物理性能方面
热性能:由于纳米粒子尺寸小,表面能高,其熔点、 开始烧结温度和晶化温度比常规粉体低;例如纳米 银的熔点可低于373K;常规氧化铝烧结温度在 1973 ~ 2073K之间,而纳米氧化铝可在1423 ~ 1673K之间烧结,致密度可达99.0%以上。
电性能:粒子尺寸小于某一临界尺寸后,材料的电 阻会发生突变,例如金属会变为非导体。
水热合成法:高温高压下在水溶液或蒸汽等流体中合 成;
化学沉淀法:将沉淀剂加入金属盐溶液中,得到沉淀 后进行热处理,包括直接沉淀,共沉淀、均一沉淀等;
溶胶-凝胶(Sol-Gel)法:将金属有机醇盐或无机盐 溶液经水解,使溶质聚合成溶胶再凝胶固化,再经低 温干燥,磨细后再煅烧得到纳米粒子
微乳液和反相胶束法:微乳液和反相胶束是利用两种 互不相容的溶剂(有机溶剂和水溶液),通过选择表 面活性剂及控制相对含量,可将其水相液滴尺寸限制 在纳米级,不同微乳液滴相互碰撞发生物质交换,在 水核中发生化学反应,得到纳米粒子。
物 理 气 相 沉 积 法
电 子 束 加 热
等
离
子
和
激 蒸发容器的结
光 加
构简单,除金 属外,对SiC 同样有效
热
适合实验室规模 量产
流 动 液 面 真 空 蒸 发 法
通
制备碳化物,
电
Cr、Ti、V、Zr
加
发烟量大,高
热
熔点金属给出 非晶物质,Nb、
蒸
Ta、Mo
发
法
化学方法
化学气相沉积法(CVD):采用与PVD法相同的加热 源,将原料(金属氧化物、氢氧化物,金属醇盐等) 转化为气相,再通过化学反应,成核生长得到纳米粒 子;
小尺寸效应(材料周期性边界条件的破坏); 表面或界面效应(表面能和活性的增大); 量子尺寸效应(电子能级或能带结构的尺寸依