水轮机的特性(第三章)
- 格式:ppt
- 大小:869.50 KB
- 文档页数:37
第一章灯泡贯流式水轮机的结构灯泡贯流式水轮机是贯流式水轮机的主要类型之一。
1919年初,美国工程师哈尔扎(Harza)首先提出其设计理念。
经过瑞士爱舍维斯公司(Escher Wyss)公司近20年的研究,于1936年研制成功,并开始生产。
该水轮机应用水头一般在25m以下,主要应用于潮汐电站,近年来逐渐应用到江河上的低水头电站。
贯流式水电站是开发低水头水力资源较好的方式。
它与中、高水头水电站和低水头立轴的轴流式水电站相比,具有如下显著的特点。
1.效率高、结构简单、施工方便贯流式水轮发电机组从进水到出水方向基本上轴向贯通,不拐弯,流道尺寸大而短,过流通道的水力损失少,效率高,结构简单,施工方便。
2.尺寸小贯流式水轮机有较大的比转速,所以在水头和功率相同的条件下,贯流式水轮机的直径要比转桨式水轮机的小10%左右。
3.土建投资少贯流式水电站的机组结构紧凑,与同一容量的轴流转桨式机组相比,其尺寸较小,可布置在坝体内,取消了复杂的引水系统,可以减少厂房的建筑面积,减少电站的开挖量和混凝土用量。
根据有关资料分析,土建费用可以节省20%~30%。
4.运行方式多贯流式水轮机适合作可逆式水轮机运行。
由于进出水流道没有急转弯,使水轮机发电和抽水均能获得较好的水力性能。
它可应用于潮汐电站,具有双向发电、双向抽水和双向泄排水等6种功能。
因此,很适合综合开发利用低水头水力资源。
5.见效快贯流式水电站一般比轴流式水电站建设周期短、投资小、收效快、淹没移民少;电站靠近城镇,有利于发挥地方兴建电站的积极性。
第一节贯流式水轮机的分类及简介贯流式水轮机组按总体布置方式的不同可分为以下几种:(1)全贯流式。
(2)灯泡贯流式。
(3)竖井贯流式。
(4)轴伸贯流式。
第1页(5)虹吸贯流式。
按运行工况不同可分为以下3种:(1)单向贯流式。
(2)双向贯流式。
(3)可逆贯流式。
一般习惯按总体布置方式的不同来分类,而很少按运行工况分类,所以本节按总体布置方式的不同分类,介绍贯流式机组的类型。
水力机械课程要点及复习思考题绪论:主要内容以及要了解和掌握要点:1、能源的种类;和其他类型的能源相比,水电的特点;我国水力资源的总量及水力发电在国民经济中所占的地位;我国水力资源的分布情况、开发程度以及规划利用前景;2、水力发电的生产流程以及和水电有关的主要技术参数和技术指标;水电站的基本类型;特点;主要建筑物及布置原则概述;第一章水力机械概述:主要内容以及要了解和掌握要点:1、水轮机的基本参数;水轮机的各种水头(设计水头,工作水头,最大和最小水头)及其含义;搞清水轮机的水头和水电站的水头不是一个概念;在设计水电站时如何协调两者之间的关系2、水轮机的主要类型及其构造;水轮机分为反击式和冲击式两大类原则,每一大类又可以分为几种不同的类型;常见和常用的水轮机类型都有那些各有什么特点;掌握常见水轮机如轴流式、混流式河水斗式水轮机的主要部件有那些,名称是什么,功用是什么,这些主要部件各处在水轮机的什么位置;3、水轮机的牌号极标称直径水轮机牌和的意义,作用,水轮机牌号的常规表示方法;目前水轮机牌号的使用现状;提出水轮机标称直径的目的;不同类型的水轮机标称直径的标注方法和具体位置;第二章水轮机的工作原理:主要内容以及要了解和掌握要点:1、水流在反击式水轮机转轮中的运动;水流在反击式水轮机转轮内运动的复杂性(恒定流和非恒定流);水流和转轮叶片作用的原理;水流做功原理;对水流或流场的描述方法(解析,数值,速度三角形);速度三角形中各速度示量的含义;2、水轮机的基本方程式推导水轮机基本方程三条假定的目的与意义;控制体的选择与研究对象;力矩的轴对称性,作用力和反作用力原理;水轮机基本方程的不同表现形式和物理意义;3、水轮机的效率及最优工况水轮机效率和能量损失的关系;水轮机能量损失的几种形式;不同损失产生的原因;无撞击进口和法向出口及最优工况条件;4、尾水管的工作原理动力真空和静力真空;尾水管回收能量的方式与原理;尾水管的作用;尾水管回收能量的程度;尾水管的水力损失系数和动能恢复系数;5、水轮机的空化与空蚀水轮机空化与空蚀的研究历史;水流空化的机理;空化压力和空化温度的关系;水轮机空蚀的机理;水轮机空蚀的破坏作用;水轮机空蚀的类型;水轮机空蚀的后果及表现形式;水轮机空蚀的预防或防护措施;6、水轮机的空蚀系数、吸出高及安装高程水轮机空蚀系