人教版六年级数学下册第五单元 数学广角第二课时 抽屉原理例1、例2
- 格式:ppt
- 大小:3.38 MB
- 文档页数:28
第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。
小学数学《抽屉原理》教案小学数学《抽屉原理》教案 1一、教学内容:教材第70页、72页例一、例二及做一做。
二、教学目标:知识与技能1.理解最简单的“抽屉原理”及“抽屉原理”的一般形式。
2.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
过程与方法通过操作发展学生的类推能力,形成比较抽象的数学思维。
情感态度与价值观体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。
三、教学重点:理解抽屉原理的推导过程。
教学难点;理解抽屉原理的一般规律。
四、教学方法:教法:创设情境引导探究学法:小组合作讨论五、师生课前准备:4支铅笔3个文具盒投影仪五、教学过程(一)课前游戏引入1.坐凳子游戏:教师和5名学生做游戏2.用一副牌展示“抽屉原理”。
师:这有一副牌,老师用它变一个魔术。
想看吗?这个魔术的名字叫“猜花色”。
老师随意抽五张牌。
我能猜到,至少有两位同学的手中的花色是相同的,你们信吗?(老师与学生合作完成魔术)师:通过者个游戏你们能猜到我们今天研究的内容吗?3.揭示课题,板书课题《抽屉原理》抽屉原理很神奇,我们用它可以解决很多有趣的的问题,想弄明白这个原理吗?这节课我们就一起来探究这种神秘的原理。
(二)探究原理建立模型1.合作探究(问题一)师:同学们手中都有文具盒和铅笔,现在分小组动手操作:学生取出4枝笔,3个文具盒。
然后把4枝笔放入3个文具盒中,摆一摆,想一想共有有几种放法?还有什么发现?学生取出学具,带着问题展开小组活动。
2.汇报展示学习小组派代表到台前展示成果。
要求学生边摆边说,老师同时在黑板上板书草图。
可能会出现以下几种放法:放法:(0,1,3)(2,2,0)(2,1,1)(4,0,0)教师:通过刚才的操作,你发现了什么?学生:我们发现不管怎么放,总是有一个文具盒里至少放进去了2枝笔。
理由是2教师引导学生用平均分的方法解决问题小组带着问题再次展开探究。
生:每个文具盒先放1枝,余下的一枝不管放到哪个文具盒里都可以得出,总有一个文具盒至少放进2枝笔。
人教版六年级下册数学数学广角——抽屉原理教学设计主备教师:王振宇上课教师:王振宇教学内容:人教版六年级数学下册第五单元数学广角——抽屉原理例1、例2教学目标:1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教具准备:纸杯多个、铅笔多支、课件教学过程:一、情景引入上课前,我们先来热身一下,一起来玩抢椅子的游戏。
请3位同学上来参加游戏,第三位同学是请女生还是男生呢?老师认为,不管是请男生还是女生,都一定至少有两位同学的性别是相同的。
同意我的说法吗?游戏规则是:在老师说开始时,3位同学绕着椅子走,当老师说停的,三位同学都要坐在椅子上。
为什么总有一张椅子至少坐两个同学?同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。
二、明确学习目标初步理解“抽屉原理”,能灵活运用“抽屉原理”解决实际问题。
三、引导学生学习标杆题,展示、反思、点拨师:为了搞清出这个有趣的数学问题我们从杯子装铅笔的实验入手。
(一)小组实验:2个杯子装3支铅笔,3个杯子装4支铅笔,不管怎么放,每个杯子至少放()只铅笔。
活动要求:1、说一说:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?2、大家摆摆看,有什么发现?3、汇报交流:不管怎么放总有一个杯子至少有()根铅笔。
4、课件展示结果:(3、0)(2、1)不管怎么放总有一个杯子至少有2根铅笔。
5、依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?动手摆摆看,做好记录,认真观察,看看有什么发现?6、小组交流:学生汇报放结果,结合学具操作解释。
教师作相应记录。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)7、课件引导学生观察:得出结论:不管怎么放,总有一个杯子里至少放进()根铅笔。
《抽屉原理》教学案例襄阳市第一实验小学文俊荣教材分析:《抽屉原理》是义务教育课程标准实验教科书人教版六年级下册第五单元数学广角的教学内容。
本课选的是例1、例2的内容,这是一节建立数学模型课,通过直观操作、验证、观察、分析等数学活动,渗透“建模”思想。
