高速铁路接触网参数
- 格式:docx
- 大小:14.42 KB
- 文档页数:1
高速铁路接触网的特点及要求发布时间:2021-09-27T08:23:21.893Z 来源:《新型城镇化》2021年16期作者:潘鹏[导读] 这就使接触网与受电弓的波动特性发生变化,从而对受电弓产生影响。
呼和浩特供电段乌兰察布供电车间内蒙古呼和浩特 010000摘要:接触网是电气化铁路的主要设备之一,随着我国电气化铁路运营速度的不断提高,确保接触网处于良好状态,保障不间断供电,维持良好的弓网关系动态特性成为保证高速或快速列车安全稳定运行的重要前提,接触网的各种静态参数能否满足设计的要求是获得良好的接触网弓网关系的基础,因此在新建或扩建电气化铁路以及在电气化铁路日常运营维护中,常常需要对一些主要的接触网静态参数进行测量,他们包括接触线高度、接触线拉出值、定位管坡度、支柱位置、线岔数据、锚段关节数据等,通过检测获得的接触悬挂数据基础数据进行分析或处理,可以在常规巡检时及时发现接触网隐患,消除各种故障,保障线路安全运行。
关键词:特性;要求;弓网关系一、高速弓网系统的受流特性1、高速受电的特点(1)高速列车的行车速度较常速列车高得多,因而受电弓沿接触网导线移动的速度大大加快。
这就使接触网与受电弓的波动特性发生变化,从而对受电弓产生影响。
(2)高速列车在高速运行时所受的空气阻力远较常速列车大得多,空气动态力也是影响高速受电的一个重要因素。
(3)高速列车所需的牵引功率较常速列车大得多,若采用多弓受电必然会增加阻力、加大噪声并引起接触网的波动干扰,因而受电弓的数量不能太多,这就需要解决受电弓从接触网大功率受电的问题。
2、接触网—受电弓系统高速列车的受电是通过受电弓与接触网的接触导线紧密接触而实现的,因而受电是否正常直接取决于接触网—受电弓系统的技术状态。
一个工作可靠的接触网—受电弓系统是确保高速列车良好取流的根本条件。
由于接触网的接触导线是一根具有弹性的导线,受电弓也是一个弹性体,故而两者构成的是一个相互接触的弹性系统。
电气化铁道接触网在实际的应用中时,需要结合行车速度、行车界限等多方面的注意一些参数,这些的注意参数有导高、侧面限界、拉出值、结构高度、跨距等。
导高导高是指接触线悬挂点高度的简称,是接触线无弛度时定位点出(或悬挂点处)接触线距轨面的垂直高度,一般用H表示。
接触线的最高高度,是根据受电弓的最大工作高度确定的。
我国电力机车TGS型受电弓的工作高度为5183~6683mm,考虑到接触线可能出现负弛度及保证受电弓接触线工作压力的需要,接触线距轨面的最高高度不应大于6500mm。
接触线的最低高度的确定,是考虑了带电体对接地体之间的空气绝缘距离及通过超限货物的要求。
接触线高度的允许施工偏差为±30mm。
对于行车速度在160km/h~200km/h时,对施工误差要求更加严格;定位点两侧低一吊弦处接触线高度应等高,相对该定位点的接触线的高度的施工偏差为±10mm,但不得出现“V”字形;两相邻悬挂点等高相对差不得大于20mm;同一跨距内相邻吊弦处的导高差应符合设计预留弛度的要求,施工偏差不得大于5mm。
最低点高度应符合下列规定:(1)站场和区间(含隧道)接触线距轨面的高度宜取一致,其最低高度不应小于5700mm;编组站、区段站等配有调车组的线、站,正常情况下不小于6200mm,确有困难时不应小于5700mm。
(2)既有隧道内(包括按规定降低高度的隧道口外及跨线建筑物范围内)正常情况下不应小于5700mm;困难情况下不应小于5650mm,特殊情况下不应小于5330mm。
开双层集装箱列车的线路,接触线距轨面的最低高度应根据双层集装箱的高度和绝缘距离确定。
一般采用6450mm导高。
对于客运专线,应为不存在超限货物列车通过问题,为了提高接触悬挂稳定性,导高较低,一般采用5000~5500mm。
侧面限界支柱侧面限界是指轨平面处,支柱内缘至线路中心的距离。
