2009年高考数学(上海)理(word版含答案)
- 格式:doc
- 大小:907.00 KB
- 文档页数:10
2009年全国普通高等学校招生统一考试上海数学试卷(理工农医类)一.真空题 (本大题满分56分)1. 若复数 z 满足z (1+i) =1-i (I 是虚数单位),则其共轭复数z =__________________ . 2. 已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=, 则实数a 的取值范围是______________________ .3. 若行列式417 5 xx 3 8 9中,元素4的代数余子式大于0,则x 满足的条件是________________________ . 4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是____________________________ .5.如图,若正四棱柱1111ABCD A B C D -的底面连长为2,高 为4,则异面直线1BD 与AD 所成角的大小是______________(结果用反三角函数表示).6.函数22cos sin 2y x x =+的最小值是_____________________ .7.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E ξ____________(结果用最简分数表示). 8.已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S ,满足的等量关系是___________.9.已知1F 、2F 是椭圆1:2222=+by a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且21PF PF ⊥.若21F PF ∆的面积为9,则b =____________.10.在极坐标系中,由三条直线0=θ,3πθ=,1sin cos =+θρθρ围成图形的面积是________.11.当时10≤≤x ,不等式kx x≥2sinπ成立,则实数k 的取值范围是_______________.12.已知函数x x x f tan sin )(+=.项数为27的等差数列{}n a 满足⎪⎭⎫⎝⎛-∈22ππ,n a ,且公差0≠d .若0)()()(2721=+⋯++a f a f a f ,则当k =____________是,0)(=k a f .13.某地街道呈现东—西、南—北向的网格状,相邻街距都为1.两街道相交的点称为格点。
2016年 普 通 高 等 学 校 招 生 全 国 统 一 考 试上海 数学试卷(理工农医类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、设x R ∈,则不等式13<-x 的解集为______________________2、设iiZ 23+=,期中i 为虚数单位,则Im z =______________________ 3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)5、已知点(3,9)在函数xa x f +=1)(的图像上,则________)()(1=-x fx f 的反函数6、如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________7、方程3sin 1cos2x x =+在区间[]π2,0上的解为___________8、在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________9、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________ 10、设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则b a +的取值范围是____________11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为.12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是.13.设[)π2,0,,∈∈c R b a ,若对任意实数x 都有()c bx a x +=⎪⎭⎫⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为.14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足0=++j i OA OA OP ,则点P落在第一象限的概率是.二、选择题(5×4=20)15.设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件 16.下列极坐标方程中,对应的曲线为右图的是( ) (A )θρcos 56+= (B )θρin s 56+= (C )θρcos 56-= (D )θρin s 56-=17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a18、设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题三、解答题(74分)19.将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。
2009年上海市高考数学试卷(理科)一、填空题(共14小题,每小题4分,满分56分)1.若复数z 满足z (1+i )=1-i (i 是虚数单位),则其共轭复数z =_________. 【测量目标】复数的基本概念;复数代数形式的四则运算. 【考查方式】化简复数等式,求解一个复数的共轭复数. 【难易程度】中等 【参考答案】i【试题解析】设z =a +b i,则(a +b i )(1+i) =1-i,即a -b +(a +b )i =1-i ,(步骤1)由⎩⎨⎧-=+=-11b a b a ,解得a =0,b =-1,所以z =-i ,z =i,故答案为i .(步骤2) 2.已知集合A ={x |x1},B ={x |xa },且A B =R ,则实数a 的取值范围是_________.【测量目标】集合的基本运算.【考查方式】给出两个集合,已知集合间的关系,运用数轴法求解集合中未知参数的取值范围. 【难易程度】容易 【参考答案】a1【试题解析】因为A B =R ,画数轴可知,实数a 必须在点1上或在1的左边,所以,有a 1。
第2题图3.若行列式4513789xx 中,元素4的代数余子式大于0,则x 满足的条件是_________.【测量目标】矩阵初步.【考查方式】根据代数余子式的概念,列出关于x 的不等式求出取值范围. 【难易程度】中等【参考答案】x >83【试题解析】依题意,得: (-1)2⨯(9x -24)>0,解得:83x >,故答案为:x >83. 4.某算法的程序框如下图所示,则输出量y 与输入量x 满足的关系式是_________.第4题图【测量目标】选择结构程序框图.【考查方式】给出程序框图,按照程序框图的执行流程分析循环过程,判断输入值与输出值之间的关系。
【难易程度】容易 【参考答案】2,12,1xx x y x->⎧=⎨⎩【试题解析】根据流程图所示的顺序,程序的作用是分段函数的函数值.其中输出量y 与输入量x 满足的关系式是2,12,1x x x y x ->⎧=⎨⎩,故答案为:2,12,1xx x y x ->⎧=⎨⎩. 5.如图,若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,高为4,则异面直线BD 1与AD 所成角的大小是_________。
高考达标检测(二十一) 平面向量的基本运算一、选择题1.(2017·长春模拟)如图所示,下列结论正确的是( ) ①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b .A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误,故选C.2.(2017·长沙一模)已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D.13解析:选A AB ―→=OB ―→-OA ―→=(4-k ,-7), AC ―→=OC ―→-OA ―→=(-2k ,-2). ∵A ,B ,C 三点共线, ∴AB ―→,AC ―→共线,∴-2×(4-k )=-7×(-2k ), 解得k =-23.3.(2016·嘉兴调研)已知点O 为△ABC 外接圆的圆心,且OA ―→+OB ―→+CO ―→=0,则△ABC 的内角A 等于( )A .30°B .45°C .60°D .90°解析:选A 由OA ―→+OB ―→+CO ―→=0得,OA ―→+OB ―→=OC ―→,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知,四边形OACB 为菱形,且∠CAO =60°,故A =30°.4.(2017·武汉武昌区调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→等于( )A .OM ―→B .2OM ―→C .3OM ―→D .4OM ―→解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→=2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→+OC ―→+OD ―→=4OM ―→,故选D.5.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC ―→=2BD ―→,CE ―→=2EA ―→,AF ―→=2FB ―→,则AD ―→+BE ―→+CF ―→与BC ―→( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD ―→=AB ―→+BD ―→=AB ―→+13BC ―→,BE ―→=BA ―→+AE ―→=BA ―→+13AC ―→,CF ―→=CB ―→+BF ―→=CB ―→+13BA ―→,因此AD ―→+BE ―→+CF ―→=CB ―→+13(BC ―→+AC ―→-AB ―→)=CB ―→+23BC ―→=-13BC ―→,故AD ―→+BE ―→+CF ―→与BC ―→反向平行.6.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则xy x +y的值为( )A .3 B.13 C .2D.12解析:选B 利用三角形的性质,过重心作平行于底边BC 的直线,易得x =y =23,则xyx +y=13. 7.(2017·兰州模拟)已知向量a =(1-sin θ,1),b =⎝ ⎛⎭⎪⎫12,1+sin θ,若a ∥b ,则锐角θ=( )A.π6 B.π4 C.π3D.5π12解析:选B 因为a ∥b ,所以(1-sin θ)×(1+sin θ)-1×12=0,得sin 2θ=12,所以sin θ=±22,故锐角θ=π4. 8.