高考数学巧解:非线性目标函数---平方和型(含详解答案)
- 格式:docx
- 大小:588.39 KB
- 文档页数:13
非线性规划高考知识点归纳总结非线性规划是运筹学中的一个重要分支,它主要研究在非线性目标函数和非线性约束条件下的优化问题。
在高考数学中,非线性规划通常不会作为主要考点,但了解其基本概念和简单应用对于提高数学素养和解决实际问题具有重要意义。
首先,非线性规划问题可以定义为:给定一个目标函数 \( f(x_1,x_2, ..., x_n) \) 和一组约束条件 \( g_i(x_1, x_2, ..., x_n) \leq 0 \)(对于 \( i = 1, 2, ..., m \)),以及 \( h_j(x_1,x_2, ..., x_n) = 0 \)(对于 \( j = 1, 2, ..., p \)),求 \( x \) 的值,使得目标函数 \( f \) 达到最大值或最小值。
在高考中,非线性规划的知识点通常包括以下几个方面:1. 目标函数与约束条件:理解目标函数和约束条件在非线性规划中的作用,以及它们如何影响问题的解。
2. 可行域:掌握如何根据约束条件确定可行域,这是求解非线性规划问题的基础。
3. 拉格朗日乘数法:了解拉格朗日乘数法的基本原理,以及如何利用它求解带有等式约束的非线性规划问题。
4. KKT条件:掌握KKT(Karush-Kuhn-Tucker)条件,这是求解非线性规划问题的必要条件。
5. 数值方法:了解一些基本的数值方法,如梯度下降法、牛顿法等,这些方法在实际求解非线性规划问题时非常有用。
6. 实际应用:能够将非线性规划的概念应用到实际问题中,如资源分配、成本最小化等。
在复习非线性规划时,建议从以下几个步骤进行:- 理解概念:首先,要理解非线性规划的基本概念,包括目标函数、约束条件、可行域等。
- 掌握方法:其次,要掌握求解非线性规划问题的基本方法,如拉格朗日乘数法和KKT条件。
- 练习题目:通过大量的练习题目来巩固知识点,提高解题能力。
- 实际应用:尝试将非线性规划的概念应用到实际问题中,提高解决实际问题的能力。
非线性回归方程经典题型一、解答题(本大题共16小题,共192.0分)1. 一只药用昆虫的产卵数y 与一定范围内的温度x 有关,现收集了该种药用昆虫的6经计算得:x =16∑x i 6i=1=26,y =16∑y i 6i=1=33,∑(6i=1x i −x)(y i −y)=557,∑(6i=1x i −x)2=84,∑(6i=1y i −y)2=3930,线性回归模型的残差平方和∑(6i=1y i−y ^i )2=236.64,e8.0605≈3167,其中x i ,y i 分别为观测数据中的温度和产卵数,i =1,2,3,4,5,6.(Ⅰ)若用线性回归模型,求y 关于x 的回归方程y =bx +a(精确到0.1); (Ⅱ)若用非线性回归模型求得y 关于x 的回归方程为y ^=0.06e 0.2303x ,且相关指数R 2=0.9522.(i)试与(Ⅰ)中的回归模型相比,用R 2说明哪种模型的拟合效果更好.(ii)用拟合效果好的模型预测温度为35∘C 时该种药用昆虫的产卵数(结果取整数). 附:一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计为b ^=ni=1i −x)(y i −y)∑(n x −x)2,a ^=y −b ^x ;相关指数R 2=1−n i=1i ^i 2∑(n y −y)2.2. 对某地区儿童的身高与体重的一组数据,我们用两种模型①y =bx +a ,②y =ce dx 拟合,得到回归方程分别为y ^(1)=0.24x −8.81,y ^(2)=1.70e 0.022x ,作残差分析,如表:(Ⅱ)根据残差比较模型①,②的拟合效果,决定选择哪个模型;(Ⅲ)残差大于1kg 的样本点被认为是异常数据,应剔除,剔除后对(Ⅱ)所选择的模型重新建立回归方程.(结果保留到小数点后两位)附:对于一组数据(x 1,y 1),(x 2,y 2),…(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘法估计分别为b ^=∑(n i=1x i −x)(y i −y)∑(n i=1x i −x)2,a ^=y .−b ^x ..3. 某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y =c ⋅x b (b 、c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间(e 9,e7)内时为优等品.现随机抽取6件合格产品,测得数据如下: 尺寸x(mm) 38 48 58 68 78 88 质量y(g) 16.8 18.8 20.7 22.4 24 25.5 质量与尺寸的比yx0.4420.3920.3570.3290.3080.290(1)现从抽取的6件合格产品中再任选2件,求恰有一件优等品的概率;(2)根据测得数据作出如下处理:令v i =lnx i ,u i =lny i ,得相关统计量的值如下表:∑v i 6i=1u i∑v i 6i=1∑u i 6i=1∑v i 26i=175.3 24.6 18.3 101.4 (ⅰ)根据所给统计量,求y 关于x 的回归方程;(ⅰ)已知优等品的收益z(单位:千元)与x ,y 的关系为z =2y −0.32x ,当优等品的质量与尺寸之比为e8时,求其收益的预报值.(精确到0.1)附:对于样本(v i ,u i )(i =1,2,…,n),其回归直线u =b ⋅v +a 的斜率和截距的最小二乘估计公式分别为:b ^=∑(n i=1v i −v)∑(n i=1v i −u)2=∑v i n i=1u i −nvu∑v i 2n i=1−nv2,a ^=u −b ^v ,e ≈2.7182.4. 某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价x i (单位:元/件,整数)和销量y i (单位:件)(i =1,2,…,8)如下表所示:售价x 3335 37 39 41 43 45 47 销量y 840800 740 695 640 580 525 460 ①请根据下列数据计算相应的相关指数R 2,并根据计算结果,选择合适的回归模型进行拟合;②根据所选回归模型,分析售价x 定为多少时?利润z 可以达到最大.y ^=−1200lnx +5000 y ^=−27x +1700 y ^=−13x 2+1200∑(8i=1y i −y ^i )249428.74 11512.43 175.26∑(8i=1y i −y .)2 124650(附:相关指数 R 2=1−∑(n i=1y i −y ^i )2∑(n i=1y i−y)2)5. 二手车经销商小王对其所经营的A 型号二手汽车的使用年数x 与销售价格y(单位:万元/辆)进行整理,得到如下数据:使用年数x2 3 4 5 6 7 售价y 20 12 8 6.4 4.4 3 z =lny3.002.482.081.861.481.10下面是z 关于x 的折线图:(1)由折线图可以看出,可以用线性回归模型拟合z 与x 的关系,请用相关数加以说明;(2)求y 关于x 的回归方程并预测某辆A 型号二手车当使用年数为9年时售价约为多少?(b^、a ^小数点后保留两位有效数字). (3)基于成本的考虑,该型号二手车的售价不得低于7118元,请根据(2)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?参考公式:回归方程y ^=b ^x +a^中斜率和截距的最小二乘估计公式分别为: b ^=∑(n i=1x i −x)(y i −y)∑(n i=1x i −x)2=∑x i n i=1y i −nxy ∑x i2ni=1−nx 2,a ^=y .−b ^x .,r =∑(n i=1x i −x)(y i −y)√∑(n i=1x i −x)2∑(n i=1y i −y)2.参考数据:∑x i 6i=1y i =187.4,∑x i 6i=1z i =47.64,∑x i 26i=1=139,√∑(6i=1x i −x .)2=4.18,√∑(6i=1y i −y .)2=13.96,√∑(6i=1z i −z .)2=1.53,ln1.46≈0.38,ln0.7118≈−0.34.6. 为了调查历城区城乡居民人民生活水平,随机抽取了10个家庭,得到第i(i =1,2,…,10)个家庭月收入x i (单位:千元)与月流动资金y i (单位:千元)的数据资料如下表:∑x i 10i=1∑y i 10i=1∑ωi 10i=1∑x i 10i=1y i∑ωi 10i=1y ii i (Ⅰ)求方程y =d +c √x ;(Ⅱ)已知某家庭9月收入为9千元,该家庭计划用当月流动资金购置价格为499元的九阳豆浆机,问计划能否成功?附:对一组数据(x i ,y i )(i =1,2,…,10),其回归直线y =b ^x +a ^的最小二乘法估计为b =∑x i n i=1y i −nxy∑x i 2n i=1−n(x)2,a =y .