数的来历;水轮机空蚀系数的意义;水轮机吸出高的来历;水轮机吸出高的确定;对不同水轮机吸出高的规定;对不同水轮机安装高程的规定与计算;第三章水轮机的相似原理及特性曲线:主要内容以及要了解和掌握要点:1、水轮机的相似原理概述相似概念及研究水轮机相似的目的;水轮机的相似条件;不同相似条件所对应的含义;相似的局限性和近似性;2、水轮机的相似率、单位参数和比转速流量相似率的含义;转速相似率的含义;出力相似率的含义;导出水轮机单位参数的目的与作用;导出水轮机比转速的目的与意义;3、水轮机的效率换算与单位参数修正水轮机效率换算的目的与意义;水轮机效率换算的依据与经验性;不同水轮机效率换算公式的适用条件;水轮机效率换算后再修正的原因;水轮机单位参数的修正;4、水轮机的主要综合特性曲线水轮机模型试验的目的;水轮机主要特性曲线的作用;常见类型水轮机综合特性曲线中所标示的内容;出力限制线的意义与作用;第四章水轮机选型:主要内容以及要了解和掌握要点:1、水轮机的标准系列采用标准系列的目的;水轮机型谱的来历与演变;水轮机的尺寸系列;水轮机转速和发电机转速的关系;发电机标准同步转速的确定;2、水轮机选择水轮机选型设计的基本内容;水轮机选型设计的基本要求;水轮机选型设计需要收集和整理的基本资料;确定电站装机台数、单机容量的原则和要考虑的相关因素;确定水轮机型号、主要参数的基本方法及其适用条件;不同水轮机主要参数之间的比较及最终方案确定的一般原则;3、水轮机运转特性曲线的绘制水轮机运转特性曲线的作用;水轮机运转特性曲线的绘制方法;水轮机的最优工作区域;水电站厂内优化运行的基本概念;4、水轮机蜗壳的型式及主要尺寸的确定水轮机基本型式;不同水轮机蜗壳的特点及适用场合;对蜗壳内水流运动规律的假定;蜗壳水力计算及轮廓尺寸确定的方法;蜗壳轮廓尺寸对水电站厂房尺寸的影响;5、尾水管的型式及主要尺寸的确定常见尾水管的型式及其特点;尾水管轮廓尺寸的确定;尾水管尺寸对水电站厂房尺寸的影响;尾水管尺寸可能变动的情况及对水轮机性能的影响;第五章水轮机调速器主要内容以及要了解和掌握要点:1、水轮机调节的基本概念水轮机调节的主要任务;水轮机调节的对象;目前调速器的附加功能;水轮机调速器应满足的特殊要求;2、调速器的类型及工作原理调速器的基本类型;水轮机调速器的发展趋势;微机调速器的优点;调速器的基本工作原理;调速器的工作稳定性及静、动特性曲线;有差调节和无差调节适用的场合;3、调速器的主要设备及选择调速器的主要设备及其功用;调速器的基本系列;调速设备选择的一般原则;水力机械课程复习思考题绪论部分:1、为什么说水力发电的可调节性比较好?P1电能不能储存,生产与消费必须同时。
第三章 水轮机调节系统数学模型的建立为使水轮机调节系统具备优良的动态性能,需要运用自动控制理论对水轮机调节系统进行分析研究。
水轮机调节系统是由调速器和调节对象组成的闭环控制系统,两者相互作用、相互影响。
调节对象不仅包括水轮机和发电机,还包括水轮机的引水系统和发电机带的负荷。
为分析水轮机调节系统的动态特性,需建立各部分的数学模型。
3.1 水轮机调节系统基本概念3.1.1 水轮机调节系统任务水电厂是生产电能的场所,由于电能不能大量储存,必然要求电能的生产与消费同时进行,否则将引起电能品质指标的变化。
衡量电能质量的指标主要是频率和电压偏差。
频率偏差过大,会导致以电动机为动力的机床、纺织机械等运转不平稳,造成次品或废品,严重的会影响发电机组及电网自身的稳定运行,甚至造成电网解列或崩溃,因此,保持电力系统频率稳定相当重要。
电压过高会烧毁各种电气设备,电压过低会影响电动机的正常启动,所以,维持一定的电压水平是保证电网正常运行的前提。
为保证电能质量,电力部门对频率有着严格的要求。
我国电力部门规定频率应严格保持在50Hz ,其偏差不得超过±0.5Hz ,对于大容量系统频率偏差不得超过±0.2Hz 。
电力系统频率稳定主要取决于系统内有功功率的平衡,然而,电力系统的负荷是不断变化的,负荷的变化必然导致系统频率的变化。
水轮机调节系统的基本任务是不断调整水轮发电机组有功功率输出,以维持机组转速在规定范围内,满足发电机正常发电及电力系统安全运行的需要。
由于电力系统的负荷是不断变化的,必然导致系统频率发生变化。
水轮发电机一般是三相交流同步电机,由电机学知交流电频率和发电机转速间有以下关系60pnf =(3.1) 式中,f 为交流电频率,p 为发电机磁极对数,n 为发电机转速。
