2.2 矩形波导
- 格式:ppt
- 大小:680.50 KB
- 文档页数:31
渐变矩形波导-概述说明以及解释1.引言1.1 概述概述部分应该介绍渐变矩形波导的概念和背景,以及本文将涉及的主要内容。
以下是一个可以作为参考的写作示例:在现代通信系统和雷达设备中,波导是一种重要的传输介质。
波导可以用于高频信号的传输,特别适用于无线通信和微波技术领域。
然而,传统的矩形波导在某些应用中存在一些限制,比如在高频段的传输损耗和频带的限制等问题。
为了克服这些限制,近年来,渐变矩形波导被广泛研究和应用。
渐变矩形波导是一种通过改变波导尺寸的方式实现频率变化的波导结构。
具体而言,渐变矩形波导具有随着波导截面沿着传输方向逐渐变化的尺寸,从而实现了频率的渐变。
本文将对渐变矩形波导进行详细探讨。
首先,我们将介绍渐变矩形波导的定义和基本特点。
其次,我们将讨论渐变矩形波导在不同领域的应用情况,包括通信系统、雷达设备等。
最后,我们将总结渐变矩形波导的优势和局限性,并展望其在未来的发展前景。
通过深入研究和理解渐变矩形波导,我们可以更好地利用这一波导结构在通信和雷达等领域中的潜力,为现代无线通信技术的发展做出更大的贡献。
文章结构部分的内容如下:1.2 文章结构本文分为引言、正文和结论三个部分。
引言部分通过概述渐变矩形波导的定义、特点、应用以及其优势、局限性和发展前景,引出了对渐变矩形波导的研究和探讨。
正文部分主要包括对渐变矩形波导的定义、特点和应用的详细介绍。
在定义部分,将解释渐变矩形波导是什么,其具体的结构和特性。
在特点部分,将详细分析渐变矩形波导的优点和特色,比如其在电磁波传输中的低损耗和高性能等。
在应用部分,将介绍渐变矩形波导在通信、雷达、天线等领域中的应用情况,并举例说明其在实际工程中的重要性和作用。
结论部分将总结渐变矩形波导的优势、局限性和发展前景。
优势部分将强调渐变矩形波导相较于其他传输介质的优点,局限性部分将指出其在某些特定条件下的限制和不足之处。
发展前景部分将展望渐变矩形波导在未来的研究和应用方向,以及可能存在的挑战和发展趋势。
习题课1.1 设一特性阻抗为50Ω的均匀传输线终端接负载R l =100Ω,求负载反射系数Γl ,在离负载0.2λ、0.25λ及0.5λ处的输入阻抗及反射系数分别为多少?解:根据终端反射系数与终端阻抗的关系10l 10100501100503Z Z Z Z --Γ===++根据传输线上任一点的反射系数与输入阻抗的关系2()j zlz ein 01()1()z Z Z z 得到离负载0.2λ、0.25λ及0.5λ处的输入阻抗及反射系数分别为2πj20.2λj0.8πλ1(0.2λ)3l eeZ (0.2λ)29.4323.79Ωin2πj20.25λλ1(0.25λ)3l e Z (0.25)25Ωin2πj20.5λλ1(0.5λ)3l e(反射系数具有λ/2周期性) Z (0.5)100Ωin (输入阻抗具有λ/2周期性)1.2 求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数εr=2.25的介质,求其特性阻抗及300MHz 时的波长。
解:空气同轴线的特性阻抗为0.7560ln60ln65.9Ω0.25b Z a填充相对介电常数εr=2.25的介质后,其特性阻抗为60600.75lnln 43.9Ω0.252.25rb Z af =300Mhz 时的波长/=0.67m rc f1.4 有一特性阻抗Z 0=50Ω的无耗均匀传输线,导体间的媒质参数εr=2.25,μr=1,终端接有R l =1Ω的负载。
当f =100MHz 时,其线长度为λ/4。
试求:① 传输线实际长度; ② 负载终端反射系数; ③ 输入端反射系数; ④ 输入端阻抗。
解:①传输线上的波长为/=2m g rc f所以,传输线的实际长度为=0.5m 4gl②根据终端反射系数与终端阻抗的关系10l 101504915051Z Z Z Z --Γ===-++③根据传输线上任一点的反射系数与终端反射系数的关系220.2524949()5151j j zl z ee ④传输线上任一点的反射系数与输入阻抗的关系in 04911()51502500Ω491()151z Z Z z1.10 特性阻抗为Z 0=150Ω的均匀无耗传输线, 终端接有负载Z l =250+j100Ω,用λ/4阻抗变换器实现阻抗匹配(如图所示),试求λ/4阻抗变换器的特性阻抗Z 01及离终端距离。
《电磁场与电磁波》课程仿真实验报告学号*********姓名Crainax专业光学与电子信息学院院(系)******2016 年11月27日1.实验目的1)理解均匀波导中电磁波的分析方法,TEM/TE/TM 模式的传输特性;2)了解HFSS 仿真的基本原理、操作步骤;3)会用HFSS 对金属波导的导波特性进行仿真;4)画出波导主模的电磁场分布;5)理解波导中的模式、单模传输、色散与截止频率等概念。
2.实验原理2.1导波原理如图1,z轴与金属波导管的轴线重合。
假设:1)波导管内填充的介质是均匀、线性、各向同性的;2)波导管内无自由电荷和传导电流;3)波导管内的场是时谐场。
图1 矩形波导以电场为例子,将上式代入亥姆霍兹方程 2E+k2E=0,并在直角坐标内展开,即有:其中k c表示电磁波在与传播方向相垂直的平面上的波数。
如果导波沿z方向传播,则对波导中传播的电磁波进行分析可知:1)场的横向分量可由纵向分量表示;2)既满足亥姆霍兹方程有满足边界条件的解很多,每个解对应一个波形(或称之为模式)3)k c是在特定边界条件下的特征值,当相移常数β=0 时,意味着波导系统不在传播,此时k c=k,k c称为截止波数。
2.2 矩形波导中传输模式的纵向传输特性波导中的电磁波在传输方向的波数β由下式给出:式中k为自由空间中同频率的电磁波的波数。
要使波导中存在导波,则β必须为实数,即如上式不满足,则电磁波不能在波导内传输,即截止。
矩形波导中TE10模的截止波长最长,故称它为最低模式,其余模式均称为高次模。
由于TE10模的截止波长最长且等于2a,用它来传输可以保证单模传输。
当波导尺寸给定且有a>2b时,则要求电磁波的工作波长满足a<λ<2a λ>2b当工作波长给定时,则波导尺寸必须满足3.实验内容在HFSS中完成圆波导的设计与仿真,要求画出电场分布,获得色散曲线。
模型半径为:4.20mm.1)探讨圆波导的横截面尺寸发生变化时,主模(TE11模)的场分布和传播特性如何变化;2)探讨圆波导的填充介质发生变化时,主模(TE11模)的场分布和传播特性如何变化;3)比较圆波导中前两个模式的差别(提示:TE11模和TM01模式,两者的截止波长分别为3.41a,2.62a)4.仿真实验步骤1)理论计算(给出截止频率计算过程及结果);圆波导中的TM波:容易得到TM模式下对应截至频率(c)TM01=(h)TM01/2 = (HZ)即为TM模式下的极限频率。