−bx ..7. 近年来,随着汽车消费的普及,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车的交易前的使用时间(以下简称“使用时间”)进行统计,得到如图1所示的频率分布直方图.在图1对使用时间的分组中,将使用时间落入各组的频率视为概率.(1)若在该交易市场随机选取3辆2017年成交的二手车,求恰有2辆使用年限在(8,16]的概率;(2)根据该汽车交易市场往年的数据,得到图2所示的散点图,其中x(单位:年)表示二手车的使用时间,y(单位:万元)表示相应的二手车的平均交易价格. ①由散点图判断,可采用y =e a+bx 作为该交易市场二手车平均交易价格y 关于其使用年限x 的回归方程,相关数据如下表(表中Y i =lny i ,Y =110∑Yi 10i=1):试选用表中数据,求出关于的回归方程;②该汽车交易市场拟定两个收取佣金的方案供选择. 甲:对每辆二手车统一收取成交价格的5%的佣金;乙:对使用8年以内(含8年)的二手车收取成交价格的4%的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的10%的佣金.假设采用何种收取佣金的方案不影响该交易市场的成交量,根据回归方程和图表1,并用各时间组的区间中点值代表该组的各个值.判断该汽车交易市场应选择哪个方案能获得更多佣金. 附注:①对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑u i n i=1v i −nuv∑u i 2n i=1−nu2,α^=v −β^u ;②参考数据:e 2.95≈19.1,e 1.75≈5.75,e 0.55≈1.73,e −0.65≈0.52,e −1.85≈0.16.8. 近期,济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示: 1根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内,y =a +bx 与c ⋅d x (c,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由); (2)根据(1)的判断结果及表1中的数据,建立y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下 表2:车队为缓解周边居民出行压力,以万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为0.66万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有16的概率享受7折优惠,有13的概率享受8折优惠,有12的概率享受9折优惠.预计该车队每辆车每个月有1万人次乘车,根据给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要n(n ∈N n )年才能开始盈利,求n 的值. 参考数据:其中其中υi =lgy i ,υ=17∑υi 7i=1参考公式:对于一组数据(u i ,υi ),(u 2,υ2),…,(u n ,υn ),其回归直线υ̂=a ̂+β̂u 的斜率和截距的最小二乘估计公式分别为:β̂=∑u i ni=1υi −nuυ∑u i 2n i=1−nu2,a ̂=υ−β̂u . 9. 某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y =c ⋅x b (b 、c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间(e 9,e7)内时为优等品.现随机抽取6件合格产品,测得数据如下: 尺寸x(mm) 38 48 58 68 78 88 质量y(g)16.818.8 20.7 22.4 24 25.5 质量与尺寸的比yx 0.4420.3920.3570.3290.3080.290(1)现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望;(2)根据测得数据作了初步处理,得相关统计量的值如下表:∑(6i=1lnx i ⋅lny i )∑(6i=1lnx i )∑(6i=1lny i )∑(6i=1lnx i )275.3 24.6 18.3 101.4(i)根据所给统计量,求y 关于x 的回归方程;(ii)已知优等品的收益z(单位:千元)与x ,y 的关系为z =2y −0.32x ,则当优等品的尺寸x 为何值时,收益z 的预报值最大?附:对于样本(v i ,u i )(i =1,2,…,n),其回归直线u =b ⋅v +a 的斜率和截距的最小二乘估计公式分别为:b ^=∑(n i=1v i −v)(u i −u)∑(n i=1v i −v)2=∑v i n i=1u i −nvu∑v i 2n i=1−nv2,a ^=u −b ^v ,e ≈2.7182.10. 经统计,2015年,某公路在部分界桩附近发生的交通事故次数如下表:把界桩公里数记为,公里数记为,,数据绘成的散点图如图所示,以x 为解释变量、交通事故数y 为预报变量,建立了两个不同的回归方程y (1)=29.9+50.2×1x 和y (2)=33.9+125.9e −x 表述x ,y 二者之间的关系. (Ⅰ)计算R 2的值,判断这两个回归方程中哪个拟合效果更好?并解释更好的这个拟合所对R 2的意义;(Ⅱ)若保险公司在每次交通事故中理赔60万元的概率为0.01,理赔2万元的概率为0.19,理赔0.2万元的概率为0.8,利用你得到的拟合效果更好的这一个回归方程,试预报这一年在界桩1040公里附近处发生的交通事故的理赔费(理赔费精确到0.1万元).附:对回归直线y =α̂+β̂x ,有R 2=1−∑(n i=1y i −y ^i )2∑(n i=1y i −y)2.一些量的计算值:表中:y ̂i (1)=29.9+50.2×1x i ,y ^i (2)=33.9+125.9e −x i ,140=0.025,e −40≈0.11. x(2)某同学认为,y =px 2+qx +r 更适宜作为y 关于x 的回归方程类型,他求得的回归方程是y =−0.30x 2+10.17x +68.07.经调查,该地11岁男童身高的中位数为145.3cm.与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程y ^=a ^+b ^x 中的斜率和截距的最小二乘估计公式分别为:b ^=n i=1i −x)(y i −y)∑(n x −x)2,a ^=y −b ^x .12. 某互联网公司为了确定下一季度的前期广告投入计划,收集了近期前期广告投入量x(单位:万元)和收益y(单位:万元)的数据.对这些数据作了初步处理,得到了下面的散点图(共21个数据点)及一些统计量的值.为了进一步了解广告投入量x 对收益y 的影响,公司三位员工①②③对历史数据进行分析,查阅大量资料,分别提出了三个回归方程模型:表中u i =lnx i ,v i =√x i ,参考数据:√2=1.41,√10=3.16. 表一x y∑(21i=1x i −x)2∑(21i=1x i −x)(y i−y) ∑(21i=1y i −y)240 62770 250200表二μ̂ ∑(21i=1μi −μ)2∑(21i=1μi−μ)(y i −y)v∑(21i=1(v i −v)2∑(21i=1v i−v)(y i −y)3.600.499.806.35.0030.00(1)根据散点图判断,哪一位员工提出的模型不适合用来描述x 与y 之间的关系?简要说明理由.(2)根据据(1)的判断结果及表中数据,在余下两个模型中分别建立收益y 关于投入量x 的关系,并从数据相关性的角度考虑,在余下两位员工提出的回归模型中,哪一个是最优模型(即更适宜作为收益y 关于投入量x 的回归方程)?说明理由: 附:对于一组数据(x 1,y 1),(x 2,y 2),……,(x n ,y n ),其中回归直线y ^=b ^x +a ^的斜率,截距的最小二乘估计以及相关系数分别为:b ̂=∑(ni=1x i −x)(y i −y)∑(n i=1x i−x)2,a ̂=y −b ̂x,r =∑(n i=1x i −x)(y i −y)√∑(n i=1x i −x)2∑(n i=1y i −y)2,其中r 越接近于是,说明变量x 与y 的线性相关程度越好.13. 在冬季,由于受到低温和霜冻的影响,蔬菜的价格会随着需求量的增加而上升,已知某供应商向饭店定期供应某种蔬菜,日供应量x 与单价y 之间的关系,统计数据如表所示:日供应量x(kg) 38 48 58 68 78 88 单价y(元/kg)16.818.820.722.42425.5(Ⅰ)根据上表中的数据得出日供应量x 与单价y 之间的回归方程为y =ax b ,求a ,b 的值;(Ⅱ)该地区有14个饭店,其中10个饭店每日对蔬菜的需求量在60kg 以下(不含60kg),4个饭店对蔬菜的需求量在60kg 以上(含60kg),则从这14个饭店中任取4个进行调查,记这4个饭店中对蔬菜需求量在60kg 以下的饭店数量为X ,求X 的分布列及数学期望. 