电气化铁路接触网是沿铁路架设的,接触网支柱的安装必须符合《技规》的要求。
高速铁路接触网检测与检查实施细则第一节检测第1条检测分为静态检测和动态检测。
静态检测一般在天窗点内进行;动态检测一般由动检车、弓网检测装置进行。
第2条静态检测。
静态检测分为人工检测和弓网检测装置的非接触式测量。
检测周期:第1项见下表;第2、3项三年一次;第4项五年一次,五年后按情况适当缩短检测项目:1.接触网几何参数检测项目:拉出值、导高、同一跨距接触导线高差、线岔和锚段关节接触线相互位置等。
2.附加导线对地距离。
3.附加导线、各种引线、接触悬挂等产生交叉时的间距。
4.接触导线磨耗。
5.对动态检测超限处所进行静态复核、确认。
第3条动态检测检测周期:每旬检测项目:1.接触网几何参数检测项目:拉出值、导高、同一跨距接触导线高差、线岔和锚段关节接触线相互位置。
2.弓网受流性能检测参数:弓网接触力、垂直加速度、离线率。
3.接触网电气参数:接触网电压、动车组取流。
检测要求:动态检测参数要进行分析,并形成月度分析报告报供电处。
第二节检查第4条接触网的状态检查分为全面检查和非常规检查。
全面检查具有巡视检查和维护保养的双重职能。
非常规检查通常在发生异常情况下或根据需要时进行的检查。
第5条全面检查检查周期:两年。
主要项目:内容包括无法或不易通过监测、检测手段掌握设备运行状态的所有项目,如接触悬挂、附加悬挂、支撑装置的内在质量,螺栓是否紧固等;保养维护的内容主要是检查过程中必要的防腐处理、注油和零部件的紧固、更换等。
全面检查应利用轨道作业车进行。
第6条重点设备检查内容和周期如下:1.半年一次检查项目:(1)无交叉线岔交叉吊弦安装是否符合要求、线岔电联接状态、线岔定位点拉出值和导高、各零部件外观状态,是否紧固到位。
(2)关节式分相绝缘锚段关节带电部分的空气绝缘间隙允许偏差、转换跨距内两接触线等高处接触线高度、自动过分相装置分段处的绝缘子串的安装位置,承力索、接触线两绝缘子串中心对齐的允许偏差。
分相地磁装置的状态、磁感应强度是否达标。
高速铁路设备系列介绍之十五——电力接触网的分类:在电气化铁道接触网中,有接触线、承力索和辅助承力索等组件组成。
接触线就是与列车顶部的受电弓直接接触的可以根据需要不断延长的电力线,列车牵引电流从接触线流过,为了增强坚韧度,降低电能损耗,一般选用铜等电阻较小的材料。
接触线规格范围85mm2~150 mm2。
其结构特点是采用铜、铜银合金、高强度铜银合金、铜锡合金、铜镁合金、高强度铜镁合金等,来满足电气化铁道接触网需要。
并提供符合铁道部TB/T 2809的铜、铜银合金、高强度铜银合金、铜锡合金、铜镁合金、高强度铜镁合金等各种接触线。
同时,为了保证良好的受流和降低维护成本,还要求接触线材料结实、轻便、摩擦性能与受电弓滑板相匹配。
承力索就是一根根能垂直抓住接触线的吊弦。
(吊弦是链形悬挂的重要组成部件之一,接触线通过吊弦挂在承力索上,调节吊弦的长度可以保证接触悬挂的结构高度和接触线距轨面的工作高度,增加了接触线的悬挂点,这样使接触线的弛度和弹性均得到改善,提高电力机车受电弓的取流质量。
)它的作用是让接触线水平地悬挂在距离钢轨轨面一定的高度上。
在复链形接触网悬挂中,还多了一条辅助承力索,其主要作用是进一步提高接触线的水平度,保证良好受流。
接触网的分类大多以接触悬挂的类型来区分。
为满足供电、机械方面的分段要求,将接触网分成若干一定长度和相互独立的分段,每一分段叫锚段。
两个相邻锚段衔接部分称为锚段关节。
根据锚段所起的作用可分为电分段非绝缘锚段关节和电分段绝缘锚段关节。
另外,在BT供电区段还有一种吸变台锚段关节。
非绝缘锚段关节只起机械分段作用。
绝缘锚段关节既起电分段作用还起机械分段作用。
接触网锚段关节的结构复杂,其状态和质量的优劣将直接影响接触网的供电质量和电力机车的取流质量。