本课通过直观例子,借助学具、实物操作或画草图等方式进行“说理”,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,并会运用“抽屉原理”来解决这些问题。
“抽屉原理”应用广泛且灵活多变,按照教参的要求,不必过于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。
本节课我主要鼓励学生借助学具、实物操作等方式进行“说理”,让学生初步经历“数学证明”的过程。
在经历“数学化”过程中,结合学生已有的知识水平和思维特点,创造一种和谐愉悦的氛围,采用“动手实践、自主探索”的学习方式,让学生能够从中感受到学习的乐趣,并主动地去探求知识,发展思维。
在教学中注重引导学生在遇到存在性问题时要仔细观察并寻找其中的规律,感受数学的内在魅力,激发他们学习数学的兴趣。
教学理念:课标指出:“学生是数学学习的主人,而教师则是数学学习的组织者、引导者与合作者。
”学生在教师的指导下,在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,理解数学问题的提出、数学概念的形成和数学结论的获得,以及数学知识的应用,主动地参与教学的全过程,逐步地培养创新意识,形成初步的探索和解决问题的能力。
我在准确把握教材编写意图,深刻理解教材内容,领悟教材所反应的知识要点、教学思想方法基础上,在充分了解学生已有的学习水平和生活经验基础上,对教材内容进行恰当地选择与改编、删减与补充,设计出有利于学生学习的教学方案。
学情分析:“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。
数学广角——抽屉原理教学内容:人教版六年级下册——数学广角(抽屉原理)例1、例2教学目标:1、初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2、通过动手操作、画图、推理等活动,使学生会运用多种方法去解决问题。
3、培养学生合理的逻辑思维能力和推理能力,提高学生解决问题的动手能力,培养学生学生数学的兴趣。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学准备:教学过程:一、创设情境,引入新课。
1、引入:师:我们班有——(板书:51位)学生,能告诉贝老师你的生日是几月份吗?指名3、4人。
老师肯定我们班至少有5个同学的生日在同一个月,你们信吗?2、验证:师统计。
3、点题:老师并不知道```却能肯定```想知道这为什么吗?今天这节课我们一起来研究一个有趣的数学原理——抽屉原理(板书:抽屉原理)也叫“鸽巢原理”,因为这个原理是德国数学家狄里克雷发现的,所以又叫“狄里克雷”原理。
二、探究新知。
(一)、教学例1。
师:下面,我们先从简单的现象入手来研究。
课件显示例1.1、例1:把4枝,铅笔放进3个文具盒里,可以怎么放,有几种情况?⑴独立思考,摆一摆。
⑵小组交流。
⑶全班交流。
生口答,师画图(4种):不管怎么放,至少有2枝笔放入同一个文具盒。
为什么?师:“至少”是什么意思?生:(如果每个文具盒放1枝最多放3枝,剩下的1枝还要放进其中1个文具盒,所以至少有2枝铅笔放进同一文具盒。
)并板书。
师:请你照样子说一说。
2、师:XX的这种假设推理方法,实际上是刚才画图法的哪一种?(1,1,2)师:这种分法是建立在先怎么分的基础上的?你能用算式表示吗?板书:4÷3=1枝……1枝 1+1=2枝3、比较方法:如果让你选择画图法和假设法的其中一种来解释这种现象,你会选哪种?说说理由。
4、那么,如果增加铅笔和文具盒的数量,又会怎样呢?课件出示。
抽屉原理【教学内容】《义务教育课程标准实验教科书·数学》第70、71页,例1、例2.【教材分析】抽屉原理是人教版六年级下册第五单元数学广角的内容。
本单元内容通过几个直观的例子,借助实际操作,向学生介绍“抽屉原理”。
使学生在理解“抽屉原理”这个数学方法的基础上,对一些简单的实际问题加以“模型化”,会用抽屉原理加以解决。
“抽屉原理”的理论本身并不复杂,甚至能够说是显而易见的。
但“抽屉原理”的应用却是千变万化的,它能够解决很多有趣的问题,并能常常得到一些令人惊异的结果。
本单元用直观的方法,介绍了“抽屉原理”的两种形式,并安排了很多具体问题和变式,协助学生加深理解,学会利用“抽屉问题”解决简单的实际问题。
在此过程中,让学生初步经历“数学证明”的过程。
实际上,通过“说理”的方式来理解“抽屉原理”的过程就是一种数学证明的雏形,有助于提升学生的逻辑思维水平,为以后学习较严密的数学证明做准备。
