长方体和正方体整理复习
- 格式:ppt
- 大小:205.00 KB
- 文档页数:10
第二讲 长方体和正方体一、长方体和正方体的认识【知识点1】棱面顶点要素立体图形数量特征数量特征数量特征长方体12互相平行的棱长度相等6相对的面完全相同8特殊长方体12垂直于正方形面的棱长度相等6两个面是正方形,其余四个面是完全相同的长方形8正方体12所有的棱长度都相等6所有面都是正方形且完全相同8同一个顶点引出的三条棱分别叫做长、宽、高一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
( )11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( )12、长方体和正方体最多可以看到3个面。
( ) 14、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( ) 15、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( )16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)填空:1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)长+宽+高=棱长和÷4长方体棱长和=下面周长×2+高×4长方体棱长和=右面周长×2+长×4长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
小学数学苏教版六年级上册《长方体和正方体整理与复习》教案一. 教材分析《长方体和正方体整理与复习》是人教版小学数学六年级上册的一章内容。
这一章节主要让学生复习和整理之前学过的长方体和正方体的知识,包括它们的特征、表面积和体积的计算方法等。
通过本章的学习,学生可以加深对长方体和正方体的理解,提高解决问题的能力。
二. 学情分析六年级的学生已经在前面的学习中接触过长方体和正方体的知识,对它们的基本特征和计算方法有一定的了解。
但是,由于时间的推移,学生可能对这些知识有所遗忘,需要通过复习和整理来巩固。
此外,学生的学习能力和数学思维能力各有差异,需要在教学过程中给予不同的关注和指导。
三. 教学目标1.让学生掌握长方体和正方体的特征,能够准确地识别它们。
2.让学生熟练掌握长方体和正方体的表面积和体积的计算方法,能够灵活运用这些方法解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。
四. 教学重难点1.重点:长方体和正方体的特征,表面积和体积的计算方法。
2.难点:灵活运用长方体和正方体的知识解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、合作交流,通过实践操作和思考,巩固和提高长方体和正方体的知识。
六. 教学准备1.PPT课件:包括长方体和正方体的特征、表面积和体积的计算方法的示例和练习题。
2.练习题:包括选择题、填空题、解答题等不同类型的题目,用于巩固和拓展学生的知识。
3.教学工具:直尺、三角板、剪刀、胶水等,用于学生的实践操作。
七. 教学过程导入(5分钟)通过一个生活实例引入长方体和正方体的概念,例如:“请大家观察一下我们教室的桌子,它是一个什么形状的物体?”引导学生回答:“长方体。
”通过这样的问题,激发学生的兴趣,引出本节课的主题。
呈现(10分钟)1.利用PPT课件,呈现长方体和正方体的特征,包括它们的定义、性质和相互关系。
2.利用PPT课件,呈现长方体和正方体的表面积和体积的计算方法,包括公式和计算步骤。
-可编辑修改-长方体和正方体的知识整理、【概念】等,有12条棱,每条棱的长度都相等长方体的棱长总和=(长+宽+高)X 4【长方体和正方体的表面积】1、长方体或正方体6个面和总面积叫做它的表面积长方体的表面积=(长X 宽+长X 高+宽X 高)X 2S=2 (ab + ah + bh ) 正方体的表面积=棱长X 棱长X 6 S=a X a X6= 6a 22、表面积的常用单位有: 平方米、平方分米、平方厘米相邻两个面积单位 之间的进率是 100 1m 2 =100dm 2 1 dm 2 =100 cm 2 1m 2 =10000 cm 2三、【长方体和正方体的体积】1、体积:物体所占空间的大小叫做物体的体积姓名( ) 1、长方体或正方体两个面相交的边叫做 棱。
三条棱相交的点叫做顶点。