对锚段关节的一般要求是当电力机车通过时,其受电弓能平滑地、安全地由一个锚段过渡到另一个锚段去,且取流情况良好。
锚段的区分在图纸上主要是看锚段关节,普通电力铁路(非高铁)主要是四跨锚段关节,五棵支柱,中间的是中心柱,中心柱两边是两个转换柱,再向外就是下锚柱。
第二节高速铁路接触网一、接触悬挂形式及其主要技术参数自1964年日本开通世界上第一条高速铁路至今,世界发达国家已经致力于高速电气化铁路的 研究和发展.经过30多年的 运行、实验,使高速电气化铁路的 车速不断提高,运营速度 由220 千米/h 提高到270 千米/h,正向300 千米/h 进.法国是目前轮轨系列车时速的 世界记录保持者,它于 2007年 4月4日进行的 实验运行速度 达到574.8 千米/h,在激烈竞争的 市场经济条件下,各种交通工具之间为争夺市场运输份额,不断开发和引进高新技术,而提高铁路车速将给铁路参与市场竞争带来机遇.接触网结构在机车高速运行情况下,发生了 许多重大 变化,需要进行一系列的 改革,采取什么样的 悬挂类型来适应高速铁路,一直是各发达国家研究的 课题.根据国外高速电气化铁路运行经验,高速滑行的 受电弓,其抬升力在空气动力和自身惯性作用下,以列车速度 平方的 比例大 幅度 增加,因而使接触线产生较大 的 抬升量,当驶过等距支柱甚至在跨距中的 等距吊弦时,会周期性激发接触线振动,它会使接触线弯曲应力增加,容易引发疲劳断线事故,同时这种振动可沿导线以一定速度 传播,在遇到吊弦线夹和悬挂点时,会将波反射放大 引起导线振荡,这是引起受电弓离线的 主要原因,离线产生的 电弧会烧伤接触线使磨耗增加,即电磨耗.当导线弯曲刚度 小 而张力大 时,其波动速度 可由下式求出: ρTC =式中 T ——接触线张力(N);ρ——线密度 .为了 减少导线抬升量,可提高其张力,减少接触网弹性不均匀性,同时也提高了 接触线波动传播速度 ,不引起导线共振使受电弓取流状态更好.接触悬挂形式是指接触网的 基本结构形式,它反映了 接触网的 空间结构和几何尺寸.不同的 悬挂形式,在工程造价、受流性能、安全性能上均有差别,另外,对接触网的 设计、施工和运营维护也有不同的 要求.对高速接触网悬挂形式的 要求是:受流性能满足高速铁路的 运营要求、安全可靠、结构简单、维修方便、工程造价低.世界上发展高速铁路的 主要国家如:日本、德国、法国的 高速接触网悬挂形式是在不断改进中发展起来的 ,主要有三种悬挂形式:简单链形悬挂、弹性链形悬挂、复链形悬挂.各国对这三种悬挂形式有不同的 认识和侧重,根据各自的 国情发展自己的 悬挂形式.日本的 高速线路如:东海道新干线、山阳新干线、东北新于线、上越新干线均采用复链形悬挂,近几年来,日本高速铁路又采用了 简单链形悬挂;法国的 巴黎一里昂的 东南线采用弹性链形悬挂,巴黎一勒芒/图尔的 大 西洋线采用接触导线带预留弛度 的 简单链形悬挂;德国在行车速度 低于160千米/h 的 线路采用简单链形悬挂,在160千米/h 及以上的 线路采用弹性链形悬挂.下面分别介绍简单链形悬挂、弹性链形悬挂和复链形悬挂三种形式的 结构和技术性能.1、简单链形悬挂以法国为代表的 高速铁路采用此种类型,在 1990年开通的 速度 为300 千米/h 的 大 西洋新干线上采用,而且认为该悬挂类型完全可以满足 330—350 千米/h,简单链形悬挂维修简单造价低,有多年成熟的 运行经验.结构形式如图2-1所示.图2-1 带预留驰度的简单链形悬挂性能特点:结构简单、安全可靠、安装调整维修方便,适应于高速受流.定位点处弹性小,跨中弹性大,造成受电弓在跨中抬升量大,跨中采用预留弛度,受电弓在跨中的抬升量可降低;定位点处易形成相对硬点,磨耗大.如果选择结构形式合理、性能优良的定位器,则可消除这方面的不足.2、弹性链形悬挂德国开发的高速接触网普遍采用,并作为德国联邦铁路标准,其主要出发点是降低接触网弹性不均匀度 ,在80年代末修建的曼海姆到斯图加特高速铁路(250 千米/h)上采用,并计划在柏林至汉诺威、法兰克福至科隆间(300~400 千米/h)仍采用.