已知△ABC 是边长为4的正三角形,D ,P 是△ABC 内的两点,且满足AD ―→=14(AB ―→+AC ―→),AP ―→=AD ―→+18BC ―→,则△APD 的面积为( )A.34B.32C. 3 D .2 3解析:选A 取BC 的中点E ,连接AE ,由于△ABC 是边长为4的正三角形,则AE ⊥BC ,AE ―→=12(AB ―→+AC ―→),又AD ―→=14(AB ―→+AC ―→),所以点D 是AE 的中点,AD = 3.取AF ―→=18BC ―→,以AD ,AF 为邻边作平行四边形,可知AP ―→=AD ―→+18BC ―→=AD ―→+AF ―→.而△APD 是直角三角形,AF =12,所以△APD 的面积为12×12×3=34. 二、填空题9.在矩形ABCD 中,O 是对角线的交点,若BC ―→=5e 1,DC ―→=3e 2,则OC ―→=________.(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC ―→=12AC ―→=12(AB ―→+AD ―→)=12(DC ―→+BC ―→)=12(5e 1+3e 2)=52e 1+32e 2.答案:52e 1+32e 210.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD ―→=x AB ―→+y AC ―→+z AS ―→,则x +y +z =________.解析:依题意得BD ―→=AD ―→-AB ―→=12(AS ―→+AC ―→)-AB ―→=-AB ―→+12AC ―→+12AS ―→,因此x +y +z =-1+12+12=0.答案:011.(2017·贵阳模拟)已知平面向量a ,b 满足|a |=1,b =(1,1),且a∥b ,则向量a 的坐标是________.解析:设a =(x ,y ).∵平面向量a ,b 满足|a |=1,b =(1,1),且a∥b , ∴x 2+y 2=1,x -y =0.解得x =y =±22. ∴a =⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-22. 答案:⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-2212.(2016·抚顺二模)如图,平面内有三个向量OA ―→,OB ―→,OC ―→,其中OA ―→与OB ―→的夹角为120°,OA ―→与OC ―→的夹角为30°,且|OA ―→|=|OB ―→|=1,|OC ―→|=23,若OC ―→=λOA ―→+μOB ―→ (λ,μ∈R),即λ+μ的值为________.解析:如图,构成平行四边形,∵∠OCD =90°,|OC |=23,∠COD =30°,∴|CD |=23×33=2=|OE |=|μ|, |OD |=23cos 30°=|λ|=4,注意共线的条件和单位向量有λ+μ=6.答案:6 三、解答题13.图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC ―→=b .(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线.解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到平行四边形ABGC ,所以AG ―→=a +b ,AD ―→=12AG ―→=12(a +b ),AE ―→=23AD ―→=13(a +b ),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b )-a =13(b -2a ),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a ).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.14.(2017·郑州模拟)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)若(a +kc )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标. 解:(1)a +kc =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.(2)设d =(x ,y ),则d -c =(x -4,y -1), 又a +b =(2,4),|d -c |=5,∴⎩⎪⎨⎪⎧x --y -=0,x -2+y -2=5,解得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d 的坐标为(3,-1)或(5,3).。
1.【答案】i【解析】设z =a +bi ,则(a +bi )(1+i) =1-i ,即a -b +(a+b )i =1-i ,由⎩⎨⎧-=+=-11b a b a ,解得a =0,b =-1,所以z =-i ,z =i2.【答案】a ≤1【解析】因为A ∪B=R ,画数轴可知,实数a 必须在点1上或在1的左边,所以,有a ≤1。
3.【答案】83x >【解析】依题意,得: (-1)2×(9x-24)>0,解得:83x >4.【答案】2,12,1x x y x x ⎧<=⎨->⎩【解析】当x >1时,有y =x -2,当x <1时有y =x 2,所以,有分段函数。
5.【答案】【解析】因为AD ∥A 1D 1,异面直线BD 1与AD 所成角就是BD 1与A 1D 1所在角,即∠A 1D 1B ,由勾股定理,得A 1B =25,tan ∠A 1D 1B =5,所以,∠A 1D 1B=6.【答案】1【解析】()cos 2sin 21)14f x x x x π=++=++,所以最小值为:17.【答案】47【解析】ξ可取0,1,2,因此P (ξ=0)=21102725=C C , P (ξ=1)=2110271215=C CC , P (ξ=2)=2112722=CC ,E ξ=0×2112211012110⨯+⨯+=478、= 【解析】2114R S π=,112R S π=,同理:222R S π=332R S π=,即R 1=π21S ,R 2=π22S ,R 3=π23S ,由32132R R R =+=9.【答案】3【解析】依题意,有⎪⎩⎪⎨⎧=+=∙=+2222121214||||18||||2||||cPF PF PF PF aPF PF ,可得4c 2+36=4a 2,即a 2-c 2=9,故有b =3。
10、【答案】34【解析】化为普通方程,分别为:y =0,y =3x ,x +y =1,画出三条直线的图象如右图,可求得A (213-,233-),B (1,0),三角形AOB 的面积为:233121-⨯⨯11、【答案】k ≤1 【解析】作出2sin 1xy π=与kx y =2的图象,要使不等式kx x≥2sinπ成立,由图可知须k ≤1。
2009年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2009?江苏)若复数z=4+29i,z=6+9i,其中i是虚数单位,则复数(z﹣z)i2112的实部为﹣20.【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】把复数z=4+29i,z=6+9i,代入复数(z﹣z)i,化简,按多项式乘法法则,展2112开,化简为a+bi(a,b∈R)的形式,即可得到实部.【解答】解:∵z=4+29i,z=6+9i,21∴(z﹣z)i=(﹣2+20i)i=﹣20﹣2i,21∴复数(z﹣z)i 的实部为﹣20.21故答案为:﹣20【点评】本题考查复数代数形式的乘除运算,考查计算能力,是基础题.0,则向量,江苏)已知向量和和向量的夹角为2.(5分)(2009?30.3向量的数量积=【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】向量数量积公式的应用,条件中给出两个向量的模和向量的夹角,代入公式进行计算即可.×=3,【解答】解:由题意知:=2故答案为:3.【点评】本题是向量数量积的运算,条件中给出两个向量的模和两向量的夹角,代入数量积的公式运算即可,两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积.32).的单调减区间为(﹣1,11=x(5分)2009?江苏)函数f(x)﹣15x﹣33x+6.3(【考点】利用导数研究函数的单调性.【专题】函数的性质及应用.的不等式求出解,并令其小于零得到关于x′(x)f【分析】要求函数的单调减区间可先求出集即可.22﹣11)(30x﹣33=3x﹣10x﹣(【解答】解:f′x)=3x ,)<x﹣110(=3(x+1)).,<1<x11,故减区间为(﹣111解得﹣,111)(﹣故答案为:此题考查学生利用导数研究函数的单调性的能力.【点评】14.(5分)(2009?江苏)函数y=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)在闭区间[﹣π,0]的图象如图所示,则ω=3.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】根据函数图象求出函数的周期T,然后求出ω.【解答】解:由图中可以看出:=,T=πT=π,∴∴ω=3.故答案为:3【点评】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查逻辑思维能力,是基础题.5.(5分)(2009?江苏)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为0.2.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】由题目中共有5根竹竿,我们先计算从中一次随机抽取2根竹竿的基本事件总数,及满足条件的基本事件个数,然后代入古典概型计算公式,即可求出满足条件的概率.【解答】解:从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数有2.5和2.8,2.6和2.9,共2个∴所求概率为0.2.故答案为:0.2.【点评】本题考查的知识点是古典概型及其概率计算公式,计算出满足条件的基本事件总数及其满足条件的基本事件个数是解答此类题型的关键.6.(5分)(2009?江苏)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表:学7 7 8 7 6甲班7 6 7 9 6乙班2.0.4则以上两组数据的方差中较小的一个为S=【考点】极差、方差与标准差.【专题】概率与统计.先写出两组数据的平均数,再求出两组数据的方差,把根据表中所给的两组数据,【分析】方差进行比较,方差小的一个是甲班,得到结果.,8,7,,,解:由题意知甲班的投中次数是【解答】677 ,这组数据的平均数是72,甲班投中次数的方差是,6,7,9乙班的投中次数是6,7,,这组数据的平均数是7这组数据的方差是,∴两组数据的方差中较小的一个为0.40.4故答案为:这种问题一旦出现是比较两组数据的方差的大小,是一个基础题,【点评】本题考查方差,一个必得分题目,注意运算过程中不要出错..江苏)如图是一个算法的流程图,最后输出的W=227.(5分)(2009?【考点】循环结构.【专题】算法和程序框图.,不满足则循环,直到满足就跳10,判定是否满足S≥S【分析】根据流程图可知,计算出值即可.