相交于 一个顶点的三条棱的长度分别叫做长方体的 长、宽、高2、正方体是长、宽、高都相等的长方体,它是一种 特殊的长方体3、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的 长度相等。
一个长方体 最多有6个面是长方形,最少有4个面是长方形,最多 有2个面是正方形。
正方体有 6个面 ,每个面都是 止力形 ,每个面的 面积都相正方体的棱长总和=棱长X 12 正方体的棱长=棱长总和* 12-可编辑修改-2、 常用的体积单位有: 立方米(m 3)、 立方分米(dm 3)、立方厘 米(cm 3 )① 棱长是1 cm 的正方体,体积是1 cm 3② 棱长是1 dm 的正方体,体积是1 dm 3③ 棱长是1 m 的正方体,体积是1 m 3 相邻两个体积单位之间的进率是 1000 1 m 3 =1000 dm 3 1dm 3=1000 cm 31 m 3 =1000000cm 3 长方体的体积=长x 宽x 高 V=abh 长方体(正方体)的体积=底面积x 高V =S xh 正方体的体积=棱长x 棱长x 棱长 v=a x a x a =a 3(a 3读作“ a 的立方” 表示3个a 相乘,即a a a )3、 容积:容器所能容纳物体的体积,叫做它的容积。
整理与复习第一单元:长方体和正方体一、长方体和正方体的特征:形体面顶点棱关系长方体6个至少4个面是长方形相对面完全相同8个12条相对的棱长度相等正方体是特殊的长方体正方体6个正方形6个面完全相同8个12条12条棱长度都相等考点1:1.正方体是特殊的长方体。
2.长方体相交于同一个顶点的三条棱的长度,分别叫作它的()、()、(),一共分成()组。
3.长方体最多有()个面是正方形的面,其余()个面是完全一样的长方形。
【练】1.至少需要()个完全一样的小正方体可以组成一个大正方体。
2.两个完全相同的正方体拼成一个长方体,减少了()条棱,()个面。
考点2:正方体的平面展开图:1.相对面形状、大小、面积完全一样。
前→后,左→右,上→下【练】你能在展开图上找出其它的3个面吗?哪些面的面积相等?2.求各个面的面积。
前后面是由()和()组成的;上下面是由()和()组成的;左右面是由()和()组成的。
【练】:(1)上面的面积是________平方厘米。
(2)前面的面积是________平方厘米。
(3)右面的面积是________平方厘米。
3.找相对面的方法:找“Z”和“日”【练】如图是长方体的表面展开图,与⑥相对的面是③。
()如图是一个正方体的展开图,相对两个面上数字之和为0,则a+c=()。
4.判断是否是正方体平面展开图的方法:无凸也无凹,没有大直角,没有田字格。
【练】:如图不是正方体的表面展开图。
()5.哪几个面可以围成一个长方体?二、棱长总和公式:1.长方体棱长总和公式:2.正方体棱长总和公式:【练】1.一个长方体,长、宽、高分别是a、b、c厘米,长、宽、高的和是()厘米,棱长的和是()厘米。
2.一个正方体的棱长是a厘米,棱长的和是()厘米。
如果a=6,那么它的棱长的和是()厘米。
3.一种长方体的广告灯箱,框架由铝合金条制成,长70厘米,宽15厘米,高120厘米,制作一个这样的广告灯箱,至少需要铝合金条多少分米?4.一个长方体纸箱,长和宽都是0.4米,高是1.2米,做这个纸箱至少需要多少平方米的纸板。
《长方体正方体整理与复习》教学设计《长方体正方体整理与复习》教学设计(通用10篇)作为一位优秀的人民教师,时常需要准备好教学设计,借助教学设计可以让教学工作更加有效地进行。
我们应该怎么写教学设计呢?下面是小编收集整理的《长方体正方体整理与复习》教学设计,仅供参考,大家一起来看看吧。
《长方体正方体整理与复习》教学设计篇1教学目标:1、通过整理、复习,使学生进一步掌握长方体和正方体的特征,表面积、体积的概念以及相邻单位间的进率;能进一步认识长方体、正方体的表面积和体积及其计算方法,并能正确地计算。
理解它们的内在联系,能灵活运用。
2、在学生对这些形体认识和理解的基础上,进一步培养空间观念;让学生在解决实际问题的过程中,感受数学在生活中的作用,体会数学的价值,进一步培养学生的合作意识和创新精神。
教学重点、难点:学生对知识进行自我梳理,灵活运用知识解决实际问题教学准备:课件、题卡教学过程设计:一、创设情境导入新课1、同学们,这节课我们一起来整理复习长方体、正方体的相关知识。
(板书课题)2、我们一起回顾一下,通常我们是怎样整理复习学过的知识?学生回答:整理出所学知识的主要内容、梳理出知识之间的联系、灵活运用知识解决实际问题。
随机板书:知识点、联系、实际应用3、这节课我们就应用这种方法来整理这两种立体图形的相关知识。