弹性链形悬挂比简单链形悬挂弹性好,但造价较高.弹性链形悬挂的结构形式图如图2-2所示.在结构上,相对于简单链形悬挂在定位点处装设弹性吊索,主要有两种形式:“π”形和“Y”形.弹性吊索的材质一般与承力索相同,其线胀系数与承力索相匹配.性能特点:结构比较简单,改善了定位点处的弹性,使得定位点处的弹性与跨中的弹性趋于一致,图2-2 弹性链形悬挂整个接触网的弹性均匀,受流性能好.其缺点是弹性吊索调整维修比较复杂,定位点处导线抬升量大,对定位器的安装坡度要求也较严格.3、复链形悬挂在 1964年 10月建成的日本东海道新干线上采用,时速为210 千米/h,它是用带弹簧的吊弦合成复链形悬挂.日本研究部门认为它适用于多弓受流情况,在今后300 千米/h高速线路上仍采用.复链形悬挂运行性能好,但造价高、设计复杂,施工和维修难度大 ,复链形悬挂结构形式如图2-3所示.图2-3 复链形悬挂在结构上,承力索和接触导线之间加了一根辅助承力索.性能特点:接触网的张力大,弹性均匀,安装调整复杂、抗风能力强.表2-2-1 三种悬挂类型的定性比较我国高速铁路尚在试运行阶段,已提速的几条干线仍采用原来的接触悬挂类型,目前正在建设的广深高速铁路,采用全补偿简单链形悬挂,根据国外经验和我国铁路路轨现状,通过科技人员论证,普遍认为采用全补偿简单链形悬挂较为合适,特别是在车速不高的情况下,有利于投资少见效快,完全能够适应200 ㎞/h车速的要求.二、高速接触网的主要技术参数1.导线高度:指接触导线距钢轨面的高度.它的确定受多方面的因素制约,如:车辆限界、绝缘距离、车辆和线路振动、施工误差等.一般地,高速铁路接触导线的高度比常规电气化铁路的接触导线低,这主要因为:①高速铁路一般无超级超限列车通过,车辆限界为4 800nl米;②为了减少列车空气阻力及空气动态力对受电弓的影响,受电弓的底座沉于机车车顶顶面,受电弓的工作高度较小.所以,高速铁路接触导线的高度一般在5 300米米左右.2.结构高度:指定位点处承力索距接触导线的距离.它由所确定的最短吊弦长度决定的,吊弦长时,当承力索和导线材质不同时,因温度变化引起的吊弦斜度小,使锚段内的张力差小,有利于改善弓网受流特性;长吊弦的另一个优点是高速行车引起的导线振动时,吊弦弯度小,可以减少疲劳,延长使用寿命.表2-2-2为三种高速悬挂的结构高度.表2-2-2 三种高速接触网悬挂的结构高度法国TGV-A 德国Re330 日本HC 结构高度 1.4米 1.8米 1.5米我国接触网的结构高度为1.1~1.6米.3.跨距及拉出值:取决于线路曲线半径、最大风速和经济因素等.考虑安全因素及对受电弓滑板的磨耗,我国高速铁路一般在保证跨中导线及定位点在最大风速下均不超过距受电弓中心300米米的条件下,确定跨距长度和拉出值的大小 .4.锚段长度:它的确定主要考虑接触导线和承力索的张力增量不宜超过10%,且张力补偿器工作在有效工作范围内.高速铁路接触网的锚段长度与常规电气化铁路基本一样.5.绝缘距离:参照电气化铁路接触网的绝缘配合标准.6.吊弦分布和间距:吊弦间距指一跨内两相邻吊弦之间的距离,吊弦间距对接触网的受流性能有一定的影响,改变吊弦的间距可以调整接触网的弹性均匀度 ,但是,如果吊弦过密,将影响接触导线的波动速度 ,而对弹性改善效果不大 ,所以,确定吊弦间距时,既要考虑改善接触网的弹性,又要考虑经济因素.吊弦分布有等距分布、对数分布、正弦分布等几种形式,为了设计、施工和维护的方便,吊弦分布一般采用最简单的等距分布.7.接触导线预留弛度:指在接触导线安装时,使接触导线在跨内保持一定的弛度 ,以减少受电弓在跨中对接触导线的抬升量,改善弓网的振动.对高速接触网,简单链形悬挂设预留弛度 ,弹性链形悬挂一般不设预留弛度 .8.