出循环,最后求出W10≥S=1;不满足S【解答】解:由流程图知,第一次循环:T=1,210≥;不满足ST=3,S=3﹣1=8第二次循环:210 S≥S=5﹣8=17,满足T=5第三次循环:,W=5+17=22.此时跳出循环,∴22故答案为当型循环结构和直到型循循环结构有两种形式:本题主要考查了直到型循环结构,【点评】环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.,则它们的面积比为:21分)(2009?江苏)在平面上,若两个正三角形的边长的比为.8(5 则它们的体积比8,:若两个正四面体的棱长的比为类似地,41:,在空间内,12【考点】类比推理.立体几何.【专题】3【分析】根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由平面图形面积类比立体图形的体积,结合三角形的面积比的方法类比求四面体的体积比即可.【解答】解:平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,由平面图形面积类比立体图形的体积,得出:在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为1:8故答案为:1:8.【点评】本题主要考查类比推理.类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).3上,且在10x+3y=x﹣P在曲线C:(5分)(2009?江苏)在平面直角坐标系xOy中,点9..2,15)P处的切线斜率为2,则点P的坐标为(﹣C第二象限内,已知曲线在点【考点】导数的几何意义.【专题】导数的概念及应用.处的)在x=xf(x)y(x<0),根据导数的几何意义求出函数【分析】先设切点P(x,0000导数,从而求出切线的斜率,建立方程,解之即可.2,=3x﹣10=20),由题意知:y′|x=x<【解答】解:设P(x,y)(x000002.∴x=40,=﹣2∴x0.∴y=150.15)∴P点的坐标为(﹣2,),15故答案为:(﹣2本题考查了导数的几何意义,以及导数的运算法则和已知切线斜率求出切点坐标,【点评】本题属于基础题.x)(m,n满足f,函数f(x)=log,若正实数200910.(5分)(?m江苏)已知a>f(n),则m,n的大小关系为m<n.【考点】对数函数的单调性与特殊点.【专题】函数的性质及应用.x在=logx)<1,故函数f(【分析】,即因为已知条件中对数函数的底数0<a a(0,+∞)上为减函数,根据函数的单调性,结合足f(m)>f(n),不难判断出m,n的大小关系.解:∵【解答】∴0<a<1x∴f(x)=log在(0,+∞)上为减函数a若f(m)>f(n)则m<n故答案为:m<n4x时,指数函数和对数函数在其定义域上均1,在底数a>【点评】函数y=a和函数y=logx a)x 时,指数函数和对数函数在其定义域上均为减函数,而f(﹣0<a<1为增函数,当底数x﹣,在底x)轴对称,其单调性相反,故函数y=a和函数y=log(﹣与f(x)的图象关于Y a时,指数函数1时,指数函数和对数函数在其定义域上均为减函数,当底数0<a<a数>1 和对数函数在其定义域上均为增函数.的取aA?B则实数,≤2},B=(﹣∞a),若(11.5分)(2009?江苏)已知集合A={x|logx2.c= 4值范围是(c,+∞),其中集合的包含关系判断及应用.【考点】集合.【专题】A 先化简集合,然后根据子集的定义求出集合B的取值范围,总而求出所求.【分析】【解答】解:A={x|logx≤2}={x|0<x≤4} 2而B=(﹣∞,a),∵A?B∴a>4即实数a的取值范围是(4,+∞),故答案为:4【点评】本题属于以对数不等式为依托,考查集合子集的基础题,也是高考常会考的题型.12.(5分)(2009?江苏)设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行;(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.上面命题,真命题的序号是(1)(2)(写出所有真命题的序号)【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用.【专题】空间位置关系与距离.【分析】从线面平行、垂直的判定定理,判断选项即可.【解答】解:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.【点评】本题考查空间中直线与平面之间的位置关系,理解定理是判断的前提,是中档题.13.(5分)(2009?江苏)如图,在平面直角坐标系xoy中,A,A,B,B为椭圆2112的四个顶点,F为其右焦点,直线AB与直线BF相交于点T,112.OTMOT线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为 5【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.,联立的方程为,直线B【分析】解法一:可先直线ABF的方程为112的坐标,代入椭圆的方程即可解出离的坐标,进而表示出中点M两直线的方程,解出点T 心率的值;'2'2根),F'.(解法二:,对椭圆进行压缩变换,0,,椭圆变为单位圆:x+y=1 轴交点的横坐标就是该椭圆的离心率.T与x据题设条件求出直线BT方程,直线直线B11的方程为,的方程为直线BF【解答】解法一:由题意,可得直线AB112(M)T(,则),由于此点在椭圆两直线联立则点上,故有22=0﹣c10ac,整理得3a﹣2 +10e﹣,解得3=0即e故答案为解法二:对椭圆进行压缩变换,,,'2'2.,0+y=1,F')(椭圆变为单位圆:x ,TM=MO=ON=1,AB斜率为1,交圆延长TOO于N,易知直线21′+1,′),则,y′=x,T设(x′y,×TN由割线定理:TB×TA ,=TM12,(负值舍去)方程:T1(B0,﹣),直线B易知:11=0令y′F,即横坐标6e=.即原椭圆的离心率故答案:.【点评】本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答.14.(5分)(2009?江苏)设{a}是公比为q的等比数列,|q|>1,令b=a+1(n=1,2,…),nnn若数列{b}有连续四项在集合{﹣53,﹣23,19,37,82}中,则6q=﹣9.n【考点】等比数列的性质;数列的应用.【专题】等差数列与等比数列.【分析】根据B=A+1可知A=B﹣1,依据{Bn}有连续四项在{﹣53,﹣23,19,37,82}nnnn中,则可推知则{A}有连续四项在{﹣54,﹣24,18,36,81}中,按绝对值的顺序排列上述n数值,相邻相邻两项相除发现﹣24,36,﹣54,81是{A}中连续的四项,求得q,进而求n得6q.【解答】解:{Bn}有连续四项在{﹣53,﹣23,19,37,82}中B=A+1 A=B﹣1nnnn则{A}有连续四项在{﹣54,﹣24,18,36,81}中n{A}是等比数列,等比数列中有负数项则q<0,且负数项为相隔两项n等比数列各项的绝对值递增或递减,按绝对值的顺序排列上述数值18,﹣24,36,﹣54,81相邻两项相除﹣=﹣=﹣=﹣=很明显,﹣24,36,﹣54,81是{A}中连续的四项n﹣(|q|>1,∴此种情况应舍)q= ﹣或q=﹣q= ∴∴6q=﹣9故答案为:﹣9【点评】本题主要考查了等比数列的性质.属基础题.二、解答题(共6小题,满分90分)15.(14分)(2009?江苏)设向量与垂直,求tan(α+β)的值;1()若的最大值;2()求7∥.,求证:)若tanαtanβ=16(3【考点】平面向量数量积坐标表示的应用;平行向量与共线向量;两向量的和或差的模的最值.【专题】平面向量及应用.与与先根据向量的线性运算求出,的再由【分析】(1)垂直等价于数量积等于0可求出α+β的正余弦之间的关系,最后可求正切值.||,然后根据向量的求模运算得到的关系,最后根据正(2)先根据线性运算求出弦函数的性质可确定答案.∥β,正是α)?(4cosβ)=sinαsin(3)将tanαtanβ=16化成弦的关系整理即可得到(4cos 的充要条件,从而得证.垂直,β,4cosβ+8sinβ)与(【解答】解:1,)∵=(sinβ﹣2cos∴4cosα(sinβ﹣2cosβ)+sinα(4cosβ+8sinβ)=0,即sinαcosβ+cosαsinβ=2(cosαcosβ﹣sinαsinβ),∴sin(α+β)=2cos(α+β),cos(α+β)=0,显然等式不成立∴tan(α+β)=2.)∵=(sinβ+cosβ,4cosβ﹣(24sinβ),||=∴,=.||1β=﹣时,取最大值,且最大值为sin2∴当,即sinαsin β=16,∴β=16cosαcosβ,α(3)∵tantan 4cosα∴(4cos)?(β)=sin,sinβα)共线,,sinsin,α=)与(β4cosβα(即=4cos∥.∴求模运算、向量垂直和数量积之间的关系.向量和【点评】本题主要考查向量的线性运算、三角函数的综合题是高考的热点,要强化复习.的分别是ABA,CFE中,CB﹣江苏)如图,在直三棱柱2009分)(16.14(?ABCA,11111在中点,点DB⊥.求证:BCDA上,C1111(∥平面EF1);ABC 2()平面CBB⊥平面FD.AC1118直线与平面平行的判定;平面与平面垂直的判定.【考点】立体几何.【专题】即可;∥BCEF ∥平面ABC,证明EF【分析】(1)要证明即可,利用平面与平面CBBC,通过证明AD⊥面)要证明平面(2AFD⊥平面BBCC111111垂直的判定定理证明即可.C的中点,A分别是B,A 【解答】证明:(1)因为E,F11 ABC;ABC,所以EF∥平面EF?面ABC,BC?面所以EF∥BC,又D,BB⊥A,所以BB⊥面ABC,ABC(2)因为直三棱柱﹣ABC111111111⊥FD所以平面A,D?面AFD⊥面BC=B,所以ADBBCC,又AB又AD⊥C,BB∩11111111111.CC平面BB11本题考查直线与平面平行和垂直的判断,考查学生空间想象能力,逻辑思维能力,【点评】是中档题.项和,满足为其前nS?江苏)设a是公差不为零的等差数列,17.(14分)(2009nn2222=7,Sa+a=a+a72435 S;的通项公式及前n项和(1)求数列a nn中的项.,使得为数列(2)试求所有的正整数ma n数列的求和;等差数列的性质.【考点】等差数列与等比数列.【专题】代入等差数列的通项da,)先把已知条件用a及d表示,然后联立方程求出【分析】(111 n项和公式可求.公式及前ma2的通项公式可寻求)先把已知化简可得,然后结合数列(n满足的条件.)由题意可得【解答】解:(1d=2 ﹣5,=联立可得a1,×)2=2n﹣71n5+=a∴﹣(﹣n(2中的项a=1)由()知若使其为数列n9为正整数必需为整数,且m则;,m=1m=2 是最小值)故舍去.﹣5时不满足题意,(a=m=11.所以m=2解题的重点是要熟练掌握项和的公式,本题主要考查了等差数列的通项公式及前n【点评】基本公式,并能运用公式,还要具备一定的运算能力.22和﹣1)=4C:(x+3)+(y18.(16分)(2009?江苏)在平面直角坐标系xoy中,已知圆122=4 ﹣5)x﹣4)+(yC圆:(2,求直线l0),且被圆C的方程;截得的弦长为I()若直线l过点A(4,1的斜,l)为平面上的点,满足:存在过点P的两条互相垂的直线l与l(II)设P(a,b112截得C被圆C截得的弦长与直线l被圆相交,率为2,它们分别与圆C和圆C且直线l212121的关系式.