参考公式及数据:对一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为:b ̂=∑x i ni=1y i −nxy ∑x i 2n i=1nx2,a ^=y −b ^x ∑(6i=1lnx i ⋅lny i )∑(6i=1lnx i )∑(6i=1lny i )∑(6i=1lnx i )273.524.6 18.3 101.414. 某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元.经济学家调查发现,当地人均可支配年收入较上一年每增加n%,一般困难的学生中有3n%会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有2n%转为一般困难,特别困难的学生中有n%转为很困难.现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份x 取13时代表2013年,x 与y(万元)近似满足关系式y =C 1⋅2C 2x ,其中C 1,C 2为常数.(2013年至2019年该市中学生人数大致保持不变)y k ∑(5i=1k i −k)2∑(5i=1y i −y)2∑(5i=1x i −x)(y i −y)∑(5i=1x i −x)(k i −k) 2.31.23.14.621其中k i =log 2y i ,k =15∑k i 5i=1(Ⅰ)估计该市2018年人均可支配年收入;(Ⅱ)求该市2018年的“专项教育基金”的财政预算大约为多少?附:①对于一组具有线性相关关系的数据(u 1,v 1),(u 2,v 2)…,(u n ,v n ),其回归直线方程v ∧=βu ∧+α的斜率和截距的最小二乘估计分别为β∧=∑(n i=1u i −u)(vv i −v)∑(n i=1u i −u)2,α∧=v −β∧u②2−0.7 2−0.3 20.1 21.7 21.8 21.9 0.60.81.13.23.53.7315. 参加数学选修课的同学,对某公司的一种产品销量与价格进行了统计,得到如下数据和散点图:定价x(元/kg) 10 20 30 40 50 60 年销量y(kg)1150 643 424 262 165 86 z =2lny14.112.912.111.110.28.9下列数据计算时可供参考:∑(6i=1x i −x)(y i −y)=−34580∑(6i=1x i −x)(z i −z)=−175.5e 6=403.43∑(6i=1y i −y)2=776840∑(6i=1y i −y)(z i −z)=3465.2e 5=148.41(Ⅰ)根据散点图判断出y 与x 和z 与x 分别是正相关还是负相关,再比较判断y 与x 和z 与x 哪一对具有较强的线性相关性?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及相关数据,选择合理模型建立y 关于x 的回归方程.(方程中的系数均保留两位有效数字).(Ⅲ)根据由(Ⅱ)得到的回归方程,计算当定价x =30时的残差.附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线的斜率和截距的最小二乘估计分别为:b ∧=n i=1i −x)⋅(y i −y)∑(n x −x)2a ∧=y −b ∧x16. 为落实“精准扶贫”战略,某县决定利用扶贫资金帮扶具有地方特色的传统手工业发展.扶贫项目组利用数据分析技术,模拟扶贫项目的未来预期,模拟结果显示,项目投资x(万元)和产品利润y(万元)关系如表所示:分析发现用模型y =bx 利润的关系.设t i =x i 2(i =1,2,3,4,5),t =15∑t i 5i=1,对数据初步处理得到下面一些统计量的值:y =b x +a(回归系数四舍五入,小数点后保留两位数字); (II)该扶贫项目用于支付工人劳动所得资金总额用公式w =y −1.2x 计算(其中x 为项目投资,y 为产品利润,单位:万元),并以(I)中所求回归方程预报产品利润,当工人劳动所得资金总额不少于120万元时,则认为该项目可以完成“脱贫”任务.假设政府投入该项目的扶贫资金(单位:万元)可以是区间[45,80]内的任意整数值,求可以完成“脱贫”任务的概率.附:对于具有线性相关的一组数据(x i ,y i )(i =1,2,…n),其回归方程为y ^=b ^x +a^. 其中:b ^=n i=1i −x)(y i −y)∑(n x −x)2x =1n ∑x i,n i=1y =1n ∑y in i=1.答案和解析【答案】1. 解:(Ⅰ)依题意,n =6,b ^=6i=1i −x)(y i −y)∑(6x −x)2=55784≈6.6, a ≈33−6.6×26=−138.6 ∴y 关于x 的线性回归方程为y =6.6x −138.6(Ⅱ) ( i )利用所给数据,∑(6i=1y i −y ^i )2=236.64,∑(6i=1y i −y)2=3930得, 线性回归方程y =6.6x −138.6 的相关指数R 2=1−6i=1i ^i 2∑(6y −y)2=1−236.643930≈1−0.0602=0.9398.∵0.9398<0.9522,因此,回归方程y ^=0.06e 0.2303x 比线性回归方程y ^=6.6x −138.6拟合效果更好; (ii)由( i )得温度x =35∘C 时,y ̂=0.06e 0.2303×35=0.06×e 8.0605 又∵e 8.0605≈3167, ∴y ^≈0.06×3167≈190(个)所以当温度x =35∘C 时,该种药用昆虫的产卵数估计为190个.2. 解:(Ⅰ)根据残差分析,把x =80代入y ^(1)=0.24x −8.81得y ^(1)=10.39.10−10.39=−0.39.所以表中空格内的值为−0.39.(Ⅱ)模型①残差的绝对值和为0.41+0.01+0.39+1.21+0.19+0.41=2.62,模型②残差的绝对值和为0.36+0.07+0.12+1.69+0.34+1.12=3.7.2.62<3.7, 所以模型①的拟合效果比较好,选择模型①.(Ⅲ)残差大于1kg 的样本点被剔除后,剩余的数据如表由公式:b ^=∑(n i=1x i −x)(y i −y)∑(n i=1x i −x)2,a ^=y .−b ^x ..得回归方程为y =0.24x −8.76.3. 解:由已知,优等品的质量与尺寸的比在区间(e 9,e7)内,即yx ∈(0.302 , 0.388)则随机抽取的6件合格产品中,有3件为优等品A 1,A 2,A 3,3件为非优等品B 1,B 2,B 3 现从任选2件,共有(A 1,A 2)、(A 1,A 3)、(A 1,B 1)、(A 1,B 2)、 (A 1,B 3)、(A 2,A 3)、(A 2,B 1)、(A 2,B 2)、(A 2,B 3)、 (A 3,B 1)、(A 3,B 2)、(A 3,B 3)、(B 1,B 2)、(B 1,B 3)、(B 2,B 3)15种方法 设任选2件恰有一件优等品为事件C ,则事件C 包含(A 1,B 1)、(A 1,B 2)、 (A 1,B 3)、(A 2,B 1)、(A 2,B 2)、(A 2,B 3)、(A 3,B 1)、 (A 3,B 2)、(A 3,B 3)共9种方法由古典概型有P(C)=915=35,故所求概率为35(2)解:对y =c ⋅x b (b,c >0)两边取自然对数得lny =lnc +blnx 由v i =lnx i ,u i =lny i ,得u =b ⋅v +a ,且a =lnc (ⅰ)根据所给统计量及最小二乘估计公式有b ^=75.3−24.6×18.3÷6101.4−24.62÷6=0.270.54=12a ^=u −b ^v =(18.3−12×24.6)÷6=1,得a ^=lnc ^=1,故c ^=e所求y 关于x 的回归方程为y =e ⋅x 12(ⅰ)由(ⅰ)可知,y ^=e ⋅x 12,则z ^=2e √x −0.32x当y^x=ex 12x=√x=e8,即√x =8, x =64时 得收益的预报值z ^=16e −0.32×64≈23.0(千元).4. 解:(1)由等高条形图可知,年度平均销售额与方案1的运作相关性强于方案2.(2)①由已知数据可知,回归模型y ^=−1200lnx +5000对应的相关指数R 12=0.6035;回归模型y ^=−27x +1700对应的相关指数R 22=0.9076; 回归模型y ^=−13x 2+1200对应的相关指数R 32=0.9986.因为R 32>R 22>R 12,所以采用回归模型y ^=−13x 2+1200进行拟合最为合适. ②由(1)可知,采用方案1的运作效果较方案2好, 故年利润z =(−13x 2+1200)(x −15),,当x ∈(0,40)时,z =(−13x 2+1200)(x −15)单调递增; 当x ∈(40,+∞)时,z =(−13x 2+1200)(x −15)单调递减, 故当售价x =40时,利润达到最大.5. 