锚段关节:锚段关节是接触网的张力的机械转换关节,是接触网的薄弱环节,其设计和安装质量对受流影响较大 ,高速接触网一般采用两种形式的锚段关节:①非绝缘锚段关节采用三跨锚段关节;②绝缘锚段关节采用五跨锚段关节.安装处理上,尽量缩短接触导线工作支和非工作支同时接触受电弓滑板的长度 ,提高非工作支的坡度 .9.接触导线的张力:提高接触导线的张力,可以增大波形传播速度 ,改善受流性能,同时增加了接触网的稳定性.导线张力的确定受导线的拉断力,接触网的安全系数等因素影响.10.承力索的张力:受接触网的稳定性、载流容量、结构高度、支柱容量等因素影响,提高承力索的张力可以增加接触网的稳定性,但对弓网受流性能影响不大 .减少承力索的张力,有利于减少反射系数,承力索的张力受接触网的结构高度的限制,也就是在一定的结构高度上,要保持跨内最短吊弦的长度 .三、接触网的主要设备和零部件1、接触网的线材(1).接触导线接触导线是接触网中直接与机车受电弓作摩擦运动传递电能的线材,它对接触网——受电弓系统的受流性能的好坏产生至关重要的作用,受流系统的许多性能指标直接由接触导线决定,如:波动传播速度、接触导线的抬升量、接触导线的磨耗、安全系数.表2-2-3给出了国外高速接触导线的比较.高速铁路对接触导线的基本要求如下:○1机械强度高;○2)单位质量尽量小 ;○3导电性能好;○4良好的耐磨及耐腐蚀性能及高温软化特性,使用寿命长;○5摩擦性能与受电弓滑板相匹配.表2-2-3 国外高速接触导线的比较随着运行速度的提高,为了提高抗拉强度,增大波动传播速度、耐磨性,国外有关国家对高速铁路的接触导线都趋向于研制铜合金导线或复合导线.铜合金导线是在铜中加人其他金属元素,如镁、银,采用合金方法制成的.复合导线是用铜与另一种机械强度高的金属制成的.(2).承力索承力索是接触网承载接触导线,并传输电流的线材.承力索的选用应符合下列条件:承力索的线胀系数与接触导线相匹配;机械强度高;耐疲劳、耐腐蚀性能好,耐温特性好;导电率高.国外高速铁路使用的承力索性能如表2-2-4所示.表2-2-4 国外高速铁路使用的承力索性能表我国电气化铁路接触网的承力索一般采用95米米2和70米米2的铜合金绞线,增加承力索的张力可以增强接触网的稳定性.(3).弹性吊索对弹性链形悬挂,弹性吊索一般选用截面积为35米n2的青铜绞线,张力为2.8~3.5 kN.2、高速铁路接触网的支持装置(1).支柱:由于高速铁路接触网的承力索和接触导线的张力增大,使作为接触网支撑的支柱受到较大的负荷,另外,还要考虑到接触网的稳定性问题.高速铁路接触网支柱的选择,区间一般采用环形等径预应力混凝土支柱;桥上支柱采用热浸镀锌钢柱;软横跨硬横跨支柱;跨度小时用环形等径预应力混凝土支柱,跨度大时选用热浸镀锌钢柱.(2).硬横跨:是用于站场或两股以上线路的接触网支持钢结构,一般用型钢焊接成梁式结构横跨于线路上空,用于支持接触悬挂.这种刚性硬横跨的特点是,各股道上的接触网在机械上和电气上相互独立.接触悬挂在硬横跨上采用吊柱旋转腕臂的支持结构,其结构特性与区间中间柱基本相同,组合定位装置与区间的接触悬挂完全相同.硬横跨的优点是,机械上独立,结构稳定,抗风能力强,寿命长,在受流性能上与区间接触悬挂相同.法国、英国、日本等国家的高速铁路接触网几乎全部采用硬横跨.我国的高速铁路的接触网也趋向使用刚性硬横跨.(3).腕臂支持结构:为了提高接触网的稳定性和安全性,高速铁路接触网采用刚性腕臂支持结构,由水平腕臂和斜腕臂组成的稳定三角形结构,提高了腕臂结构的整体稳定性和抗风能力.(4).组合定位装置:组合定位装置包括:定位器、定位管、支持器,定位防风拉线和定位管防风支撑,这部分零部件对接触导线起定位和支持作用,影响弓网受流性能.在机械结构上它必须满足接触导线温度偏移,保证高速受电弓安全通过及接触导线抬高等要求.