第八章抽样调查
- 格式:ppt
- 大小:2.69 MB
- 文档页数:81
单项选择題1. 抽样调查的主要目的在于(A. 计算和控制误差B. 了解总体单位情况C .用样本来推断总体 D.对调查单位作深入的研究2. 抽样调查所必须遵循的基本原则是( 人 A.随意原则 B. 可比性原则C .准确性原则 D. 随机氐则3. 无偏性是指( A.抽样指标等于总体指标B. 样本平均数的平均数等于总体平均数C .样本平均数等于总体平均数D.样本成数等于总协成数4. 一致性是指当样本的单位数充分大时,抽样指标( )。
A.小于总体指标B.等于总体指标C .大于总体指标D.充分靠近总体指标5. 有效性是指作为优良估计量的方差与其他估计量的方差相比,有( )A.前者小于后者B.前者大于后者C.两者相等D.两者不等6. 能够事先加以计算和控制的误差是( A.抽样误差 B.登记误差C .代表性误差 D. 系统性误差7. 对两个工厂工人平均工资进行不重复的随机抽样调查,抽查的工人人数一样, 但第二个厂工人数比第一个厂工人数整整多一倍。
抽样平均误差( 人A.第一工厂大B. 第二个工厂大C .两工厂一样大 D.无法做出结论8. 在同样情况下,不重复抽样的抽样平均误差与重复抽样的抽样平均误差相比, 是( )。
A.两者相等B.两者不等C .前者小于后者 D.前者大于后者。
9. 反映抽样指标与总体指标之间抽样的可能范围的指标是(第八章 抽样推断两工厂工人工资方差相同,A.抽样平均误差B. 抽样误差系数C.概率度D. 抽样极限逞差.10. 在进行纯随机重复抽样时,为使抽样平均误差减少25%则抽样单位数应()。
A.增加25%B. 增加78%C. 增加1.78%D. 减少25%11. 在其它同等的条件下,若抽选5%的样本,则重复抽样的平均误差为不重复抽样平均误差的()倍。
A. 1.03B. 1.05 C . 0.97 D. 95%12. 在总体方差一定的情况下,下列条件中抽样平均误差最小的是(A.抽样单位数为20B. 抽样单位数为40C.抽样单位数为90D.抽样单位数为100 13.通常所说的大样本是指样本容量(人A.小于10B. 不大于10C.小于30D. 不小于3014. 抽样成数指标P值越接近1,则抽样成数平均误差值()A. 越大B越小C越接近0.5 D越接近115. 对400名大学生抽取19%进行不重复抽样调查,优等生比重为20%概率为0.9545,优等生比重的极限抽样误差为()。
第八章抽样推断作业
1.某广告公司为了估计某地区收看某一新电视节目的居民人数所占比例,要设计一个简单随机样本的抽样方案。
该公司希望有90%的信心视所估计的比例只有2个百分点左右的误差。
为了节约调查费用,样本将尽可能小。
试问样本量应该为多大?
2.某地区对居民用于某类消费品的年支出额进行了一次抽样调查,抽取了400户居民,调查得到的平均每户支出数额为350元,标准差为47元,支出额在600元以上的只有40户。
试以95%的置信度估计:(1)平均每户支出额的区间;(2)支出额在600元以上的户数所占比例的区间。
3.某地区有1000家商店,按大、中、小分为三类,其商店数分别为N 1 =200, N 2=300, N 3 =500.今按比例分配抽取一个容量为n=100的分层随机样本,平均年营业额(单位:万元)分别为1201=y , ,752=y ,403=y 各层的样本方差分别为S 12 =44, S 22 =18, S 32 =5.试求该地区平均每家年营业额的置信度为95%的置信区间。
4.质量监督部门从某厂生产的500箱同类产品中随机抽取了10箱,并对这10箱进行全面检验。
这10箱产品的合格率分别为:85%,90%,90%,92%,92%,96%,96%,95%,95%,95%。
试求该厂这批产品不合格率的置信度为95%的置信区间。
第八章统计与概率第二十七讲数据的收集与处理【基础知识回顾】一、数据的收集方式。
1、全面调查(普查):是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查(抽查):是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本容量。
【名师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取,当受条件限制无法对所有个体都进行调查或调查具有破坏性时,应采用,然后用样本估计总体的情况。
2、注意:被考察对象不是笼统的某人某物,而是某人某物的某项指标。