还要注意培养学生的“模型”思想,这个过程是将具体问题“数学化”的过程,能从纷繁的现实素材中找出最本质的数学模型,是体现学生数学思维和水平的重要方面。
【学情分析】六年级学生既好动又内敛,教师一方面要适当引导,激发学生的学习兴趣,鼓励学生借助学具、实物操作、或画草图的的方式实行“说理”;另一方面要创造条件和机会,让学生充分发表自己的见解,发挥学生学习的主体性,重在让学生经历知识发生、发展的过程,而不是只求结论。
“抽屉原理”在生活中应用广泛,学生在生活中也常常能遇到实例,但并不能从数学的角度来理解和使用“抽屉原理”,所以教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。
六年级学生的逻辑思维水平、小组合作水平和动手操作水平都有了较大的提升,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。
【设计理念】本课充分利用学生的生活经验,为学生自主探索提供时间和空间,引导学生通过观察、实践、推理和交流等活动,经历探究“抽屉原理”的过程,学会用一般性的数学方法思考问题,培养学生的数学思维水平,发展学生解决问题的水平。
【教学内容】《义务教育课程标准实验教科书·数学》六年级下册第70、71页,例1、例2.【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】每组都有相应数量的笔筒、铅笔。
【课前游戏】师:同学们喜欢做游戏吗?学习新课之前我们先来做个游戏.这是一副扑克牌,抽掉了大王、小王,还剩多少张?知道扑克牌有几种花色吗?(明确4种)哪四种?那我们就用剩下的扑克牌来做游戏。
谁愿意来帮这个忙?请你们5位任意抽取一张牌,不要让我看到。
自己看好牌记在心里,记住了吗?把牌收好了,师:同学们,下面就是见证奇迹的时刻。
师:在你这五张牌里,至少有两张是同一花色的。
师:把牌拿出来验证一下,同一花色的站到一起。
我猜对了吗?师:要不要再来一次。
把牌交给学生教师:如果让这5位同学反复抽牌,不管怎样,总是至少有2张牌是同一花色的,你们相信吗?【一】导入:老师为什么能做出准确的判断呢?因为啊,在这个游戏中蕴含着一个有趣的数学原理。
【二】动手操作,获取新知:(一)初步感知1、教师引导:你们想不想自己通过动手实践来发现它?每个小组拿出4枝铅笔,把它们放进3个笔筒中,怎么放?有几种方法?你有什么发现吗?(提出要求:在动手操作之前分好工,有操作的,有负责记录的)2、全班交流:哪个小组愿意到前边给大家展示一下?质疑:(4,0,0)这样放行不行?如果学生用图表示,问还有没有更简单的表示方法?观察这四种方法,你有什么发现?(明确:无论怎么放,总有一个笔筒至少有2枝铅笔)问:总有是什么意思?至少有两支呢?师:你们的发现和她一样吗?再找学生说。
全班明确:把4枝铅笔放进3个笔筒中,不管怎么放,总有一个笔筒中至少有2枝铅笔,3、这是列举出所有方法之后得出的结论。
【精选】六年级数学《抽屉原理》教学设计2篇作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么优秀的教学设计是什么样的呢?下面是小编为大家收集的六年级数学《抽屉原理》教学设计,仅供参考,欢迎大家阅读。
六年级数学《抽屉原理》教学设计1【教学内容】《义务教育课程标准实验教科书数学》六年级下册第68页。
【教学目标】1.经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。
2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。
3. 通过抽屉原理的灵活应用感受数学的魅力。
【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理。
【教学难点】理解抽屉原理,并对一些简单实际问题加以模型化。
【教具、学具准备】每组都有相应数量的盒子、铅笔、书。
【教学过程】一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。
这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:不管怎么坐,总有一把椅子上至少坐两个同学我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
下面我们开始上课,可以吗?【点评】教师从学生熟悉的抢椅子游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况 (3,0) (2,1)【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。