对定位器的要求:○1构造简单,安装方便,不形成接触悬挂硬点;○2材质上一般采用铝合金材料,重量轻,耐腐蚀;○3具有较高的强度;○4环路电阻小,不形成电损坏.3、高速接触网的终端锚固类零部件终端锚固类零部件包括:承力索终端锚固线夹、接触导线终端锚固线夹、张力补偿器、坠砣等.(1)张力补偿装置张力补偿装置是调整承力索、接触导线张力,使它们保持恒定的自动装置,是接触网的关键部件.高速铁路接触网一般有两种方式的自动张力补偿装置:①滑轮组自动补偿装置;②棘轮补偿装置.对张力补偿装置的要求是,传动效率高,达到97%以上;安全可靠;耐腐蚀性能好,少维修,寿命长,有断线制动装置.坠砣采用铁坠砣.(2)承力索终端锚固线夹和接触导线终端锚固线夹这两种零件是接触网的主要受力部件,是保障接触网安全的关键零件.在结构上,有锥套式螺纹胀紧结构和楔形胀紧式结构两种.在材质上,整体铝青铜,紧固件采用不锈钢.其工作张力,应满足20~27 kN.4、高速接触网的电连接类零件电连接是保证接触网各导线之间及各股道之间电流畅通的部件.对它的要求是:电连接线夹与接触导线或承力索间的接触电阻小 ,整体电连接导电性能好.在结构上,连接可靠,重量轻,耐腐蚀.在材质上,用纯铜和铝青铜.5、吊弦及吊弦线夹它是接触网的悬吊类零件,在接触网中调节接触导线弛度,又可分流,属于面广量大的零件.正确选用悬吊类零件将有效地保证接触网的受流性能,又能减少其维修工作量.在高速接触网中,一般先经过现场测量,再计算出每跨中每根吊弦的长度.在工厂将吊弦线夹和吊弦制成一体后,到现场直接安装.对吊弦及吊弦线夹的要求为:重量轻,体积小,耐腐蚀,安全可靠.材质上,吊弦采用青铜绞线;吊弦线夹采用铝青铜.6、高速接触网的线岔线岔是两股道接触网交叉处的装置,是接触网上的重要设备,在常速下,一般采用有交叉线岔,运行经验表明它完全能满足要求,但也存在着问题,交叉线岔硬点不易消除,机车无论从正线进入侧线,还是从侧线进入正线,在始触点处受电弓都要接触两条接触线,接触瞬间由于受电弓抬升力的作用,将要接触的导线总是比正在滑行的导线低,如图2-4所示.造成低侧导线,会沿受电弓滑板圆弧导角向上移动到接触板上,这就难免发生钻弓和打弓事故,也给现场施工和维修带来困难.尤其是高速铁路,这种滑动接触对接触线和受电弓危害极大 ,它直接影响着高速受电弓的运行安全,是高速接触网设计和安装中需要特别解决好的环节.高速接触网的线岔应满足下列要求:(1)满足正线高速行车,避免钻弓、打弓.(2)正线进渡线或渡线进正线时,保证受电弓平稳过渡. 图2-4 始触点处导线示意图(3)保证正线高速行车的受流质量,做到离线率低、硬点小 ,导线抬高量满足要求.(4)安装简单,维修调整方便.高速接触网线岔一般有交叉式和无交叉式两种形式,根据两种线岔的工作原理,我国的高速接触网适合采用无交叉式线岔.无交叉线岔平面布置如图2-5所示.由于道岔处钢轨没有超高,所以各自线路中心线与驶入该线的受电弓中心轨迹相重合.从图上看出,接触网道岔柱位于导曲线两内轨轨距666 ㎜处,正线接触线拉出值为333㎜,波线拉出值为距正线线路中心999㎜,渡线导线过岔后抬高下锚,在无交叉线岔区两导线均有坡度 ,渡线向下锚方向抬高3‰,正线坡度与渡线坡度相反为1‰ (沿波线下锚方向降低).图2-5 无交叉线叉平面布置图无交叉线岔应达到以下两点要求:(1)机车受电弓沿正线高速行驶通过线岔时,不与渡线接触线接触,因而不受渡线接触悬挂的影响.(2)机车从正线驶入渡线时(或从渡线驶入正线),要使受电弓平稳过渡,不出现钻弓和打弓现象,且接触良好.无交叉线岔工作原理和技术要求当机车沿正线通过时,考虑受电弓最外端尺寸的半宽为673 ㎜,摆动200㎜,升高后的加宽为100㎜,所以机车受电弓靠渡线侧最外端距正线线路中心为:673十200十100=973㎜而渡线导线距正线线路中心为999㎜,因此受电弓从正线导线上滑过时,不会触及渡线导线与波线接触网无关.