的弦长相等,试求满足条件的a,b直线的一般式方程;直线和圆的方程的应用.【考点】直线与圆.【专题】的点斜式方程,又由直线被圆,故可以设出直线l4,0)I 【分析】()因为直线l过点A(,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,截得的弦长为C1lk值,代入即得直线即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出的方程.的圆心到直C与ll的点斜式方程,分析可得圆(II)根据题意,可以设出过P点的直线112的方程,整理ba、的距离相等,即可以得到一个关于l的距离和圆C的圆心到直线l线212变形可得答案.不相交,与圆C (Ⅰ)若直线l的斜率不存在,则直线x=4【解答】解:1),x﹣4l故直线l的斜率存在,不妨设为k,则直线的方程为y=k()到直线的距离,C圆心(﹣3,1圆﹣即kxy﹣4k=01=1,则,l直线被圆C截得的弦长为1k=0联立以上两式可得,或故所求直线.y=0方程为l或10:,l x﹣a),(Ⅱ)依题意直线的方程可设为l:y﹣b=2(21因为两圆半径相等,且分别被两直线截得的弦长相等,l的距离相等,l的距离和圆C的圆心到直线的圆心到直线故圆C2112即,解得:a﹣3b+21=0或3a+b﹣7=0.【点评】在解决与圆相关的弦长问题时,我们有三种方法:一是直接求出直线与圆的交点坐标,再利用两点间的距离公式得出;二是不求交点坐标,用一元二次方程根与系数的关系得出,即设直线的斜率为k,直线与圆联立消去y后得到一个关于x的一元二次方程再利用弦长公式求解,三是利用圆中半弦长、弦心距及半径构成的直角三角形来求.对于圆中的弦长问题,一般利用第三种方法比较简捷.本题所用方法就是第三种方法.19.(16分)(2009?江苏)照某学者的理论,假设一个人生产某产品单件成本为a元,如果元,则他的满意度为;如果他买进该产品的单价为n他卖出该产品的单价为m元,则.如果一个人对两种交易(卖出或买进)的满意度分别为h和他的满意度为h,则他21.对这两种交易的综合满意度为现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为m元和m元,甲买进A与卖出B BA的综合满意度为h,乙卖出A与买进B的综合满意度为h.乙甲=m时,求证:h的表达式;当m=h;(1)求h和h关于m、m BAAB乙甲甲乙=m,当mm、m分别为多少时,甲、乙两人的综合满意度均最大?最大的综(2)设BBAA合满意度为多少?(3)记(2)中最大的综合满意度为h,试问能否适当选取m、m的值,使得h≥h和00AB甲h≥h 同时成立,但等号不同时成立?试说明理由.0乙【考点】函数模型的选择与应用.【专题】函数的性质及应用.=mm时,表示出要证【分析】(1)表示出甲和乙的满意度,整理出最简形式,在条件BA明的相等的两个式子,得到两个式子相等.(2)在上一问表示出的结果中,整理出关于变量的符合基本不等式的形式,利用基本不等式求出两个人满意度最大时的结果,并且写出等号成立的条件.≤,不能取到m,m=h)知hh=.因为h的值,使)先写出结论:不能由((32B0A0乙甲同时成立,但等号不同时成立.h 和≥hh≥h得00乙甲=;hB=的满意度为)甲:买进(【解答】解:1Ah,卖出的满意度为B1A111=;h= 所以,甲买进A与卖出B的综合满意度为甲=;=,买进B的满意度为:乙:卖出A的满意度为:hh B2A2=;= A与买进B的综合满意度h所以,乙卖出乙=,所以hh,=h当m=m时,BA甲甲乙=h乙=m时,0),当mm(2)设=x(其中x>BAB≤;= =h=h乙甲=×10=6m时,=10时,上式“=”成立,即m当且仅当,x=,即x=10AB甲、乙两人的综合满意度均最大,最大综合满意度为;≤h =.因为(3)不能由(2)知hh0乙甲同时成立,但等号不同时成立.h≥hm的值,使得h≥h和因此,不能取到m,0BA0乙甲【点评】本题考查函数模型的选择和应用,本题解题的关键是理解题意,这是最主要的一点,题目中所用的知识点不复杂,只要注意运算就可以.2.﹣a|x﹣a)|x江苏)设a为实数,函数f(x)=2x+(1620.(分)(2009? a的取值范围;10)≥,求(1)若f(x)的最小值;2)求f((的解集.)≥1)+∞,求不等式h(x,h3)设函数(x)=f(x)x∈(a,(二次函数的性质;一元二次不等式的解法.【考点】函数的性质及应用;不等式的解法及应用.【专题】a再去绝对值求的取值范围,﹣a|a|≥1≥【分析】(1)f(0)1?借助二次函数的a两种情况来讨论去绝对值,再对每一段分别求最小值,和x<≥(2)分xa 对称轴及单调性.最后综合即可.22,因为不等式的解集由对应方程的根决定,所以再0﹣﹣2ax+a1≥转化为x3()h()≥13x 对其对应的判别式分三种情况讨论求得对应解集即可. 1 ≤?≥,则﹣≥0f1解:【解答】()若()1a|a|1?a﹣1222,∴,﹣2ax+a xx≥a时,f()=3x2()当如图所示:22﹣af(x)=x,+2ax≤当xa时,∴.综上所述:.1,h(x)≥a(3)x∈(,+∞)时,22222﹣8a(a﹣1)=12△得3x﹣2ax+a1﹣≥0,=4a12﹣);∞(0≤,x∈a,+△a≤当a﹣或≥时,>时,<当﹣a<△0,得:13即2类讨论:进而分<时,a,当﹣<a<﹣;+,∞,]∪)[a此时不等式组的解集为(a;≤<时,<x当﹣≤).此时不等式组的解集为,[+∞综上可得,);,+∞+,∞当a∈(﹣∞,﹣)∪()时,不等式组的解集为(a);[,+∈当a∞(﹣,﹣)时,不等式组的解集为(a,]∪.+,∞)时,不等式组的解集为[a当∈﹣,][分段函数的最值的求法是先对每一段分别求最值,【点评】本题考查了分段函数的最值问题.最后综合最大的为整个函数的最大值,最小的为整个函数的最小值.14。
2009年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.已知全集U =R ,则正确表示集合M ={−1, 0, 1}和N ={x|x 2+x =0}关系的韦恩(Venn)图是( )A.B.C.D.2. 下列n 的取值中,使i n =1(i 是虚数单位)的是( ) A.n =2B.n =3C.n =4D.n =53. 已知平面向量a →=(x, 1),b →=(−x, x 2),则向量a →+b →( ) A.平行于x 轴B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线 4. 若函数y =f(x)是函数y =a x−a(a >0,且a ≠1)的反函数,且f(12)=1,则函数y =( ) A.log 2xB.12xC.log 12xD.2x−25. 已知等比数列{a n }的公比为正数,且a 3⋅a 9=2a 52,a 2=1,则a 1=( )A.12B.√22C.√2D.26. 给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( ) A.①和②B.②和③C.③和④D.②和④7. 已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c .若a =c =√6+√2,且∠A =75∘,则b =( ) A.2B.4+2√3C.4−2√3D.√6−√28. 函数f(x)=(x −3)e x 的单调递增区间是( )A.(−∞, 2)B.(0, 3)C.(1, 4)D.(2, +∞)9. 函数y =2cos 2(x −π4)−1是( ) A.最小正周期为π的奇函数 B.最小正周期为π的偶函数 C.最小正周期为π2的奇函数D.最小正周期为π2的偶函数10. 广州2010年亚运会火炬传递在A ,B ,C ,D ,E 五个城市之间进行,各城市之间的距离(单位:百公里)见表.若以A 为起点,E 为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是( )C.22D.23二、填空题(共5小题,每小题5分,第14-15题,属选做题,满分25分) 11. 某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:框应填________,输出的s=________.(注:框图中的赋值符号“=”也可以写成“←”或“:=”)12. 某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1∼200编号,并按编号顺序平均分为40组(1∼5号,6∼10号,…,196∼200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.13. 以点(2, −1)为圆心且与直线x+y=6相切的圆的方程是________.14. 选做题:若直线y=2+3t.x=1−2t,(t为参数)与直线4x+ky=1垂直,则常数k=________.15. 选做题:如图,点A、B、C是圆O上的点,且AB=4,∠ACB=30∘,则圆O的面积等于________.三、解答题(共6小题,满分80分)16. 已知向量a→=(sinθ,−2)与b→=(1,cosθ)互相垂直,其中θ∈(0,π2).(1)求sinθ和cosθ的值;(2)若sin(θ−φ)=√1010,0<φ<π2,求cosφ的值.17. 某高速公路收费站入口处的安全标识墩如图(1)所示.墩的上半部分是正四棱锥P−EFGH,下半部分是长方体ABCD−EFGH.图(2)、图(3)分别是该标识墩的正(主)视图和俯视图.(1)请画出该安全标识墩的侧(左)视图;(2)求该安全标识墩的体积;(3)证明:直线BD⊥平面PEG.。
2008年全国普通高等学校招生统一考试 上海 数学试卷(理工农医类)一 填空(4’×11)1.不等式|x -1|<1的解集是2.若集合A ={x |x ≤2}、B ={x |x ≥a }满足A ∩B ={2},则实数a =3.若复数z 满足z =i (2-z)(i 是虚数单位),则z =4.若函数f (x )的反函数为f -1(x )=x 2(x >0),则f (4)=5.若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b 的夹角为π3,则|→a +→b |=6.函数f (x )=3sin x +sin(π2+x )的最大值是7.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示)8.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围 是9.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是10.某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a ,短轴长为2b 的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h 1、h 2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是11.方程x 2+2x -1=0的解可视为函数y =x +2的图像与函数y =1x 的图像交点的横坐标,若x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点(x i ,4x i )(i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是 二 选择(4’×4)12.