解:(1)由题意,计算x .=16×(2+3+4+5+6+7)=4.5,z .=16×(3+2.48+2.08+1.86+1.48+1.10)=2,且∑x i 6i=1z i =47.64,√∑(6i=1x i −x .)2=4.18, √∑(6i=1z i −z .)2=1.53,∴r =∑n i=1i i √∑(n i=1x i −x)2∑(n i=1y i−y)2=47.64−6×4.5×24.18×1.53=−6.366.3954(或−6.366.40) ≈−0.99;∴z 与x 的相关系数大约为0.99,说明z 与x 的线性相关程度很高; (2)利用最小二乘估计公式计算b ̂=∑x i ni=1y i −nxy ∑x i2n i=1−nx 2=47.64−6×4.5×2139−6×4.52=−6.3617.5≈−0.36, ∴â=z .−b ̂x .=2+0.36×4.5=3.62, ∴z 与x 的线性回归方程是z ∧=−0.36x +3.62, 又z =lny ,∴y 关于x 的回归方程是y ∧=e −0.36x+3.62; 令x =9,解得y ∧=e −0.36×9+3.62≈1.46,即预测某辆A 型号二手车当使用年数为9年时售价约1.46万元; (3)当y ∧≥0.7118时,e −0.36x+3.62≥0.7118=e ln0.7118=e −0.34, ∴−0.36x +3.62≥−0.34, 解得x ≤11,因此预测在收购该型号二手车时车辆的使用年数不得超过11年. 6. 解:(Ⅰ)由y 与x 满足函数模型y =d +c √x ,则y =d +cω, ω.=∑ωi 10i=110=8,y .=∑y i 10i=110=2,则c =∑ωi 10i=1y i −10×ωy∑ωi 210i=1−10×ω2=184−10×8×2720−10×82=0.3,则d =y .−cω.=2−0.3×8=0.4,∴y =−0.4+0.3√x ;(Ⅱ)由(Ⅰ)可知:当x =9时,则y =−0.4+0.3×3=0.5,∴当某家庭9月收入为9千元,该家庭计划用当月流动资金500元,大于499元, ∴当月收入为9千元时,当月流动资金能成功购置价格为499元的九阳豆浆机. 7. 解:(1)由频率分布直方图知,该汽车交易市场2017年成交的二手车使用时间在(8,12]的频率为0.07×4=0.28,使用时间在(12,16]的频率为0.03×4=0.12.所以在该汽车交易市场2017年成交的二手车随机选取1辆,其使用时间在(8,16]的概 率为0.28+0.12=0.4,…(2分)所以所求的概率为P =C 320.42⋅(1−0.4)=0.288;…(3分)(2)①由y =e a+bx 得lny =a +bx ,则Y 关于x 的线性回归方程为Y =a +bx ,…(4分)由于b ̂=10i=1i −x)(Y i −Y)∑(10x −x)2=∑x i 10i=1Y i −10x⋅Y ∑x i 210i=1−10x2=79.75−10×5.5×1.9385−10×5.52=−0.3, â=Y −β̂⋅x =1.9−(−0.3)×5.5=3.55, 则Y 关于x 的线性回归方程为Y^=3.55−0.3x ,……………………………(6分) 所以y 关于x 的回归方程为y ^=e 3.55−0.3x ;………………………(7分)②根据频率分布直方图和①中的回归方程,对成交的二手汽车可预测: 使用时间在(0,4]的频率为0.05×4=0.2,对应的成交价格的预测值为e 3.55−0.3×2=e 2.95≈19.1; 使用时间在(4,8]的频率为0.09×4=0.36,对应的成交价格预测值为e 3.55−0.3×6=e 1.75≈5.75; 使用时间在(8,12]的频率为0.07×4=0.28,对应的成交价格的预测值为e 3.55−0.3×10=e 0.55≈1.73; 使用时间在(12,16]的频率为0.03×4=0.12,对应的成交价格的预测值为e 3.55−0.3×14=e −0.65≈0.52; 使用时间在(16,20]的频率为0.01×4=0.04,对应的成交价格的预测值为e 3.55−0.3×18=e −1.85≈0.16;……………………(9分) 若采用甲方案,预计该汽车交易市场对于成交的每辆车可获得的平均佣金为(0.2×19.1+0.36×5.75+0.28×1.73+0.12×0.52+0.04×0.16)×5% =0.32166≈0.32万元;若采用乙方案,预计该汽车交易市场对于成交的每辆车可获得的平均佣金为(0.2×19.1+0.36×5.75)×4%+(0.28×1.73+0.12×0.52+0.04×0.16)×10% =0.29092≈0.29(万元);……………………(11分)因为0.32>0.29,所以采用甲方案能获得更多佣金. ……………(12分)8. 解:(1)根据散点图判断,y =c ⋅d x 适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;(2)∵y =c ⋅d x ,两边同时取常用对数得:1gy =1g(c ⋅d x )=1gc +1gd ⋅x ;设1gy =v ,∴v =1gc +1gd ⋅x ,∵x =4,v =1.55,∑X i 27i=1=140,∴lgd =∑7i=1x i v i −7xv∑x i 27i=1−7x2=50.12−7×4×1.54140−7×42=728=0.25,把样本中心点(4,1.54)代入v =1gc +1gd ⋅x ,得:lgd =0.54,∴v̂=0.54+0.25x ,∴1gy =0.54+0.25x , ∴y 关于x 的回归方程式:y ̂=100.54+0.25x =100.54(100.54)x =3.47(100.54)x ;把x =8代入上式:∴ŷ=100.54+0.25×8=102.54=102×100.54=347; 活动推出第8天使用扫码支付的人次为3470; (3)记一名乘客乘车支付的费用为Z ,则Z 的取值可能为:2,1.8,1.6,1.4;P(Z =2)=0.1;P(Z =1.8)=0.3×12=0.15;P(Z =1.6)=0.6+0.3×13=0.7;P(Z =1.4)=0.3×16=0.05所以,一名乘客一次乘车的平均费用为:2×0.1+1.8×0.15+1.6×0.7+1.4×0.05=1.66(元)由题意可知:1.66×1×12⋅n −0.66×12⋅n −80>0,n >203,所以,n 取7;估计这批车大概需要7年才能开始盈利.9. 解:(1)由已知,优等品的质量与尺寸的比在区间(e 9,e 7)内.即yx ∈(0.302,0.388).则随机抽取的6件合格产品中,有3件为优等品,3件为非优等品.现从抽取的6件合格产品再任选3件,则取到优等品的件数ξ=0,1,2,3. P(ξ=0)=C 30C 33C 63=120,P(ξ=1)=C 31C 32C 63=920,P(ξ=2)=C 32C 31C 63=920,P(ξ=3)=C 33C 30C 63=120.E(ξ)=0×120+1×920+2×920+3×120=32. (2)解:对y =c ⋅x b (b,c >0)两边取自然对数得lny =lnc +blnx .令v i =lnx i ,u i =lny i .得u =b ⋅v +a.且a =1nc . (i)根据所给统计量及最小二乘估计公式有:b ̂=∑v i ni=1u i −nvu ∑v i 2n i=1−nv2=75.3−24.6×18.3÷6101.4−24.62÷6=0.270.54=12, a ^=u −b ^v =(18.3−12×24.6)÷6=1,得a ^=ln c ^=1,c ^=e ,所求y 关于x 的回归方程为y =e ⋅x 12. (ii)由(i)可知y =e ⋅x 12,则z ^=2e √x −0.32x . 由优等品质量与尺寸的比ŷx=ex 12x=√x ∈(e 9,e7)⇒√x ∈(7,9),即x ∈(49,81). 当t =√x =e0.32≈8.5∈(7,9)时,z ^取最大值.即优等品的尺寸x ≈72.3(mm),收益z ^的预报值最大.10. 解:(Ⅰ)y (1)=29.9+50.2×1x 拟合时,R 12=1−0.8751821≈0.9995; y (2)=33.9+125.9e −x 拟合时,R 22=1−48.41821≈0.9734 ∵0.9995>0.9734,∴y (1)=29.9+50.2×1x 比y (2)=33.9+125.9e −x 拟合效果更好,R 12=1−0.8751821≈0.9995,表明界桩公里数解释了99.95%的交通事故发生次数的变化;(Ⅱ)界桩1040公里取x =40,由y (1)=29.9+50.2×140≈31.16,每次交通事故的理赔费=60×0.01+2×0.19+0.2×0.8=1,14万元,∴预报这一年在界桩1040公里附近处发生的交通事故的理赔费为31.16×1.14≈35.5万元.11. 