当机车由正线驶入渡线时,经过计算和运行实践证明,在线间距126~526㎜之间受电弓与渡线接触线接触此段为始触区,在接触瞬间,因正线导线坡度与渡线坡度相反(即正线导线低,波线导线高),所以受电弓是逐渐的由低侧导线过渡到高侧导线,随着渡线导线坡度的降低使受电弓慢慢脱离正线,形成自然顺滑的平稳过渡.当机车从渡线驶入正线时,在线间距806~1306㎜之间时接触正线导线,而此时波线导线是逐渐升高,受电弓在上述适当位置处与正线导线自然接触,随着正线导线坡度影响,受电弓慢慢脱离渡线而进入正线.由于线岔区两导线有相反坡度的原因,使受电弓避免了在始触点处出现钻弓和打弓的危险,因此无交叉线岔工作状态明显优于交叉线岔.对无交叉线岔的技术要求是:(1)正线拉出值为333㎜,允许误差为±20 ㎜,渡线导线距正线线路中心为999㎜,误差为±20 ㎜.(2)在线间距 126~526 ㎜间,为正线进入渡线时的始触区.线间距 526~806㎜,是正线与渡线导线等高区.在 806~1306㎜为渡线进入正线始触区,如图 2—16—4所示.(3)在等高区内,铁路旁设立道岔柱,可安装定位装置及吊弦等设备,始触区内不允许安装任何悬挂和定位装置.(4)在线间距 126~526㎜间,渡线比正线高 H1,在线间距为 806~1306㎜间,渡线比正线低H2,H1、H2与道岔型号和机车通过速度有关,需另行确定.(5)为了限制道岔定位点处导线的抬高,在定位装置上增加了弹性支撑和限位装置,使定位器的抬升量为100㎜以内.7、高速接触网的分相装置我国既有120千米/h以下的电气化铁道的接触网分相装置均采用分相绝缘器来实现相间隔离.当列车速度超过160千米/h时,这种形式的分相绝缘器存在明显的硬点,对受电弓的滑板撞击很大 ,容易造成弓网事故.高速铁路接触网的分相装置一般采用绝缘锚段关节带中性段方式(锚段关节的跨数应根据中性段的设置长度来确定)来满足高速接触网一受电弓系统的性能要求.机车通过分相锚段关节的方式一般有三种:(1)地面开关切换方式,当机车受电弓在分相的中性段之前和刚进人中性段时,由一相供电,然后在中性段断电0.25~0.35 s后切换到另一相.其优点是列车无操作,停电时间短暂,冲击及失速小 ,但设备复杂,切换过程容易产生很高的过电压.其原理示意图如图2-6所示. 图2-6 地面开关自动过分相示意图(2)机车切换方式:当机车通过分相中性段时,机车接收地面上的信号,控制机车主断路器断开,断电不降弓通过中性段,机车通过中性区后,机车又接收到地面信号,控制机车主断路器合闸受电,完成了机车过分相的全过程.其原理示意图如图2-7所示.这种方式结构简单,地面设备非常简单,投资小 .(3)柱上自动切换方式图2-8 柱上自动切换过分相示意图图2-8为柱上自动切换过分相示意图.图上采用6个分断绝缘器(FD),将接触网分隔成五段,每两个为一组.当机车到达a之前,分断绝缘器a—c中间部分,通过电磁线圈3与a端处于同电位,机车从a点进入b点后,受电弓通过电磁线圈3取流,从而使A开关闭合,c—d区段带电,机车从c进入c—d端后,受电弓通过真空开关A取流,电磁线圈电流为零,使真空开关A断开,机车失电进入滑行阶段.当机车从g点进入分段g—h区段时,受电弓通过电磁线圈4取流,开关B闭合,f—g区段有电(对机车运行无意义).机车驶离i点后,电磁线圈4电流为零,开关B 打开完成一次自动过分相过程.中间一段机车要靠滑行通过,由于d—f间距较小 ,因此当机车时速为200 千米时,机车失压时间仅为0.15 s允许司机无操作满负荷通过分相装置.。