】二、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角=3600×2、频数分布直方圆中每个长方形的高是所有小长方形高的和为】【典型例题解析】1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.3.2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5-60.5 16 0.0860.5-70.5 40 0.270.5-80.5 50 0.2580.5-90.5 m 0.3590.5-100.5 24 n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?第二十八讲数据分析【基础知识回顾】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。
第8章抽样调查与推断【教学内容】本章主要阐述:抽样调查的概念、特点、作用和几个基本概念;影响抽样误差的主要因素;抽样调查几种主要组织方式及其抽样平均误差的计算;抽样估计推断;点估计和区间估计;必要抽样数目的确定。
【教学目标】1、理解抽样误差的影响因素;2、掌握抽样调查的概念、特点和作用;3、掌握抽样平均误差的计算方法、抽样估计推断和必要抽样数目的确定原理及方法;4、初步具备在实际工作中正确运用抽样方法搜集资料并据以做出准确推断的能力。
【教学重点、难点】1、抽样调查的特点和作用;2、抽样调查的组织方式和方法;3、抽样误差的概念与计算;4、抽样推断方法;5、必要抽样数目的确定方法。
第一节抽样调查的一般问题一、抽样调查的概念、特点与作用(一)抽样调查的概念与特点概念:抽样调查又称抽样推断或抽样估计,它是从总体中按随机原则抽取一部分单位进行观测,并根据这部分单位的资料推断总体数量特征的一种方法。
特点:(1)按随机原则抽取调查单位。
(2)由部分推断全体。
(3)抽样误差可以事先计算并加以控制。
(二)抽样调查的作用1、用于不可能进行全面调查的无限总体。
2、用于不可能进行全面调查而又需要了解全面情况的现象。
3、用于不必要进行全面调查的现象。
4、用于对全面调查的资料进行评价与修正。
5、用于工业生产过程的质量控制。
二、抽样调查中的几个基本概念(一)全及总体和抽样总体1.全及总体全及总体简称总体或母体,它是指所要调查研究对象的全体。
2.抽样总体抽样总体也称样本或子样,它是指在全及总体中按随机原则抽取的那部分单位所构成的集合体。
(二)总体指标和样本指标1.总体指标总体指标也称为母体参数或全及指标,它是根据全及总体各单位的标志值或标志特征计算的,反映总体某种属性的综合指标。
2.样本指标样本指标也称样本统计量或抽样指标,它是根据抽样总体各单位的标志值或标志特征计算的综合指标。
三、抽样调查的组织方式(一)简单随机抽样概念:简单随机抽样也叫纯随机抽样,它对总体单位不作任何分类排序(队),而是直接从总体中随机抽取一部分单位来组成样本的抽样组织方式。
《普查和抽样调查》作业设计方案(第一课时)一、作业目标本作业设计旨在通过预习、实践和巩固等环节,使学生掌握普查和抽样调查的基本概念、特点及适用场景,能够根据实际情况选择合适的调查方法,并初步学会设计简单的抽样方案。
二、作业内容(一)预习部分1. 学生需自行阅读教材中关于普查和抽样调查的定义及分类,并尝试总结两者的异同点。
2. 完成相关练习题,包括但不限于判断题、选择题等,以检验预习效果。
(二)实践部分1. 设计一个简单的抽样调查方案,包括明确调查目的、确定调查对象、选择抽样方法、设计问卷内容等步骤。
学生需注意保证方案的合理性和可操作性。
2. 小组内进行讨论,互相评价抽样调查方案的优缺点,并提出改进建议。
(三)巩固部分1. 完成一份关于普查和抽样调查的复习题,包括概念题、应用题等。
2. 结合实际生活,举例说明普查和抽样调查在日常生活中的应用场景。
三、作业要求1. 预习部分需在课前完成,并做好笔记,记录自己的疑问和思考。
2. 实践部分需小组合作完成,每个小组至少包含两名成员,并由组长负责汇总和整理小组意见。
3. 巩固部分需在课后完成,并按时提交作业,作业需字迹清晰、格式规范。
4. 学生在完成作业过程中,需独立思考、认真分析,遇到问题可查阅相关资料或请教老师。
四、作业评价1. 教师将根据学生预习部分的笔记和练习题完成情况,评价学生的预习效果。
2. 教师将根据学生实践部分的抽样调查方案的设计和小组讨论情况,评价学生的实践能力和合作精神。
3. 教师将根据学生巩固部分的复习题完成情况和实际生活应用举例的合理性,评价学生的知识掌握程度和应用能力。