解:(1)由题意,x =5.5,y =112.45,b ^=n i=1i −x)(y i −y)∑(n x −x)2=566.8582.50≈6.87, a ^=y −b ^x =112.45−6.87×5.5≈74.67; ∴y 关于x 的线性回归方程y =6.87x +74.67;(2)某同学认为,y =px 2+qx +r 更适宜作为y 关于x 的回归方程类型,他求得的回归方程是y =−0.30x 2+10.17x +68.07.当x =11时,代入回归方程是y =−0.30x 2+10.17x +68.07.可得y =142.74; 当x =11时,代入回归方程是y =6.87x +74.67;可得y =150.24; 由11岁男童身高的中位数为145.3cm .可得回归方程是y =6.87x +74.67计算的误差比较大.故回归方程是y =−0.30x 2+10.17x +68.07模拟合效果更好. 12. 解:(1)根据散点图判断,员工①提出的模型不适合, 因为散点图中x 与y 之间不是线性关系;(2)令v =√x ,先建立y 关于v 的线性回归方程, 由于d ∧=21i=1i −v)(y i −y)∑(21v −v)2=30.005.00=6,∴c ∧=y −d ∧v =62−6×6.3=24.2; ∴y 关于v 的线性回归方程为y ∧=24.2+6v , 因此模型②为y 2∧=24.2+6√x ;同理,令u =lnx ,建立y 关于u 的线性回归方程; f ∧=21i=1i −u)(y i −y)∑(21u −u)2=9.800.49=20,e ∧=y −f ∧u =62−20×3.60=−10, ∴y 关于u 的线性回归方程为y ∧=−10+20u , 因此模型③为y 3∧=−10+20lnx ; (i)模型②中,相关系数为 r 2=21i=1i −v)(y i −y)√∑(i=1v i −v)∑(i=1y i −y)=√5×200=310√10≈0.3×3.16=0.948; 模型③中,相关系数为 r 3=21i=1i −u)(y i −y)√∑(i=1u i −u)2∑(i=1y i −y)2=√0.49×200=710√2≈0.7×1.41=0.987; 可得1>r 3>r 2,说明变量u 与y 的线性相关程度更好, 即模型③为y 3∧=−10+20lnx 更为准确,模型③为最优模型.13. 解:(I)对y =ax b 两边同取对数得lny =blnx +lna ,令v =lnx ,u =lny ,得u =bv +lna∴b =∑v i 6i=1u i −6vu∑v i 26i=1−6v2=75.3−4.1×18.3101.4−6×4.12=12,∴lna =18.36−12×24.66=1,即a =e .(II)由题意知,X 的所有可能取值为0,1,2,3,4.P(X =0)=C 44C 144=11001,P(X =1)=C 43C 101C 144=401001,P(X =0)=C 42C 102C 144=2701001,P(X =1)=C 41C 103C 144=4801001,P(X =1)=C 104C 144=2101001.∴X 的分布列为∴E(X)=1×401001+2×2701001+3×4801001+4×2101001=207.14. 解:(Ⅰ)因为x =15(13+14+15+16+17)=15所以:∑(5i=1x i −x)2=(−2)2+(−1)2+12+22=10;关系式y =C 1⋅2C 2,其中k i =log 2y i 得:k =log 2C 1⋅2C 2x , ∴k =log 2C 1+C 2x ,所以C 2=5i=1i −x)(k i −k)∑(5x −x)2=110∴log 2C 1=k −C 2x =1.2−110×15=−0.3所以C 1=2−0.3=0.8 所以y =0.8×2x10当x =18时,2018年人均可支配年收入y =0.8×21.8=2.8(万)(Ⅱ)由题意知2017年时该市享受“国家精准扶贫”政策的学生共200000×7%=14000人一般困难、很困难、特别困难的中学生依次有7000人、4200人、2800人 2018年人均可支配收入比2017年增长0.8×21.8−0.8×21.70.8×21.7=20.1−1=0.1=10%所以2018年该市特别困难的中学生有2800×(1−10%)=2520人, 很困难的学生有4200×(1−20%)+2800×10%=3640人 一般困难的学生有7000×(1−30%)+4200×20%=5740人所以2018年的“专项教育基金”的财政预算大约为5740×1000+3640×1500+2520×2000=1624万.15. 解:(Ⅰ)根据散点图(1)知y 与x 是负相关, 根据散点图(2)知z 与x 是负相关;散点图(2)中各点都集中在一条直线附近, 即z 与x 具有较强的线性相关性;(Ⅱ)由x =16×(10+20+30+40+50+60)=35, z =16×(14.1+12.9+12.1+11.1+10.2+8.9)=11.55, ∴b ∧=6i=1i −x)(z i −z)∑(6x −x)2=−175.51750≈−0.10,由a ∧=z −b ∧x =11.55−(−0.10)×35=15.05≈15,∴z 关于x 的回归方程是z ∧=15−0.10x , 则y 关于x 的回归方程为y ∧=e z 2=e 12(15−0.10x), 即y ∧=e 12(15−0.10x);(Ⅲ)x =30时,y ∧=e 12×(15−0.10×30)=e 6=403.43,当定价x =30时的残差为|403.34−424|≈11. 16. 解:(I)由题意,t =2700,y =192,∑(5i=1t i −t)2=10140000,∑(5i=1t i −t)(y i −y)=586000; ∴b ∧=5i=1i −t)(y i −y)∑(5i=1t −t)2=58600010140000≈0.06;∴a ∧=y −b ∧t =192−0.06×2700=30, 又t =x 2,∴回归方程为y ∧=0.06x 2+30;(II)由w =y −1.2x ,y =0.06x 2+30,∴w =0.06x 2−1.2x +30, 令w ≥120,得0.06x 2−1.2x +30≥120, 解得x ≤−30或x ≥50, ∴取x ≥50;又政府投入该项目的扶贫资金是区间[45,80]内的任意整数值,满足题意的x ≥50; ∴所求的概率为P =80−50+180−45+1=3136.【解析】1. 本题考查了线性回归方程的应用问题,也考查了相关指数的应用问题,是难题. (Ⅰ)求出n 的值,计算相关系数,求出回归方程即可;(Ⅱ)(i)根据相关指数的大小,即可比较模型拟合效果的优劣;(ii)代入求值计算即可. 2. (Ⅰ)根据残差分析,把x =80代入y^(1)=0.24x −8.81得y ^(1)=10.39.10−10.39=−0.39,即可求表中空格内的值;(Ⅱ)求出残差的绝对值和,即可得出结论;(Ⅲ)确定残差大于1kg 的样本点被剔除后,剩余的数据,即可求出回归方程. 本题考查回归方程、残差分析,考查学生的计算能力,属于中档题.3. (1)由题意首先确定ξ的取值,然后求解相应的分布列和数学期望即可;(2)(i)结合题中所给的数据计算回归方程即可;(ii)结合计算求得的回归方程得到收益函数,讨论函数的最值即可求得最终结果.本题考查离散型随机变量的分布列,回归方程的计算及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.4. (1)由等高条形图可知,年度平均销售额与方案1的运作相关性强于方案2. (2)①求出相关指数,比较可得结论;②由(1)可知,采用方案1的运作效果较方案2好,故年利润z =(−13x 2+1200)(x −15),利用导数的方法,可得结论.本题考查相关指数,考查等高条形图,考查导数知识的运用,属于中档题.5. (1)由题意计算x .、z .,求出相关系数r ,判断z 与x 的线性相关程度;(2)利用最小二乘估计公式计算b ^、a ^,写出z 与x 的线性回归方程, 求出y 关于x 的回归方程,计算x =9时y ∧的值即可;(3)利用线性回归方程求出y ∧≥0.7118时x 的取值范围,即可得出预测结果.本题考查了线性回归方程与线性相关系数的求法与应用问题,计算量大,计算时要细心. 6. (Ⅰ)求得样本中心点(ω.,y .),根据最小二乘法即可求得c 和d ,即可求得y =d +c √x ;(Ⅱ)当x =9时,代入即可求得y ,与0.499比较大小,即可判断答案.本题考查线性回归方程的应用,考查最小二乘法求线性回归方程,考查计算能力,属于中档题.7. (1)由频率分布直方图求得对应的频率,用频率估计概率即可计算所求的概率;(2)①由y =e a+bx 得lny =a +bx ,求出Y 关于x 的线性回归方程,再写出y 关于x 的回归方程;②根据频率分布直方图和①中的回归方程,对成交的二手汽车预测;再分别计算采用甲、乙两种方案,预计该汽车交易市场对于成交的每辆车可获得的平均佣金值.