组合数C rn (n >r ≥1,n 、r ∈Z )恒等于( )A .r +1n +1C r -1n -1B .(n +1)(r +1)C r -1n -1 C .nr C r -1n -1D .n r C r -1n -113. 给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要14. 若数列{a n }是首项为1,公比为a -32的无穷等比数列,且{a n }各项的和为a ,则a 的值是( )A .1B .2C .12D .5415.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成区域(含边界),A 、B 、C 、D 是该圆的四等分点,若点满足x ≤x ’ 且y ≥y ’,则称P 优于P ’,如果Ω中的点Q 满足:不存在Ω的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( )A . AB ︵ B . BC ︵ C . CD ︵ D . DA ︵16.(12’)如图,在棱长为2的正方体ABCD-A 1B 1C 1D 1中,E 是BC 1的中点,求直线DE 与平面ABCD 所成角的大小(结果用反三角函数表示)AE B 1D 1DC 1A 1 BC17.(13’)如图,某住宅小区的平面图呈圆心角为120的扇形AOB ,小区的两个出入口设置在点A 及点C 处,且小区里有一条平行于BO 的小路CD ,已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米)18.(5’+10’)已知函数f (x )=sin2x ,g (x )=cos(2x +π6),直线x =t (t ∈R )与函数f (x )、g (x )的图像分别交于M 、N 两点 ⑴当t =π4时,求|MN|的值⑵求|MN|在t ∈[0,π2]时的最大值20.(3’+5’+8’)设P(a ,b )(b ≠0)是平面直角坐标系x O y 中的点,l 是经过原点与点(1,b )的直线,记Q 是直线l 与抛物线x 2=2py (p ≠0)的异于原点的交点 ⑴已知a =1,b =2,p =2,求点Q 的坐标⑵已知点P(a ,b )(ab ≠0)在椭圆x 24+y 2=1上,p =12ab ,求证:点Q 落在双曲线4x 2-4y 2=1上⑶已知动点P(a ,b )满足ab ≠0,p =12ab ,若点Q 始终落在一条关于x 轴对称的抛物线上,试问动点P 的轨迹落在哪种二次曲线上,并说明理由AODBC19.(8’+8’)已知函数f (x )=2x -12|x |⑴若f (x )=2,求x 的值⑵若2t f (2t )+m f (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围21.(3’+7’+8’)已知以a 1为首项的数列{a n }满足:a n +1=⎩⎪⎨⎪⎧a n +c ,a n <3a n d , a n ≥3⑴当a 1=1,c =1,d =3时,求数列{a n }的通项公式⑵当0<a 1<1,c =1,d =3时,试用a 1表示数列{a n }的前100项的和S 100⑶当0<a 1<1m (m 是正整数),c =1m ,d ≥3m 时,求证:数列a 2-1m ,a 3m+2-1m ,a 6m+2-1m ,a 9m+2-1m 成等比数列当且仅当d =3m2008年全国普通高等学校招生统一考试上海数学试卷参考答案(理工农医类)一、(第1题至第11题)1.(0,2)2. 2.3.1i +.4.2.6.2.7.34. 8.(1,0)(1,)-+∞ . 9.10.5,10.5a b ==. 10.1122cot cot 2h h a θθ⋅+⋅≤ 11.(,6)(6,)-∞-+∞ .二、(第12题至第15题) 12.D 13.C 14.B 15.D三、(第16题到第21题)16.[解]过E 作EF BC ⊥,交BC 于F ,连接CO . EF ⊥平面ABCD ,∴EDF ∠是直线DE 与平面ABCD 所成的角. ……4分 由题意,得1112EF CC ==. 112CF CB == ∴DF =. ……8分EF DF ⊥,∴tan EF EDF DF ∠==……10分 故直线DE 与平面ABCD 所成角的大小是arctan5. ……12分17 [解法一]设该扇形的半径为r 米,连接CO . ……2分由题意,得500CD =(米),300DA =(米),60CDO ∠=︒ ……4分 在△CDO 中,2222cos60CD OD CD OD OC +-⋅⋅︒= ……6分 即,2221500(300)2500(300)2r r r +--⨯⨯-⨯= ……9分解得490044511r =≈(米) 答:该扇形的半径OA 的长约为445米. ……13分[解法二]连接AC ,作OH AC ⊥,交AC 于H , ……2分 由题意,得500CD =(米),300AD =(米),120CDA ∠=︒ ……4分 在△CDO 中,2222cos120AC CD AD CD AD =+-⋅⋅⋅︒AEB 1D 1D C 1A 1 BC AOD BCA ODBCH222150030025003007002=++⨯⨯⨯=. 700AC ∴=(米). ……6分22211cos 214AC AD CD CAD AC AD +-∠==⋅⋅.在直角△HAO 中,350AH =(米),11cos 14HAO ∠=, ……9分 ∴ 4900445cos 11AH OA HAO ==≈∠(米).答:该扇形的半径OA 的长约为445米. ……13分18.[解](1)设11(,)P x y 是双曲线上任意一点,该双曲的两条渐近线方程分别是20x y -=和20x y +=. ……2分点11(,)P x y , ……4分⋅2211|4|455x y -==.点P 到双曲线的两条渐线的距离的乘积是一个常数. ……6分 (2)设的坐标为(,)x y ,则222||(3)PA x y =-+ ……8分22(3)14x x =-+- 25124()455x =-+ ……11分 ||2x ≥, ……13分 ∴ 当125x =时,2||PA 的最小值为45,即||PA 的最小值为5. ……15分 19.解(1)当0x <时,()0f x =;当0x ≥时,1()22xxf x =-由条件可知1222xx -=,即222210x x --=解得 21x=20log (1x x >=∵∴(2)当[1,2]t ∈时,22112(2)(2)022tttt t m -+-≥ 即24(21)(21)t t m -≥--,2210t->∵,2(21)t m ≥-+∴[1,2]t ∈∵,2(21)[17,5]t -+∈--∴故m 的取值范围是[5,)-+∞ 20.解(1)当1,2,2a b p ===时,解方程组242x y y x ⎧=⎨=⎩ 得816x y =⎧⎨=⎩ 即点Q 的坐标为(8,16)(2)【证明】由方程组21x y ab y bx ⎧=⎪⎨⎪=⎩ 得1x ab y a ⎧=⎪⎪⎨⎪=⎪⎩ 即点Q 的坐标为1(,)b a a P ∵时椭圆上的点,即2214a b +=2222144()4()(1)1b b a a a-=-=∴ ,因此点Q 落在双曲线22441x y -=上(3)设Q 所在的抛物线方程为22(),0y q x c q =-≠将1(,)b Q a a 代入方程,得2212()b q c a a=-,即2222b qa qca =-当0qc =时,22b qa =,此时点P 的轨迹落在抛物线上;当12qc =时,22211()24a b c c-+= ,此时点P 的轨迹落在圆上; 当102qc qc >≠且时,2221()2142a b c c c-+=,此时点P 的轨迹落在椭圆上;当0qc <时2221()211()42a b c qc c--=-,此时点P 的轨迹落在双曲线上;21.解(1)由题意得1,322,31,()3,3n n k a n k k Z n k +=-⎧⎪==-∈⎨⎪=⎩(2) 当101a <<时,211a a =+,312a a =+,413a a =+,1513a a =+,1623aa =+, 1733a a =+,, 1313113k k a a --=+,133123k k a a -=+,1313133k k aa +-=+10012345669899100()()()S a a a a a a a a a a =++++++++++ ∴1111131(36)(6)(6)(6)33a a a a a =+++++++++ 113111(31)63333a a =++++++⨯13111(11)19823a =-+(3)当3d m =时,211a a m=+311131311333m m m a a a a a m m +-=+=-+<<+=∵, 13213m a a m m +=+∴; 11661133333m m a a a a m m m +=-+<<+=∵, 162219m a a m m +=+∴;1199122133399m m a a a a m m m +=-+<<+=∵,1923127m a a m m+=+∴211a a m -=∴,13213m a a m m +-=, 162219m a a m m +-=,1923127m a a m m+-=∴综上所述,当3d m =时,数列21a m -,321m a m +-,621m a m +-,921m a m+-是公比为13m的等比数列当31d m ≥+时,132310,m a a d m ++⎛⎫=∈ ⎪⎝⎭, 1623133,3,m a a d m ++⎛⎫=+∈+ ⎪⎝⎭1633310,,m a d a d m +++⎛⎫=∈ ⎪⎝⎭192333113,3,m a m d a d m m +++-⎛⎫=+∈- ⎪⎝⎭ ……15分由于3210m a m +-<,6210m a m +->,9210m a m +-> 故数列23262921111,,,,m m m a a a a m m m m+++----不是等比数列所以,数列23262921111,,,,m m m a a a a m m m m+++----成等比数列当且仅当3d m = ……18分。
高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为.例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24 ,则该球的体积为.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为.例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16B. 20C. 24D. 323.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形, 其侧棱垂直于底面,已知该 六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面周长 为3,则这个球的体积为.解设正六棱柱的底面边长为x ,高为h ,则有 6x 3 9 会 3 2.6 — x h 8 4的半径的常用公式二、构造法(补形法)1、构造正方体例5若三棱锥的三条侧棱两两垂直,且侧棱长均为 V 3 ,则其外 接球的表面积是.例3若三棱锥的三个侧面两两垂直,且侧棱长均为V 3 ,则其外 接球的表面积是.故其外接球的表面积S 4 r 2 9 .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分 别为a,b,c ,则就可以将这个三棱锥补成一个长方体, 于是长方体的体 对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则 有2R va 2 b 2 c 2.出现“墙角”结构利用补形知识,联系长方体。