二、自我梳理形成网络1、小组合作整理课前大家已经对这部分知识进行了整理,现在拿出你们的数学整理记录单,把你整理的内容先在小组内交流,并解决你在复习中的问题。
如果发现在整理中有遗漏的内容,就边交流边补充到整理记录单中。
一会在全班进行交流。
看哪个小组对这部分知识梳理得更完整、更全面。
在学生交流的过程中,教师巡视,把整理的有特色的教师要做到心中有数,便于稍后的交流[设计意图:这个环节体现了学生能有条理的独立整理复习所学知识具有良好的整理复习的能力和习惯,在小组交流中能主动与他人合作,遇到困难能主动请教他人,善于在学习中总结与反思,从而取长补短提高学习的效率和能力。
课题长方体和正方体教学目标1、认识长方体和正方体2、长方体和正方体的表面积3、长方体和正方体的体积重点、难点掌握长方体和正方体的表面积和体积的计算考点及考试要求1、长方体和正方体的表面积和体积的计算2、组合立体图形的表面积和体积的计算教学内容知识框架长方体和正方体的知识是学生进行表面积和体积计算的基础知识,是运用有关的计算公式可解决许多实际问题。
考点一:认识长方体和正方体典型例题例一:判断对错。
(1)棱长 5分米的正方体水箱,它的占地面积是(125)平方分米。
()(2)长方体(不含正方体)最多有8条棱长度相等。
()(3)正方体是特殊的立方体。
()(4)有6个面,12条棱,8个顶点组成的图形都是长方体。
()(5)相交于一个顶点的三条棱的长度相等的长方体一定是正方体。
()(6)两个体积相等的立方体,表面积也一定相等。
()例二:有30个棱长为1厘米的小正方体(1)怎样摆才能将它拼成一个最大的正方体?还剩几个小正方体?例三:一个正方体木块,六个面上分别写着1、 2 、 3 、 4 、 5 、6,从三个不同角度观察结果如下,请你猜一猜:1、2、3分别和谁相对?知识概括、方法总结与易错点分析长方体和正方体都有六个面,正方体六个面都相等;长方体对面相等,最多可有两个正方形。
考点二:长方体和正方体的表面积典型例题例一:1. 长方体和正方体都有()面,()条棱和()顶点。
2.(1)一个长方体的长、宽、高分别是5、4、3厘米,这个长方体的棱长总和是()。
(2)一个长方体相交一个顶点的三条棱的和是6厘米,这个长方体的棱长总和是()。
(3)一个正方体的棱长是3分米,这个正方体的棱长总和是()。
3. 一个正方体的棱长总和是96厘米,这个正方体的棱长是()。
4. 一个长方体的棱长总和是24厘米,其中长是3厘米,宽是2厘米,高是长()。
5. 一个长方体的长、宽、高分别是6厘米、5厘米、4厘米,它的最大面的面积是()。
这个长方体的占地面积是()。
第三单元长方体和正方体整理与复习一、选择题1.用一根72厘米长的铁丝正好弯成一个长方体框架,那么这个长方体一组长、宽、高的和是()厘米。
A.36B.24C.182.一个矿泉水瓶的容积大约为350()。
A.毫升B.升C.立方分米D.立方米3.用棱长2厘米的正方体木块拼成一个较大的正方体,至少需要()块。
A.4B.8C.9D.644.一个长方体水池,长20米,宽10米,深2米,占地()平方米。
A.200B.400C.5205.下面的平面图中,()个字母代表的平面图不能折成正方体。
A.B.C.D.6.一根长40分米的铁丝焊成一个长方体框架,还余4分米,这个长方体框架中相交于一点的三条棱的长度和是()分米。
A.12B.9C.67.观察这是()个小正方体,两面靠墙,露出()个平面。
A.3、3B.2、3C.1、38.求做一个长方体油箱需要多少平方米铁皮,是求长方体的()。
A.表面积B.体积C.容积D.不能确定9.如果一个长方体有四个面的面积相等,剩下的两个面一定是()。
A.长方形B.正方形C.平行四边形10.如果把长方体的长、宽、高都分别扩大到原来的2倍,那么它的体积就扩大到原来的()倍。
A.2B.4C.6D.811.如图是一个正方体的展开图,和2号面相对的面是()。
A.3号B.4号C.6号12.一个长6dm、宽4dm、高5dm的盒子,最多能放()个棱长为2dm的正方体木块。
A.10B.12C.14D.15二、填空题13.一个长方体长3m、宽1.5m、高2m,这个长方体的棱长之和是________m,表面积是________m2,体积是________m3。
14.两块同样大小的陶土,一块做了棱长是15厘米的正方体,另一块做了底面积是300平方厘米的长方体。
这个长方体的高是________厘米。
15.如图,两个正方体拼成一个长方体后,表面积减少12cm2。
现在这个长方体的表面积是________cm2。
16.一个正方体纸盒的棱长总和是60分米,它的占地面积是( ),表面积是( ),体积是( )。