输过程 一、OSI参考模型 1、很多同学都非常喜欢玩网络游戏,比如魔兽世界,梦幻西游。不知道同学们想不想了解这些网络游戏在网上的一个工作原理,了解游戏是如何在网上运作的。 2、在了解游戏之前,我们先来看看现实生活中的邮政系统,参照这个邮政系统能加快我们对网络游戏的一个理解。课本上的P55页上3.2.1数据传输过程中,图3-3 邮政系统的分层模型。大家可以想象一下我们平时的写信寄信的一个过程。首先我们写好信后,要让这封信能寄出去,我们就得贴邮票。而邮票,就是我们和邮政局的约定,我交8毛钱给你邮政局,那么你要负责帮我把信送到。而邮政局呢,也和运输部门有个类似的约定。通过这一系列的约定,我们可以保证我们所写的信能送到我们想要送到的目的地。但是这里注意一个问题:邮票做为约定不是一成不变的。比如说,刚刚解放前,也许送信只需要几分前。而现在人民的生活富裕了,相应的,一封信是8毛钱。也就是说,协议,或者约定完全是按照当时的情况做出的适当的处理。如果情况出现变化,协议一样可以随着情况而做出改变。 3、实际上,网络上数据的传输过程和现实中是非常类似的,我们可以来想象一下: 我现在有一批水果,准备运到罗马。如果我想实现这个目标,我需要什么条件? (1)首先我要有一条路,不管是马路还是铁路,这条路要能从出发点连接到目标点。 (2)路是有了,我要保证这条路是通畅的,不能说走进死胡同,我要保证这条路能够通车,假设我是用火车来运的话,不会出现半路出轨的现象 (3)路永远不会只有一条。条条道路通罗马,那么,我要保证我要走的道路能最快,最省钱的到达目的地。因此,我要选择一条近路。 路已经有了,基本条件已经具备,我们现在可以开始送东西了,但是是不是有了路就万无一失了。我们还需要有什么?

新风全热交换原理

全热交换器工作原理就是一种将室外新鲜气体经过过滤、净化,热交换处理后送进室内,同时又将室内受污染的有害气体进行热交换处理后排出室外,而室内的温度基本不受新风影响的一种高效节能,环保型的高科技产品。 工作原理:全热交换器的核心器件就是全热交换芯体,室内排出的污浊空气与室外送入的新鲜空气既通过传热板交换温度,同时又通过板上的微孔交换湿度,从而达到既通风换气又保持室内温、湿度稳定的效果。这就就是全热交换过程。当全热交换器在夏季制冷期运行时,新风从排风中获得冷量,使温度降低,同时被排风干燥,使新风湿度降低;在冬季运行时,新风从排风中获得热量,使温度升高,同时被排风加湿。 全热交换器主要由热交换系统、动力系统、过滤系统、控制系统、降噪系统及箱体组成。 1、热交换系统 目前,无论在国内或就是国外,在全热交换器上采用的热交换器有静止与旋转两种形式其中转轮式热交换器也属于旋转式类型。从正常使用与维护角度出发,静止式优于旋转式,但大于2×10000m3/h 的大型机来说,一般只能靠转轮式热交换器才能实现,因此可以说静止式与旋转式各有优缺点。 为了易于布置设备内的气流通道,以缩小整机体积,全热交换器采用了叉流、静止板式热交换器。亦即:冷热气体的运动方向相互垂直,其气流属于湍流边界层内的对流换热性质。 因此充分的热交换可以达到较高的节能效果。 2、动力系统 全热交换器动力部分采用的就是高效率、降噪音风机。将经过过滤、净化与热交换处理后的室外新鲜空气强制性送入室内,同时把经过过滤,净化与热交换处理后的室内有害气体强制性排出室外。 3、过滤系统 全热交换器的过滤系统分为初效、中效、亚高效与高效四种过滤器。换气机在两个进风口处分别设置空气过滤器,可有效过滤空气中的灰尘粒子、纤维等杂质,有效地阻止室外空气中的尘埃等杂质进入室内达到净化的目的,并确保主机的热交换部件不被污物附着而影响设备性能。 4、控制系统 ①全热交换器选用可靠的电器组件,以安全可靠长寿命运行实现不同风量的控制。 ②根据不同的使用环境选配不同的控制方式。 ③可实现自动、定时、预置。 5、降噪系统 全热交换器主机外壳内侧粘贴聚乙烯发泡材料,钣金件结合处有长效密封材料,可有效的降低整机的噪音。 6、外壳 全热交换器外壳采用柜架结构。分别采用冷板喷塑、不锈钢板等不同材质,亦可根据用户实际需求选择不同材质加工。 全热交换器的功能 1、过滤净化空气,保证室内的空气品质。 2、保证室内的冷热负荷(温度)基本不受新风的影响。 全热交换器的特点 1、双向换气 室内外双向换气,新风与污风等量置换,根据客户要求可实现正负压操作;新风与排风完全隔开,彻底避免交叉感染发生。 2、过滤处理