本题考查了频率分布直方图与线性回归方程的应用问题,是难题.8. (1)通过散点图,判断y =c ⋅d x 适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;(2)通过对数运算法则,利用回归直线方程相关系数,求出回归直线方程,然后求解第8天使用扫码支付的人次;(3)记一名乘客乘车支付的费用为Z ,则Z 的取值可能为:2,1.8,1.6,1.4;求出概率,计算期望,然后推出结果.本题考查了线性回归方程的求法及应用,数学期望的应用,考查计算能力,属于基础题.9. (1)由题意首先确定ξ的取值,然后求解相应的分布列和数学期望即可;(2)(i)结合题中所给的数据计算回归方程即可;(ii)结合计算求得的回归方程得到收益函数,讨论函数的最值即可求得最终结果.本题考查离散型随机变量的分布列,回归方程的计算及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.10. (Ⅰ)计算R 2的值,即可得出结论;(Ⅱ)求出界桩1040公里取x =40,由y (1)=29.9+50.2×140≈31.16,每次交通事故的理赔费=60×0.01+2×0.19+0.2×0.8=1,14万元,即可得出结论. 本题考查回归方程,考查拟合效果,考查学生的计算能力,属于中档题.11. (1)由题意求出x ,y ,∑x i 210i=1,∑x i 10i=1y i ,代入公式求值,从而得到回归直线方程;(2)将x =11代入回归方程是y =−0.30x 2+10.17x +68.07和(1)问中的方程,得到的结果与145.3cm 比较,即可判断本题考查了线性回归方程的求法及应用,属于基础题.12. (1)根据散点图判断员工①提出的模型不适合,散点图中的点不是线性关系;(2)令v =√x ,建立y 关于v 的线性回归方程,得模型②的线性回归方程; 令u =lnx ,建立y 关于u 的线性回归方程,得模型③的线性回归方程;计算模型②中相关系数r 2,模型③相关系数r 3,比较即可得出结论.本题考查了线性回归方程的应用问题,也考查了相关系数的应用问题,是中档题. 13. (I)对y =ax b 两边同取对数得lny =blnx +lna ,令v =lnx ,u =lny ,得u =bv +lna ,利用计算公式即可得出.(II)由题意知,X 的所有可能取值为0,1,2,3,4.利用超几何分布列计算公式即可得出.。
高考数学解题方法专题讲解 (二十九) 非线性回归直线方程的求解回归分析中,依据描述自变量与因变量之间因果关系的函数表达式是线性的,还是非线性的,分为线性回归分析和非线性回归分析.通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理.[例] 某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x - y - w -i =18(x i -x -)2i =18(w i -w -)2i =18(x i -x -)·(y i -y -)i =18(w i -w -)·(y i -y -) 46.6 563 6.8289.8 1.6 1469108.8表中w i =x i ,w -=18 i =18w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^u 的斜率和截距的最小二乘估计分别为β^=i =1n(u i -u -)(v i -v -)i =1n(u i -u -)2,α^=v --β^u -.解析:(1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程,由于d ^=i =18(w i -w -)·(y i -y -)i =18(w i -w -)2=108.81.6=68,c ^=y --d ^w -=563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x =-x +13.6x +20.12. 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. 名师点评非线性回归方程的求法 (1)根据原始数据(x ,y )作出散点图. (2)根据散点图选择恰当的拟合函数.(3)作恰当的变换,将其转化成线性函数,求线性回归方程. (4)在(3)的基础上通过相应变换,即可得非线性回归方程.[变式练] 二手车经销商小王对其所经营的A 型号二手汽车的使用年数x 与销售价格y (单位:万元/辆)进行整理,得到如下数据:使用年数 2 3 4 5 6 7 售价y201286.44.43z =ln y 3.00 2.48 2.08 1.86 1.48 1.10下面是z 关于x 的折线图:(1)由折线图可以看出,可以用线性回归模型拟合z 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的回归方程并预测某辆A 型号二手车当使用年数为9年时售价约为多少?(b ^、a ^小数点后保留两位有效数字).参考公式:回归方程y ^=b ^x +a ^中斜率和截距的最小二乘估计公式分别为:b ^=i =1n(x i -x -)(y i -y -)i =1n (x i -x -)2=∑i =1nx i y i -n x -y -∑i =1nx 2i -n x -2;a ^=y --b ^x -,r =i =1n(x i -x -)(y i -y -)i =1n (x i -x -)2·i =1n (y i -y -)2参考数据:∑i =16x i y i =187.4,∑i =16x i z i =47.64,∑i =16x 2i =139,i =16(x i -x -)2=4.18,i =16(y i -y -)2=13.96,i =16(z i -z -)2=1.53,ln1.46≈0.38,ln0.7118≈-0.34.高考数学解题方法专题讲解(二十九)变式练解析:(1)由题意,计算x -=16×(2+3+4+5+6+7)=4.5,z -=16×(3+2.48+2.08+1.86+1.48+1.10)=2.且∑i =16x i z i =47.64,i =16(x i -x -)2=4.18,i =16(z i -z -)2=1.53,∴r =i =1n(x i -x -)(z i -z -)i =1n (x i -x -)2i =1n (z i -z -)2=47.64-6×4.5×24.18×1.53=- 6.366.3954≈-0.99.∴z 与x 的相关系数大约为-0.99,说明z 与x 的线性相关程度很高. (2)利用最小二乘法估计公式计算b ^=∑i =1nx i z i -n x -z -∑i =1nx 2i -n x -2=47.64-6×4.5×2139-6×4.52=-6.3617.5≈-0.36.∴a ^=z --b ^x -=2+0.36×4.5=3.62. ∴z 与x 的线性回归方程是z ^=-0.36x +3.62. 又z =ln y ,∴y 关于x 的回归方程是y ^=e -0.36x +3.62, 令x =9,解得y ^=e -0.36×9+3.62≈1.46,即预测某辆A 型号二手车当使用年数为9年时售价约1.46万元.。
高考数学常考题型:线性规划非线性目标函数---绝对值型典例1.已知实数,x y 满足:210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,221z x y =--,则z 的取值范围是( ) A .5[,5]3B .[0,5)C .[0,5]D .5[,5)31.B由约束条件作出可行域如图:()22,110x A x y =⎧⇒-⎨+-=⎩, 21012,1033x y B x y -+=⎧⎛⎫⇒⎨⎪+-=⎝⎭⎩. 令221u x y =--,变形可得12u y x +=-,平移目标函数线12u y x +=-使之经过可行域,当目标函数线过点()2,1A -时,纵截距最小,此时u 取得最大值,即()max 222115u =⨯-⨯--=.当目标函数线过点12,33B ⎛⎫ ⎪⎝⎭时,纵截距最大,此时u 取得最小值,即min 125221333u =⨯-⨯-=-. 因为点()2,1A -不在可行域内,所以553u -≤<,[)0,5z u ∴=∈.故B 正确.点评:有关线性规划的最值问题,数形结合是解决问题的关键。
求目标函数z ax by =+的最值,应先函数变为a z y x b b=-+,然后平移直线,求纵截距zb 的最值,进而可得z 的最值。