五、作业反馈1. 教师将在课堂上对作业进行点评,指出学生的优点和不足,并给出改进建议。
2. 对于优秀作业和进步明显的作业,教师将在班级内进行表扬和展示。
3. 教师将根据学生作业情况,调整教学计划和教学方法,以更好地满足学生的学习需求。
作业设计方案(第二课时)一、作业目标本课时作业旨在加深学生对普查和抽样调查的理解与掌握,培养学生的数据分析能力及根据实际情景选择恰当调查方式的能力。
《抽样调查教案》课件第一章:抽样调查简介1.1 抽样调查的概念与意义1.2 抽样调查的分类1.3 抽样调查的步骤与方法1.4 抽样调查的优势与局限性第二章:随机抽样方法2.1 简单随机抽样2.2 分层随机抽样2.3 系统随机抽样2.4 整群随机抽样2.5 多种随机抽样方法的比较与选择第三章:样本容量的确定3.1 样本容量的概念与作用3.2 样本容量的计算方法3.3 影响样本容量的因素3.4 样本容量确定的实际应用案例第四章:抽样调查的实施与数据处理4.1 抽样调查的实施步骤4.2 样本数据的收集与整理4.3 抽样误差与无回答误差4.4 样本数据的代表性分析4.5 数据处理的统计方法第五章:抽样调查的评估与改进5.1 抽样调查的评估指标5.2 抽样调查的质量评价5.3 抽样调查的改进方法5.4 抽样调查在实际应用中的案例分析5.5 抽样调查的发展趋势与展望第六章:概率抽样与非概率抽样6.1 概率抽样的概念与特点6.2 非概率抽样的概念与特点6.3 概率抽样与非概率抽样的比较6.4 常见概率抽样方法介绍6.5 常见非概率抽样方法介绍第七章:样本数据的统计分析7.1 描述性统计分析7.2 推断性统计分析7.3 假设检验方法7.4 相关与回归分析7.5 统计分析软件的应用第八章:抽样调查在各个领域的应用8.1 市场调查中的应用8.2 社会调查中的应用8.3 医学研究中的应用8.4 教育研究中的应用8.5 环境监测中的应用第九章:抽样调查的伦理与法律问题9.1 抽样调查的伦理问题9.2 抽样调查的法律问题9.3 保护受访者隐私的原则9.4 确保调查结果真实性的措施9.5 抽样调查的合规性检查与评估第十章:现代抽样调查技术的发展10.1 计算机辅助调查技术10.2 网络调查技术10.3 大数据抽样调查10.4 移动设备抽样调查10.5 在抽样调查中的应用10.6 未来抽样调查技术的发展趋势重点和难点解析一、抽样调查的分类难点解析:不同抽样调查方法的选择和应用,需要根据研究目的和条件来决定。
第8章 抽样调查习题一、单项选择题1、抽样调查的目的在于( )。
a.计算和控制误差b.了解总体单位情况c.用样本来推断总体d.对调查单位作深入的研究2、是非标志(即服从两点分布的变量)的标准差等于( )。
a.Pb.1-Pc.P(1-P)d.)1(P P3、能够事先加以计算和控制的误差是( )。
a.抽样误差b.代表性误差c.登记误差d.系统性误差4、抽样平均误差是指抽样平均数(或抽样成数)的( )。
a.平均数b.平均差c.标准差d.标准差系数5、在同样情况下, 重复抽样的抽样平均误差与不重复抽样的抽样平均误差相比( )。
a.两者相等 b.前者小于后者 c.两者不等 d.前者大于后者6、反映抽样指标与总体指标之间抽样误差的可能范围的指标是( )。
a.抽样平均误差b.抽样误差系数c.概率度d.抽样极限误差7、在重复抽样情况下,假定抽样单位数增加3倍(其他条件不变),则抽样平均误差为原来的( )。
a.1/2倍b.1/3倍c.1.731倍d.2倍8、在进行简单随机抽样时,为使抽样平均误差减少25%,则抽样单位数应( )。
a.增加25% b.减少13.75% c.增加43.75% d.减少25%9、抽样极限误差是指用样本指标估计总体指标时产生的抽样误差的( )。
a.最大值 b.最小值 c.可能范围 d.实际范围10、将总体单位按一定标志排队,并按固定距离抽选样本单位的方法是( )。
a.类型抽样 b.等距抽样 c.整群抽样 d.简单随机抽样11、在进行抽样估计时,常用的概率度t 的取值( )。
a.t<1b.1≤t≤3c.t=2d.t>312、等距抽样的误差与简单随机抽样相比较( )。
a.前者小b.前者大c.两者相等d.大小不定13、某地订奶居民户户均牛奶消费量为120公斤,抽样平均误差为2公斤,据此可计算户均牛奶消费量在114-126之间的概率为( )。
a.0.9545b.0.9973c.0.683d.0.90014、对400名大学生抽取19%进行不重复抽样调查,优等生比重为20%,概率为0.9545,优等生比重的极限误差为( )。