发电机磁极对数与结构有关,一般是不能改变的,可见,交流电频率与发电机转速成正比,与改变频率,只需改变发电机转速。
水轮机和发电机通过主轴连成一个整体,其转动部分可视为绕定轴转动的刚性系统,运动由下式描述t g d J M M dtω=- (3.2) 式中,J 为机组转动部分惯性力矩,ω为机组转动角速度,260nπω=,t M 为水轮机动力矩,g M 为发电机阻力矩。
第三章 水轮机工作原理本章教学要求:1. 了解水流在反击式水轮机中的运动规律;2. 熟练掌握水轮机的速度三角形及其作用;3. 熟练掌握水轮机的基本方程极其意义;4. 掌握水轮机效率的定义;5. 掌握水轮机在最优工况、非最优工况下的运行特点。
第一节 水流在反击式水轮机转轮中的运动一、蜗壳中的水流运动反击式水轮机蜗壳的主要作用是以最小的水力损失把水流引向转轮前的导水机构,并使水流能均匀而轴对称地进入导水机构,同时,让水流具有一定的速度环量,以提高作用于工作轮上的有效水能及转轮的运行稳定性。
蜗壳的水力设计就是以完成蜗壳的上述任务为前提。
而蜗壳中的水流运动规律又取决于蜗壳的内壁轮廊线,故蜗壳内壁轮廓线的形状控制了蜗壳内的水流运动规律。
关于蜗壳中的水流运动规律,一般认为有两种形式。
根据设计者的意图,设计出来的蜗壳形状也稍有不同。
这两种规律是:1.蜗壳断面的平均速度周向分量均u V 为常数的规律常数均==0V V u (3-1) 式中0V 为蜗壳进口断面的水流速度。
2. 蜗壳中水流按等速度矩规律运动。
即位于蜗壳内任一点水流速度的切向分量u V 与该点距水轮机轴线的半径r 的乘积不变。
C r V u ==⋅常数 (3-2)式中 u V ——某一点水流速度的圆周分量,见图3-1所示;r ——研究点距水轮机轴线的半径。
图3-1 蜗壳中的水流运动实践证明,水轮机按“等速度矩规律”设计的蜗壳性能较好。
“等速度矩”规律对蜗壳中的水流运动作如下假设:1.忽略水流粘性及与管壁的磨擦损失。
2.蜗壳内壁是光滑的,认为蜗壳中的水流运动是无旋流动。
3.蜗壳中的水流运动是以水轮机轴为对称的运动。
即蜗壳内水流速度V ,压力P 等运动要素有:0,0=∂∂=∂∂θθP V 。
因此,蜗壳内的水流运动为理想液体作轴对称流动。
由式3-2可知,蜗壳中距水轮机轴线半径相同的各点,其水流切向速度u V 相等;蜗壳中距水轮机轴线半径不同的点,其切向速度u V 与半径r 成反比。
第三章 水轮机的能量损失及汽蚀引言一、水流在转轮中的运动水流在水轮机中运动转为复杂,是一种复杂的三维空间运动。
任一复杂运动都可看作是由若干简单运动复合而成的。
水流在转轮中运动可看作是由两种简单运动复合而成的。
一是水流从转轮进口沿叶片流道相对于转轮流道的运动—称此运动为相对运动,用相对速度矢量w 表示;二是水流质点随着转轮的转动而转动—称此运动为圆周运动(牵连运动),用圆周速度矢量u 表示。
实际上水流质点对于静止的转轮室而言,其运动是由上述两运动复合而成的绝对运动,此速度为绝对速度用v表示。
则: u w v +=由w 、u 和v 构成的三角形,称为速度三角形。
水流质点在转轮中任一位置处都有其相应的速度三角形,常用进、出口两个位置处的速度三角形,分别用下角标1,2表示,即△1,△2。
二、水轮机的基本方程式(欧拉方程)为了了解转轮内水流能量与转轮所获得能量的关系,由动量矩定理可推得水轮机基本方程式。
按动量矩定理可知结论为: g u v u v H u u )(2121-=η (3-1)因11cos 1αv v u =,22cos 2αv v u =则gu v u v H 222111cos cos ααη-= (3-2) 式(3-1)、(3-2)称为水轮机基本方程式或称欧拉方程式。
由基本方程式可知,其只与进、出口速度三角形有关,而与中间水流特征无关,故此基本方程式是一通用方程式,与水轮机类型无关,反击式、冲击式均适用。
第一节 水轮机的能量损失及效率水轮机将水流输入功率s N 转变为输出功率N ,因为水轮机在能量转变过程中有能量损失存在,所以N <s N 。
能量损失主要包括水力损失、容积损失、机械损失三部分,分别用水力效率、容积效率、机械效率表示。
一、水力损失(head loss)和水力效率天然水流经过蜗壳,导水机构,转轮及尾水管等过流部件时产生水力摩擦、撞击、涡流、脱壁等引起能量损失,这些损失称为水力损失,水力损失与水流流速,过流部件的形状、糙率有关。