第5讲 指数与指数函数1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1);②负分数指数幂:a -m n=1a m n=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象及性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编有下列四个式子:①3(-8)3=-8;② (-10)2=-10;③4(3-π)4=3-π;④2 017(a -b )2 017=a -b . 其中正确的个数是( )A .1B .2C .3D .4B ①④正确,(-10)2=|-10|=10,②错误; 4(3-π)4=|3-π|=-(3-π)=π-3,③错误,故选B.2.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3xD 根据各选项知,选项C 、D 中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x是增函数,所以D 正确.3.(2017·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y=1-x 的图象上.4.(2017·皖北协作区联考)函数f (x )=1-e x的值域为________. 由1-e x ≥0,e x≤1,故函数f (x )的定义域为{x |x ≤0}. 所以0<e x ≤1,-1≤-e x <0,0≤1-e x<1,函数f (x )的值域为 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)0.027-13-⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫27912-(2-1)0;(2)⎝ ⎛⎭⎪⎫56a 13b -2·(-3a -12b -1)÷(4a 23b -3)12·ab .【解】 (1)原式=⎝ ⎛⎭⎪⎫271 000-13-72+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45. (2)原式=⎝ ⎛⎭⎪⎫-52a -16b -3÷(2a 13b -32)·a 12b 12=-54a -12b -32·a 12b 12=-54b -1=-54b.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100.(2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b-32=85.指数函数的图象及应用(1)函数f (x )=21-x的大致图象为()(2)若方程|3x-1|=k 有一解,则k 的取值范围为________.【解析】 (1)函数f (x )=21-x=2×⎝ ⎛⎭⎪⎫12x,单调递减且过点(0,2),选项A 中的图象符合要求.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解.【答案】 (1)A (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.)1.函数f (x )=a x -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 D 由f (x )=a x -b 的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.2.若函数y =21-x+m 的图象不经过第一象限,求m 的取值范围.y =⎝ ⎛⎭⎪⎫12x -1+m ,函数y =⎝ ⎛⎭⎪⎫12x -1的图象如图所示,则要使其图象不经过第一象限,则m ≤-2.指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下三个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质.(1)已知a =⎝ ⎛⎭⎪⎫1223,b =2-43,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c(2)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3. ①若a =-1,求f (x )的单调区间; ②若f (x )有最大值3,求a 的值; ③若f (x )的值域是(0,+∞),求a 的值.【解】 (1)选B.把b 化简为b =⎝ ⎛⎭⎪⎫1243,而函数y =⎝ ⎛⎭⎪⎫12x在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫1243<⎝ ⎛⎭⎪⎫1223<⎝ ⎛⎭⎪⎫1213,即b <a <c . (2)①当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).②令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.③令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ) 故f (x )的值域为(0,+∞)时,a 的值为0.有关指数函数性质的问题类型及解题策略(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小 1.下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1BA 中,因为函数y =1.7x在R 上是增函数,2.5<3,所以1.72.5<1.73. B 中,因为y =0.6x在R 上是减函数,-1<2, 所以0.6-1>0.62. C 中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小. 因为y =1.25x在R 上是增函数,0.1<0.2, 所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.角度二 解简单的指数方程或不等式2.(2015·高考江苏卷)不等式2x 2-x <4的解集为________. 因为2x 2-x <4,所以2x 2-x <22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质 3.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在 因为f (x )=2|x -a |,所以f (x )的图象关于x =a 对称.又由f (1+x )=f (1-x ),知f (x )的图象关于直线x =1对称,故a =1,且f (x )的增区间是 1——换元法解决指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x与a 2x(log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数y =9x+m ·3x-3在区间上单调递减,则m 的取值范围为________.设t =3x ,则y =9x +m ·3x -3=t 2+mt -3.因为x ∈,所以t ∈⎣⎢⎡⎦⎥⎤19,9.又函数y =9x+m ·3x -3在区间上单调递减,即y =t 2+mt -3在区间⎣⎢⎡⎦⎥⎤19,9上单调递减, 故有-m2≥9,解得m ≤-18.所以m 的取值范围为(-∞,-18]. (-∞,-18]1.下列函数中值域为正实数的是( )A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x-1 D .y =1-2xBA 中,y =-5x<0,B 中,因为1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x的值域是正实数,所以y =⎝ ⎛⎭⎪⎫131-x的值域是正实数,C 中,y =⎝ ⎛⎭⎪⎫12x-1≥0,D 中,y =1-2x ,由于2x >0,故1-2x <1,又1-2x≥0,故0≤y <1,故符合条件的只有B.2.化简4a 23·b -13÷⎝ ⎛⎭⎪⎪⎫-23a -13b 23的结果为( ) A .-2a3bB .-8a bC .-6a bD .-6abC 原式=4÷⎝ ⎛⎭⎪⎫-23a 23-(-13)b -13-23=-6ab -1=-6a b,故选C.3.函数y =a x-1a(a >0,a ≠1)的图象可能是( )D 函数y =a x -1a 的图象由函数y =a x的图象向下平移1a个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a>1,平移距离大于1,所以C 项错误.4.已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >cB .a >c >bC .c >a >bD .b >c >aA 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .5.(2017·莱芜模拟)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19.又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|. 因为g (x )=|2x -4|在 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1).7.指数函数y =f (x )的图象经过点(m ,3),则f (0)+f (-m )=________. 设f (x )=a x(a >0且a ≠1),所以f (0)=a 0=1. 且f (m )=a m =3.所以f (0)+f (-m )=1+a -m=1+1a m =43.438.614-(π-1)0-⎝ ⎛⎭⎪⎫33813+⎝ ⎛⎭⎪⎫164-23=________. 原式=52-1-⎝ ⎛⎭⎪⎫27813+(4-3)-23=32-32+42=16. 169.(2015·高考山东卷)已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.①当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.-3210.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是________.原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数, 所以⎝ ⎛⎭⎪⎫12x≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x恒成立等价于m 2-m <2,解得-1<m <2.