4.2 平行四边形及其性质
平行线的性质定理:
习题讲解书写部分
平行线性质定理的推论:
作业布置
【知识技能类作业】 3.如图,已知在△ABC中,∠ABC=90°,AB=BC,且a∥b∥c,其中a与b
之间的距离是6,b与c之间的距离是8,则△ABC的面积是( C )
A.24 B.100 C.50
C a
B b
D.48
c
A
作 业 布 置 【综合实践类作业】
1.如图所示,在▱ABCD中,点E是DC边上一点,连结AE,BE, 已知AE是∠DAB的平分线,BE是∠CBA的平分线. (1)求证:AE⊥BE; (2)若AE=3,BE=2,求 ABCD的面积.
解: ∵AF∥EC,AB∥DC, ∴AE=FC. ∵EF∥BC,AB∥DC, ∴EB=FC. ∵AD∥EF,AB∥DC, ∴AE=DF, ∴EB=DF.
课堂总结
平行线有下面的性质定理是什么? 夹在两条平行线间的平行线段相等. “夹在两条平行线间的平行线段相等”的推论是什么? 夹在两条平行线间的垂线段相等.
例题精讲
例2 如图,一个放在墙角的立柜的上、下底面是一个等腰直角三角形, 腰长为1.4m.现要将这个立柜搬过一个宽为1.2m的通道,能通过吗?
思考:如果沿立柜上、下底面任一条直 角边方向平移,立柜能通过通道吗?
因为腰长1.4m大于通道宽1.2 m,所以在搬 这个立柜时,如果沿立柜上、下底面任一 条直角边方向平移,都不能通过.
作业布置
【知识技能类作业】 1.在▱ABCD中,AB=20,AD=16,AB和CD之间的距离为8,则
AD与BC之间的距离为( C )
A. 8
D
C
B. 9
C. 10 D. 11