变式题1.若x,y 满足约束条件220130x y y x y -+≤⎧⎪≥⎨⎪+-≤⎩,则4312z x y =+-的最小值为( )A .53B .1C .2D .35典例2.已知点(),P x y 满足10100x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩,2628x y y x +-+-+的取值范围是__________.4.画出不等式组表示的可行域如图阴影部分所示.∵2628x y y x +-+-+=+=,∴2628x y y x +-+-+表示可行域内的点到直线260x y +-=和280x y --=2628x y y x +-+-+无最大值.由28010x y x y --=⎧⎨+-=⎩解得32x y =⎧⎨=-⎩,所以点A 的坐标为()3,2-.此时26282x y y x +-+-+=.由26010x y x y +-=⎧⎨+-=⎩解得54x y =⎧⎨=-⎩,所以点A 的坐标为()5,4-. 此时26286x y y x +-+-+=. ∴2628x y y x +-+-+的最小值为2,故得2628x y y x +-+-+的取值范围为[)2,+∞.点评:线性规划中的目标函数中若含有绝对值,则解题时可根据点到直线的距离公式求解,在求解过程中需要注意对目标函数进行相应的变形,使之变为距离的形式,如ax by c ++=变式题2.变量,x y 满足约束条件220240,10x y x y x y +-≥⎧⎪+-≤⎨⎪-+≥⎩则目标函数231z x y =--的取值范围是___. 闯关题:1.已知221log 2()220xx f x x xx ⎧≤≤⎪=⎨⎪--≤⎩,若1111a b -≤≤⎧⎨-≤≤⎩,且方程2[()]()0f x af x b -+=有5________ 2.若实数,x y 满足方程228x y +=,则|2||6||6|x y x y x y +-++++--的最大值为( ) A .12 B .14C .18D .24参考答案变式题1.A将目标函数变形为431255x y z +-=⨯,即“目标函数表示可行域内的点到直线43120x y +-=的距离的5倍”.画出可行域如下图所示,由图可知,点A 到直线43120x y +-=最短,联立22030x y x y -+=⎧⎨+-=⎩,解得45,33A ⎛⎫⎪⎝⎭最短距离为16151213353+-=,乘以5得53,故选A.变式题2.[]1,3-不等式组对应的可行域如下图所示,当x≥0,0≤y≤1时,23(1)233z x y x y =--=+-,此时2333z y x +=-+,直线的纵截距越大,z 越大,纵截距越小,z 越小. 当直线经过点B(0,1)时,z 最小=0+3-3=0,当直线经过点D 3(,1)2时,z 最大=3+3-3=3,所以此时z 的范围为[0,3]当x≥0,y >1时,23(1)233z x y x y =--=-+,此时2333z z x -=+,直线的纵截距越大,z 越小,纵截距越小,z 越大. 当直线经过点A(1,2)时,z 最小=2-6+3=-1,当直线经过点D 3(,1)2时,z 最大=3-3+3=3,所以此时z 的范围为[-1,3]综合得z 的取值范围为:[]1,3-故答案为:[]1,3- 闯关题:1.作出函数()y f x =的图象如下图所示:设()t f x =,则方程()()20f x af x b -+=⎡⎤⎣⎦有5个不同根转化二次方程20t at b -+=的两根101t <<,20t <,构造函数()2g t t at b =-+,可得不等式()()0010g g ⎧<⎪⎨>⎪⎩,即010b a b <⎧⎨-+>⎩,结合1111a b -≤≤⎧⎨-≤≤⎩,作出图形如下图所示,不等式组1111a b -≤≤⎧⎨-≤≤⎩表示的平面区域为边长为2的正方形ABCD ,不等式组0101111b a b a b <⎧⎪-+>⎪⎨-≤≤⎪⎪-≤≤⎩表示的区域为下图中的阴影部分(不包括a 轴),视为可行域中的点(),a b 到直线210a b -+=的距离,当点(),a b 与点()1,0E==的取值范围是0,5⎡⎫⎪⎢⎪⎣⎭,故答案为:0,5⎡⎢⎣⎭. 2.C 令t x y =+,则4sin [4,4]4t πθθθ⎛⎫=+=+∈- ⎪⎝⎭, 于是|2|[0,6]t -∈,60t +>,60t ->,从而|2||6||6||2||6||6||2|12[12,18]x y x y x y t t t t +-++++--=-+++-=++∈,故选:C.。
20世纪60年代中期以后,发展了两种求解非线性方程组(1)的新方法。
一种称为区间迭代法或称区间牛顿法,它用区间变量代替点变量进行区间迭代,每迭代一步都可判断在所给区间解的存在惟一性或者是无解。
这是区间迭代法的主要优点,其缺点是计算量大。
另一种方法称为不动点算法或称单纯形法,它对求解域进行单纯形剖分,对剖分的顶点给一种恰当标号,并用一种有规则的搜索方法找到全标号单纯形,从而得到方程(1)的近似解。
这种方法优点是,不要求f(□)的导数存在,也不用求逆,且具有大范围收敛性,缺点是计算量大编辑摘要目录• 1 正文• 2 牛顿法及其变形• 3 割线法• 4 布朗方法• 5 拟牛顿法•非线性方程组数值解法 - 正文n个变量n个方程(n >1)的方程组表示为(1)式中ƒi(x1,x2,…,x n)是定义在n维欧氏空间R n的开域D上的实函数。
若ƒi中至少有一个非线性函数,则称(1)为非线性方程组。
在R n中记ƒ=则(1)简写为ƒ(尣)=0。
若存在尣*∈D,使ƒ(尣*)=0,则称尣*为非线性方程组的解。
方程组(1)可能有一个解或多个解,也可能有无穷多解或无解。
对非线性方程组解的存在性的研究远不如线性方程组那样成熟,现有的解法也不象线性方程组那样有效。
除极特殊的方程外,一般不能用直接方法求得精确解,目前主要采用迭代法求近似解。
根据不同思想构造收敛于解尣*的迭代序列{尣k}(k=0,1,…),即可得到求解非线性方程组的各种迭代法,其中最著名的是牛顿法。
非线性方程组数值解法 - 牛顿法及其变形牛顿法基本思想是将非线性问题逐步线性化而形成如下迭代程序:(2)式中是ƒ(尣k)的雅可比矩阵,尣0是方程(1)的解尣*的初始近似。
这个程序至少具有2阶收敛速度。
由尣k算到尣k+的步骤为:①由尣k算出ƒ(尣k)及;②用直接法求线性方程组的解Δ尣k;③求。
由此看到迭代一次需计算n个分量函数值和n2个分量偏导数值,并求解一次n阶线性方程组。
各类非线性方程的解法非线性方程是一类数学方程,其中包含了一个或多个非线性项。
求解非线性方程是数学研究中的重要问题之一,它在科学、工程和经济等领域具有广泛的应用。
本文将介绍几种常见的非线性方程的解法。
1. 试-and-错误法试-and-错误法是求解非线性方程的最简单方法之一。
它基于逐步尝试的思路,通过不断试验不同的数值来逼近方程的解。
这种方法的缺点在于需要反复试验,效率较低,但对于简单的方程或近似解的求解是有效的。
2. 迭代法迭代法是一种常用的数值计算方法,可以用来求解非线性方程的近似解。
它的基本思想是通过迭代计算逐步逼近方程的解。
不同的迭代方法包括牛顿迭代法、弦截法和割线法等。
这些方法都是基于线性近似的原理,通过不断迭代计算来逼近解。
迭代法的优点是可以得到较为精确的解,适用于多种类型的非线性方程。
3. 数值优化方法数值优化方法是一种求解非线性方程的高级方法,它将问题转化为优化问题,并通过优化算法来寻找方程的最优解。
常用的数值优化方法包括梯度下降法、牛顿法和拟牛顿法等。
这些方法通过不断迭代调整变量的取值,以最小化目标函数,从而求解非线性方程。
数值优化方法的优点是可以处理复杂的非线性方程,并且具有较高的求解精度。
4. 特殊非线性方程的解法对于特殊的非线性方程,还可以使用特定的解法进行求解。
例如,对于二次方程可以使用公式法直接求解,对于三次方程可以使用卡尔达诺法等。
这些特殊解法适用于特定类型的非线性方程,并且具有快速和精确的求解能力。
综上所述,非线性方程的解法有试-and-错误法、迭代法、数值优化方法和特殊非线性方程的解法等。
根据具体的方程类型和求解要求,选择合适的方法进行求解,可以得到满意的结果。
高考数学非线性问题知识点一、引言数学作为一门科学,一直以来都是高考的重要科目之一。
其中,数学的非线性问题是考生们普遍认为较为困难的部分。
本文将重点探讨高考数学非线性问题的知识点,帮助考生们更好地理解和应对这一部分内容。
二、什么是非线性问题在介绍高考数学非线性问题的知识点之前,我们先来了解一下什么是非线性问题。
非线性问题是指不能用线性关系式表达的数学问题。
与线性问题不同,非线性问题的解不再具有简单的直线关系,而是具有曲线、波动等复杂的特征。
三、非线性函数的性质1. 导数的变化在处理非线性问题时,我们需要掌握函数的导数变化对函数性质的影响。
例如,当函数的导数大于零时,函数是单调递增的;当函数的导数小于零时,函数是单调递减的。
这对于理解函数图像的变化以及解题非常重要。
2. 极值点的判定对于非线性函数,我们通常需要找到它的极值点。
极值点可以是函数的最大值或最小值。
判定极值点的方法之一是使用导数。
当函数的导数为零时,该点很可能是极值点。
然后,我们可以对导数的符号进行分析,进一步确认该点的性质。
四、非线性方程的求解除了处理非线性函数外,我们还需要掌握如何求解非线性方程。
求解非线性方程的方法有多种,常见的包括牛顿迭代法、二分法、试位法等。
1. 牛顿迭代法牛顿迭代法是一种有效的求解非线性方程的方法。
它通过不断逼近方程的根,直到满足所需的精度要求。
该方法需要利用函数的导数信息,因此在应用时需要先求出导数,并进行迭代计算。
2. 二分法二分法是一种简单却有效的求解非线性方程的方法。
它利用函数在连续区间上的中间值进行判断,然后不断地缩小区间范围,最终逼近方程的根。