(-1,2)11.求下列函数的定义域和值域. (1)y =⎝ ⎛⎭⎪⎫122x -x 2;(2)y = 32x -1-19. (1)显然定义域为R .因为2x -x 2=-(x -1)2+1≤1,且y =⎝ ⎛⎭⎪⎫12x 为减函数.所以⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12. 故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞.(2)由32x -1-19≥0,得32x -1≥19=3-2, 因为y =3x为增函数,所以2x -1≥-2,即x ≥-12,此函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞, 由上可知32x -1-19≥0,所以y ≥0. 即函数的值域为 (1)因为f (x )为偶函数, 所以对任意的x ∈R ,都有f (-x )=f (x ), 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间 因为函数f (x )=⎝ ⎛⎭⎪⎫13x+a 的图象经过第二、三、四象限,所以a <-1.则g (a )=f (a )-f (a +1)=⎝ ⎛⎭⎪⎫13a+a -⎝ ⎛⎭⎪⎫13a +1-a =⎝ ⎛⎭⎪⎫13a ⎝ ⎛⎭⎪⎫1-13=23·⎝ ⎛⎭⎪⎫13a.因为a <-1,所以⎝ ⎛⎭⎪⎫13a>3,则23·⎝ ⎛⎭⎪⎫13a>2,故g (a )的取值范围是(2,+∞). 14.(2017·济南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是________.画出函数图象如图所示,由图象可知要使a >b ≥0,f (a )=f (b )同时成立,则12≤b <1. b ·f (a )=b ·f (b )=b (b +1)=b 2+b =⎝ ⎛⎭⎪⎫b +122-14,所以34≤b ·f (a )<2.⎣⎢⎡⎭⎪⎫34,215.已知函数y =2-x 2+ax +1在区间(-∞,3)内递增,求a 的取值范围. 函数y =2-x 2+ax +1是由函数y =2t 和t =-x 2+ax +1复合而成.因为函数t =-x 2+ax +1在区间 (-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减,且函数y =2t在R 上单调递增,所以函数y =2-x 2+ax +1在区间(-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减. 又因为函数y =2-x 2+ax +1在区间(-∞,3)上单调递增,所以3≤a2,即a ≥6.16.已知函数f (x )=1-42a x+a(a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值; (2)求函数的值域;(3)当x ∈(0,1]时,tf (x )≥2x-2恒成立,求实数t 的取值范围. (1)因为f (x )是定义在(-∞,+∞)上的奇函数, 所以f (0)=0,即1-42a 0+a =0.解得a =2.(2)因为y =f (x )=2x-12x +1,所以2x=1+y 1-y .由2x>0知1+y 1-y >0,所以-1<y <1.即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x -2等价于t (2x -1)2x+1≥2x -2,即(2x )2-(t +1)2x+t -2≤0.令2x =u ,因为x ∈(0,1],所以u ∈(1,2]. 又u ∈(1,2]时,u 2-(t +1)u +t -2≤0恒成立.所以⎩⎪⎨⎪⎧12-(t +1)+t -2≤0,22-2(t +1)+t -2≤0,解得t ≥0.故所求t 的取值范围为[0,+∞).。
2009年普通高等学校招生全国统一考试(天津卷)数 学(文史类) 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至2页。
第II 卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名,座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答第I 卷时、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮檫干净后,在选涂其他答案标号。
3.答第II 卷时,必须用直径0.5毫米黑色黑水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后在用0.5毫米的黑色墨色签字笔清楚。
必须在标号所指示的答题区域作答,超出答题卡区域书写的答案无效,在试题卷、草稿纸上答题无效。
4.考试结束,务必将试题卷和答题卡一并上交。
参考公式:S 表示底面积,h 表示底面的高如果事件A 、B 互斥,那么 棱柱体积 V Sh = P(A+B)=P(A)+P (B) 棱锥体积 13V Sh = 第I 卷(选择题 共50分)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 是虚数单位,52ii=- w.w.w.k.s.5.u.c.o.m A.12i + B. 12i -- C. 12i - D. 12i -+2.设变量x,y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数23z x y =+的最小值为A. 6B. 7C.8D.233.设,x R ∈则"1"x =是3""x x =的A.充分而不必要条件B. 必要而不充分条件C. 充要条件D.既不充分也不必要条件w.w.w.k.s.5.u.c.o.m4.设双曲线()22220x y a b a b-=>>的虚轴长为2,焦距为23,则双曲线的渐近线方程为A.2y x =±B. 2y x =±C. 22y x =±D. 12y x =± 5.设0.3113211log 2,log ,32a b c ⎛⎫=== ⎪⎝⎭,则A. a b c <<B.a c b <<C. b c a <<D.b a c << w.w.w.k.s.5.u.c.o.m 6.阅读右面的程序框图,则输出的S =A. 14B.20C.30D.55 7.已知函数()()sin ,04f x x x R πωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,将()y f x =的图像向左平移ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是A.2πB.38π w.w.w.k.s.5.u.c.o.mC. 4πD.8π8.设函数()246,06,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()()1f x f >的解集是A.()()3,13,-+∞B. ()()3,12,-+∞C. ()()1,13,-+∞ D. ()(),31,3-∞- w.w.w.k.s.5.u.c.o.m9.设,,1,1x y R a b ∈>>,若3,23x ya b a b ==+=,则11x y+的最大值为 A.2 B.32 C. 1 D.1210.设函数()f x 在R 上的导函数为()'f x ,且()()22'f x xf x x +>,下面的不等式在R 上恒成立的是A.()0f x >B.()0f x <C. ()f x x >D.()f x x <第II 卷w.w.w.k.s.5.u.c.o.m二.填空题:本大题共6小题,每小题4分,共24分,把答案填在答题卡的相应位置。
高一数学集合的练习题及答案一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。
在进行集合间的运算时要注意使用Venn图。
本章知识结构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N、N*、N+、Z、Q、R要记牢。
3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y =x 2}, {y|y =x 2}, {(x ,y )|y =x 2}是三个不同的集合。
4、集合之间的关系●注意区分“从属”关系与“包含”关系 “从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn 图描述集合之间的关系是基本要求。
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A.2B.3C.4D.6【答案】C 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,A B ∩中的元素满足8y xx y ,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i的虚部是()A.310B.110C.110D.310【答案】D 【解析】【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i ,所以复数113z i 的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p pB.14230.4,0.1p p p pC.14230.2,0.3p p p pD.14230.3,0.2p p p p 【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为 140.1230.4 2.5A x ,方差为 222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s ;对于B 选项,该组数据的平均数为 140.4230.1 2.5B x ,方差为 222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s ;对于C 选项,该组数据的平均数为 140.2230.3 2.5C x ,方差为 222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s ;对于D 选项,该组数据的平均数为 140.3230.2 2.5D x ,方差为 222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s .因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ()A.3135B.1935C.1735 D.1935【答案】D 【解析】【分析】计算出a ab 、a b 的值,利用平面向量数量积可计算出cos ,a a b的值.【详解】5a ∵,6b ,6a b,225619a a b a a b .7a b,因此,1919cos ,5735a a b a a b a a b.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12 D.23【答案】A 【解析】【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC,即可求得答案.