热交换器原理与设计 题库 考点整理 史美中(DOC)

热交换器原理与设计 题型:填空20%名词解释(包含换热器型号表示法)20% 简答10%计算(4题)50% 0 绪论 热交换器:将某种流体的热量以一定的传热方式传递给他种流体的设备。(2013-2014学年第二学期考题[名词解释]) 热交换器的分类:按照热流体与冷流体的流动方向分为:顺流式、逆流式、错流式、混流式 按照传热量的方法来分:间壁式、混合式、蓄热式。(2013-2014学年第二学期考题[填空]) 1 热交换器计算的基本原理(计算题) 热容量(W=Mc):表示流体的温度每改变1℃时所需的热量 温度效率(P):冷流体的实际吸热量与最大可能的吸热量的比率(2013-2014学年第二学期考题[名词解释]) 传热有效度(ε):实际传热量Q与最大可能传热量Q max之比2 管壳式热交换器 管程:流体从管内空间流过的流径。壳程:流体从管外空间流过的流径。 <1-2>型换热器:壳程数为1,管程数为2 卧式和立式管壳式换热器型号表示法(P43)(2013-2014学年第二学期考题[名词解释]) 记:前端管箱型式:A——平盖管箱B——封头管箱

壳体型式:E——单程壳体F——具有纵向隔板的双程壳体H——双分流 后盖结构型式:P——填料函式浮头 S——钩圈式浮头 U——U形管束 管子在管板上的固定:胀管法和焊接法 管子在管板上的排列:等边三角形排列(或称正六边形排列)法、同心圆排列法、正方形排列法,其中等边三角形排列方式是最合理的排列方式。(2013-2014学年第二学期考题[填空]) 管壳式热交换器的基本构造:⑴管板⑵分程隔板⑶纵向隔板、折流板、支持板⑷挡板和旁路挡板⑸防冲板 产生流动阻力的原因:①流体具有黏性,流动时存在着摩擦,是产生流动阻力的根源;②固定的管壁或其他形状的固体壁面,促使流动的流体内部发生相对运动,为流动阻力的产生提供了条件。 热交换器中的流动阻力:摩擦阻力和局部阻力 管壳式热交换器的管程阻力:沿程阻力、回弯阻力、进出口连接管阻力 管程、壳程内流体的选择的基本原则:(P74) 管程流过的流体:容积流量小,不清洁、易结垢,压力高,有腐蚀性,高温流体或在低温装置中的低温流体。(2013-2014学年第二学期考题[简答])

lc振荡电路分析_lc振荡电路工作原理及特点分析

lc振荡电路分析_lc振荡电路工作原理及特点分析 LC振荡电路,是指用电感L、电容C组成选频网络的振荡电路,用于产生高频正弦波信号,常见的LC正弦波振荡电路有变压器反馈式LC振荡电路、电感三点式LC 振荡电路和电容三点式LC振荡电路。LC振荡电路的辐射功率是和振荡频率的四次方成正比的,要让LC振荡电路向外辐射足够强的电磁波,必须提高振荡频率,并且使电路具有开放的形式。 LC振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。不过这只是理想情况,实际上所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,要么泄漏出外部,能量会不断减小,所以实际上的LC振荡电路都需要一个放大元件,要么是三极管,要么是集成运放等数电LC,利用这个放大元件,通过各种信号反馈方法使得这个不断被消耗的振荡信号被反馈放大,从而最终输出一个幅值跟频率比较稳定的信号。频率计算公式为f=1/[2(LC)], 其中f为频率,单位为赫兹(Hz);L为电感,单位为亨利(H);C为电容,单位为法拉(F)。 lc振荡电路工作原理及特点分析LC电磁振荡过程涉及的物理量较多,且各个物理量变化也比较复杂。实际分析过程中,如果注意到电场量(电场能、电压、电场强度)和磁场量(磁场能、电流强度、磁感应强度)的异步变化,电场量、磁场量各自的同步变化,充分利用包含电场能、磁场能在内的能量守恒,由能量变化辐射其他物理变化,就可快速地弄清各物理量的变化情况,判断电路所处的状态。 LC振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。由于所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,所以实际上的LC振荡电路都需要一个放大元

相关主题
文本预览
相关文档 最新文档