该方法的优点在于不需要求导,适用范围广。
3. 试位法试位法是一种通过区间划分来求解非线性方程的方法。
它将方程的解所在的区间划分为若干段,然后通过函数值的符号变化来判断解所在的区间。
该方法的优点在于可以根据实际情况进行区间的调整,从而更快地逼近方程的根。
五、非线性几何问题的解析方法除了函数和方程的处理外,非线性几何问题也是高考数学中的重要内容。
问题11含参数的线性规划与非线性规划问题性一、考情分析线性规划是高考必考问题,常有以下几种类型:(1)平面区域的确定问题;(2)区域面积问题;(3)最值问题;(4)逆向求参数问题.而逆向求参数问题,是线性规划中的难点,其主要是依据目标函数的最值或可行域的情况决定参数取值.二、经验分享(1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(3)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.当目标函数是非线性的函数时,常利用目标函数的几何意义来解题.(4)当目标函数中含有参数时,要根据临界位置确定参数所满足的条件,含参数的平面区域问题,要结合直线的各种情况进行分析,不能凭直觉解答,目标函数含参的线性规划问题,要根据z的几何意义确定最优解,切忌搞错符号.三、知识拓展常见代数式的几何意义:①x2+y2表示点(x,y)与原点(0,0)的距离,x-a2+y-b2表示点(x,y)与点(a,b)的距离;②yx表示点(x,y)与原点(0,0)连线的斜率,y-bx-a表示点(x,y)与点(a,b)连线的斜率.四、题型分析类型一目标函数中含参数若目标函数中含有参数,则一般会知道最值,此时要结合可行域,确定目标函数取得最值时所经过的可行域内的点(即最优解),将点的坐标代入目标函数求得参数的值.1.目标函数中x的系数为参数【例1】x,y满足约束条件,若z y ax=-取得最大值的最优解不唯一,则实数a的值为_______________. 【答案】2或1-【解析】如图,画出线性约束条件所表示的可行域,坐出直线y ax =,因此要使线性目标函数取得最大值的最优解不唯一,直线y ax =的斜率,要与直线或的斜率相等,∴2a =或1-.【点评】本题主要考查最优解的求法以及两直线的位置关系.通过本题应进一步明确两点:(1)线性规划问题可能没有最优解;(2)当线性目标函数所表示的直线与可行域的某一条边界平行时,线性规划问题可以有无数个最优解.【牛刀小试】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =___________.【答案】2【解析】将z ax y =+化为z ax y +-=,作出可行域(如图所示),当0≤a 时,当直线z ax y +-=向右下方平移时,直线z ax y +-=在y 轴上的截距z 减少,当直线z ax y +-=过原点时,0max =z (舍);当0>a 时,当直线z ax y +-=向右上方平移时,直线z ax y +-=在y 轴上的截距z 增大,若01<-≤-a ,即10≤<a 时,当直线z ax y +-=过点)1,1(B 时,,解得3=a (舍),当1-<-a ,即1>a 时,则当直线z ax y +-=过点)0,2(A 时,,解得2=a .【评注】处理简单的线性规划问题的基本方法是:先画出可行域,再结合目标函数的几何意义进行解决,往往容易忽视的是目标函数基准直线与可行域边界的倾斜程度,如本题中,不仅要讨论斜率a -的符号,还要讨论斜率a -与边界直线斜率1-的大小关系. 2.目标函数中y 的系数为参数【例2】已知变量,x y 满足约束条件若目标函数的最大值为1,则a = .【答案】3.【解析】约束条件所满足的区域如图所示,目标函数过B (4,1)点是取得最大值,∴141a =-⨯,∴3a =. 【点评】这类问题应根据图形特征确定最优解,进而用代入法求参数的值. 3.目标函数中,x y 的系数均含参数【例3】设x ,y 满足约束条件221x x y y x ≥⎧⎪-≥⎨⎪≥⎩,若目标函数的最小值为2,则ab 的最大值为 .【答案】41.【解析】不等式组表示的平面区域如图阴影部分,易求得,要目标函数的最小值为2,∴222=+b a ,即1==b a ,∴,当且仅当21==b a 等号成立.故ab 的最大值为41.【点评】本题主要考查最优解的求法以及均值不等式的应用.应明确若可行域是封闭的多边形,最优解一般在多边形的顶点处取得.应用均值不等式时需注意“一正、二定、三相等”,缺一不可.【牛刀小试】设x y ,满足约束条件,若目标函数的最大值为12,则ba 32+的最小值为______________. 【答案】625【解析】作出x y ,满足约束条件下平面区域,如图所示,由图知当目标函数经过点()4,6A 取得最大值12,即,亦即236a b +=,所以=,当且仅当b a a b =,即65a b ==时等号成立.【评注】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值,在哪个端点,目标函数取得最小值;已知ax by m +=﹙﹚求的最小值,通常转化为c d x y +=1()c d m x y+(ax by +),展开后利用基本不等式求解. 4.目标函数为非线性函数且含有参数【例4】设不等式组⎪⎩⎪⎨⎧≥-≥-≤+01,0,4x x y y x 表示的平面区域为D .若圆()0>r 不经过区域D 上的点,则r 的取值范围是_______________.【答案】【解析】不等式对应的区域为ABE ∆.圆心为(1,1)--,区域中A 到圆心的距离最小,B 到圆心的距离最大,∴要使圆不经过区域D ,则有0r AC <<或r BC >.由1x y x =⎧⎨=⎩得11x y =⎧⎨=⎩,即(1,1)A .由14x y x =⎧⎨=-+⎩,得13x y =⎧⎨=⎩,即(1,3)B.∴AC =,BC =,∴0r <<或r >,即r 的取值范围是.【点评】本题的关键是给出目标函数的实际意义,即圆与可行域无公共点的问题.对于目标函数为平方型:,可看成可行域内的点(),P x y 与定点(),Q a b 两点连线的距离的平方,即;也可看成是以(),Q a b 为半径的圆,转换为圆与可行域有无公共点的问题.【牛刀小试】设二元一次不等式组所表示的平面区域为M ,使函数y =a x(a >0,a ≠ 1)的图象过区域M 的a 的取值范围是___________. 【答案】[2,9]【解析】平面区域M 如图所示,求得,由图可知,欲满足条件必有且图象在过B 、C 两点的图象之间,当图象过B 点时,,当图象过C 点时,,所以,故的取值范围是.【评注】巧妙地识别目标函数的几何意义是研究此类问题的基础,纵观目标函数包括线性与非线性、非线性问题的介入是线性规划问题的拓展与延伸,使得线性规划问题得以深化,本题的解答中正确理解目标函数表示指数函数的图象与二元一次不等式组表示的平面区域有公共点这一意义是解得本题的关键。
非线性回归分析(常见曲线及方程)预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制非线性回归分析回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。
通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析常见非线性规划曲线1.双曲线1bay x =+2.二次曲线3.三次曲线4.幂函数曲线5.指数函数曲线(Gompertz)6.倒指数曲线y=a/e b x其中a>0,7.S型曲线(Logistic)1e x ya b-=+8.对数曲线y=a+b log x,x>09.指数曲线y=a e bx其中参数a>01.回归:(1)确定回归系数的命令[beta,r,J]=nlinfit(x,y,’model’,beta0)(2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha)2.预测和预测误差估计:[Y,DELTA]=nlpredci(’model’, x,beta,r,J)求nlinfit 或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA.例2 观测物体降落的距离s与时间t的关系,得到数据如下表,求s2解:1. 对将要拟合的非线性模型y=a/e b x,建立M文件volum.m如下:function yhat=volum(beta,x)yhat=beta(1)*exp(beta(2)./x);2.输入数据:x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]';3.求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0);beta即得回归模型为:1.064111.6036e x y-=4.预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J);plot(x,y,'k+',x,YY,'r')2.非线性函数的线性化。