【详解】∵在ABC 中,2cos 3C,4AC ,3BC 根据余弦定理:2222cos AB AC BC AC BC C2224322433AB可得29AB ,即3AB 由∵22299161cos 22339AB BC AC B AB BC故1cos 9B .故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S△△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tan θ–tan(θ+π4)=7,则tan θ=()A.–2 B.–1C.1D.2【答案】D 【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan 74∵,tan 12tan 71tan,令tan ,1t t ,则1271tt t,整理得2440t t ,解得2t ,即tan 2 .故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l 与曲线y =和x 2+y 2=15都相切,则l 的方程为()A.y =2x +1B.y =2x +12C.y =12x +1 D.y =12x +12【答案】D 【解析】【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y上的切点为 0x ,则00x ,函数y的导数为y,则直线l的斜率k,设直线l的方程为 0y x x,即00x x ,由于直线l 与圆2215x y,两边平方并整理得2005410x x ,解得01x ,015x(舍),则直线l 的方程为210x y ,即1122y x .故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1B.2C.4D.8【答案】A 【解析】【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】ca∵,c ,根据双曲线的定义可得122PF PF a ,12121||42PF F PF F S P△,即12||8PF PF ,12F P F P ∵, 22212||2PF PF c ,22121224PF PF PF PF c ,即22540a a ,解得1a ,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】由题意可得a 、b 、 0,1c ,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b ,得85b ,结合5458 可得出45b,由13log 8c ,得138c ,结合45138 ,可得出45c,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、0,1c ,222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b,a b ;由8log 5b ,得85b ,由5458 ,得5488b ,54b ,可得45b;由13log 8c ,得138c ,由45138 ,得451313c ,54c ,可得45c .综上所述,a b c .故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x的展开式中常数项是__________(用数字作答).【答案】240【解析】【分析】写出622x x二项式展开通项,即可求得常数项.【详解】∵622x x其二项式展开通项:62612rrrr C xx T1226(2)r r r r x C x 1236(2)r r rC x 当1230r ,解得4r 622x x的展开式中常数项是:664422161516240C C .故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握na b 的展开通项公式1C r n r r r n T ab ,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r解得:2r =,其体积:3433V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x 可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f,152622f,则66f f,所以,函数 f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数 f x 的定义域为,x x k k Z ,定义域关于原点对称, 111sin sin sin sin sin sin f x x x x f x x x x,所以,函数 f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x∵,11sin cos 22cos sin 2f x x x x x,则22f x f x,所以,函数 f x 的图象关于直线2x对称,命题③正确;对于命题④,当0x 时,sin 0x ,则 1sin 02sin f x x x,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a ,37a ,21n a n ,证明见解析;(2)1(21)22n n S n .【解析】【分析】(1)利用递推公式得出23,a a ,猜想得出 n a 的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a ,32381587a a ,由数列 n a 的前三项可猜想数列 n a 是以3为首项,2为公差的等差数列,即21n a n ,证明如下:当1n 时,13a 成立;假设n k 时,21k a k 成立.那么1n k 时,1343(21)4232(1)1k k a a k k k k k 也成立.则对任意的*n N ,都有21n a n 成立;(2)由(1)可知,2(21)2nnn a n 231325272(21)2(21)2n n n S n n ,①23412325272(21)2(21)2n n n S n n ,②由① ②得:23162222(21)2nn n S n 21121262(21)212n n n1(12)22n n ,即1(21)22n n S n .【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值.【答案】(1)证明见解析;(2)427.【解析】【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz ,利用空间向量法可计算出二面角1A EF A 的余弦值,进而可求得二面角1A EF A 的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D 中,//AD BC 且AD BC ,11//BB CC 且11BB CC ,112C G CG ∵,12BF FB ,112233CG CC BB BF 且CG BF ,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG 且1C E DG ,1//C E AF 且1C E AF ,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz ,则 2,1,3A 、 12,1,0A 、 2,0,2E 、 0,1,1F ,0,1,1AE , 2,0,2AF , 10,1,2A E , 12,0,1A F,设平面AEF 的法向量为 111,,m x y z,由0m AE m AF,得11110220y z x z 取11z ,得111x y ,则 1,1,1m ,设平面1A EF 的法向量为 222,,n x y z,由110n A E n A F,得22222020y z x z ,取22z ,得21x ,24y ,则 1,4,2n,cos ,7m n m n m n,设二面角1A EF A 的平面角为,则cos 7,sin 7.因此,二面角1A EF A的正弦值为7.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率154c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N 根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ面积为:15252;②当P 点(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A ,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d ,根据两点间距离公式可得:AQAPQ面积为:1522 ,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b ;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1(02f ,解方程即可;(2)由(1)可得'2311()32()(422f x x x x ,易知()f x 在11(,22 上单调递减,在1(,)2 ,1(,)2 上单调递增,且111111(1),(),(,(1)424244f c f c f c f c ,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b ,由题意,'1()02f ,即21302b 则34b;(2)由(1)可得33()4f x x x c ,'2311()33()422f x x x x ,令'()0f x ,得12x 或21x ;令'()0f x ,得1122x ,所以()f x 在11(,22 上单调递减,在1(,2 ,1(,)2 上单调递增,且111111(1),(,(),(1)424244f c f c f c f c ,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f 或(1)0f ,即14c 或14c .当14c 时,111111(1)0,()0,()0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(4,1)c 上存在唯一一个零点0x ,即()f x 在(,1) 上存在唯一一个零点,在(1,) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c 时,111111(1)0,(0,(0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(1,4)c 上存在唯一一个零点0x ,即()f x (1,) 上存在唯一一个零点,在(,1) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)BAB;(2)由(1)可知12030(4)AB k ,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a ,即max{,,}abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。