200~250km/h电气化铁路接触网装备暂行技术条件(OCS-2)铁道部科技司铁道部运输局二〇〇九年十二月目录前言第一部分、200~250km/h 电气化铁路接触网装备适用条件 (1)1〃速度目标值 (2)2〃接触网装备设计边界条件 (2)第二部分、200~250km/h 电气化铁路接触网装备技术条件 (4)1〃铜合金接触线 (5)2〃铜合金承力索 (8)3〃接触网零部件 (11)4〃绝缘子 (36)5〃分段绝缘器 (42)第三部分、200~250km /h 电气化铁路接触网装备试验方法 (44)1〃铜合金接触线试验方法 (45)2〃铜合金承力索试验方法 (54)3〃接触网零部件试验方法 (61)4〃接触网用棒形瓷绝缘子试验方法 (79)5〃接触网用棒形复合绝缘子试验方法 (84)6〃接触网用分段绝缘器 (91)附录A编制说明 (95)I前言根据《铁路中长期铁路网规划》,我国铁路将逐步形成由客运专线及既有线提速线路组成的大规模快速运输网。
运营速度的提高,对电气化铁路接触网装备提出了更高的要求。
为进一步提高铁路客运专线接触网装备的安全性、可靠性、可用性和可维护性水平,加强客运专线接触网装备的技术管理,保证客运专线铁路的运输安全,我们组织制定了《200~250km/h 电气化铁路接触网装备暂行技术条件》。
本技术条件是在借鉴国外高速铁路牵引供电系统建设和运用管理的成功实践、总结国内干线铁路提速经验的基础上编制而成。
主要参编单位:铁道部科学技术司、运输局,中铁电气化局集团有限公司,中铁第一勘察设计院集团有限公司,中铁二院工程集团有限责任公司,铁道第三勘察设计院集团有限公司,中铁第四勘察设计院集团有限公司,中铁电气化勘测设计研究院有限公司,铁道部产品质量监督检验中心接触网零部件检验站。
本暂行技术条件主要起草人:张曙光、程先东、王保国、王祖峰、景德炎、周伟、金柏泉、李志锋、李德胜、丁之龙、安英霞、李强、陈学光、肖志强、霍中原、邢甲第、高鸣、刘永红、赵玮、刘长利、陈勇、陈纪刚、赵红玉、韩柱先、李文豪、温建民、李红梅、丁为民、吴树伟、任兴堂、杨广英、赵允刚、赵戈红、李增勤、余福鼎、闫军芳、李军杰、王建平、黄岳群、张治国。
接触网悬挂方式:简链、弹链、复链。
简链:我国最简单的链形悬挂形式由一条接触线和一条承力索以及它们之间若干根吊弦组成。
这种链形悬挂的弹性,决定于跨距、接触线和承力索的张力。
采用一条接触线和传统拉应力的链形悬挂,其跨中弹性范围为0.15至1.Slnln/N,当然其跨中和悬挂点处的弹性差别很大,悬挂点处的弹性只能达到跨中弹性的30%至50%左右了弹性链形悬挂在悬挂点处加有Y形辅助索的链形悬挂,即为弹性链形悬挂,仍为单链形悬挂的一种。
跨距以及承力索和接触线的张力也决定其弹性,跨中弹性值为0.5至1.Zlnln/N,应对辅助索的长度和张力进行优选,使悬挂点处的弹性达到跨中弹性的80%,这是高速行驶性能所要求的。
德国联邦铁路在其120km/h和以上的线路上均采用这种接触网结构形式。
德国于1988年5月1日用工CE列车所进行的速度高达407腼/h行驶试验,证实该接触网结构形式适合于高速行驶。
复链形悬挂复链形悬挂结构形式,即为日本采用,在承力索和接触线之间另加一条辅助承力索,它使弹性大幅度降低。
在65m跨距时.跨中弹性可在0.25至0.4llnll/N之间,悬挂点处的弹性达到跨中弹性的90%,因此这种结构以很小的和均匀的弹性著称。
西门子公司于1912年就曾提出这种设计方案。
德国联邦铁路在开发高速接触网的过程中,再次对这种复链形悬挂形式进行试验,证实这种结构形式确实具有非常好的高速行驶特性,然而由于其费用过高,尤其在锚段关节处和线岔的结构过于复杂,所以德国新开发的用于35Okm/h运营速度的Re330标准接触网未采用这种链形悬挂。
s接触网额定电压值为25kV,最高工作电压为27.5kV,最低工作电压为19kV。
第155 条接触网一般采用链型悬挂方式,其最小张力如第12 表。
接触线一般采用铜或铜合金线。
接触线距钢轨顶面的高度不超过6500mm;在区间和中间站,不小于5700mm (旧线改造不小于5330mm);在编组站、区段站和个别较大的中间站站场,不小于6200mm;站场和区间宜取一致;双层集装箱运输线路不小于6330mm。