双曲线标准方程及几何意义
- 格式:pptx
- 大小:930.95 KB
- 文档页数:10
双曲线的标准方程标准方程1:焦点在X轴上时为x2/a2-y2/b2=1(a>0,b>0)标准方程1:焦点在Y轴上时为y2/a2-x2/b2=1(a>0,b>0)双曲线取值范围:│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上) 双曲线对称性:关于坐标轴和原点对称,其中关于原点成中心对称。
1、双曲线顶点A(-a,0),A'(a,0)。
同时AA'叫做双曲线的实轴且│AA'│=2a。
B(0,-b),B'(0,b)。
同时BB'叫做双曲线的虚轴且│BB'│=2b。
F1(-c,0)或(0,-c),F2(c,0)或(0,c)。
F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c对实轴、虚轴、焦点有:a2+b2=c22、双曲线离心率第一定义:e=c/a 且e∈(1,+∞)第二定义:双曲线上的一点P到定点F的距离│PF│与点P到定直线(相应准线)的距离d 的比等于双曲线的离心率e。
d点│PF│/d线(点P到定直线(相应准线)的距离)=e3、双曲线的准线焦点在x轴上:x=±a2/c焦点在y轴上:y=±a2/c双曲线的定义(1)平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离)的点的轨迹称为双曲线。
定点叫双曲线的焦点。
(2)平面内,到给定一点及一直线的距离之比为常数e(e=c/a(e>1),即为双曲线的离心率)的点的轨迹称为双曲线。
定点叫双曲线的焦点,定直线叫双曲线的准线。
双曲线准线的方程为x=±a²/c(焦点在x轴上)或y=±a²/c(焦点在y轴上)。
(3)一平面截一圆锥面,当截面与圆锥面的母线不平行,且与圆锥面的两个圆锥都相交时,交线称为双曲线。
(4)在平面直角坐标系中,二元二次方程F(x,y)=ax2+bxy+cy2+dx+ey+f=0满足以下条件时,其图像为双曲线。
双曲线1.双曲线的概念平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离的差的绝对值为常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0;(1)当a <c 时,P 点的轨迹是双曲线.(2)当a =c 时,P 点的轨迹是两条射线.(3)当a >c 时,P 点的轨迹不存在.2.双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈R x ∈R ,y ≤-a 或y ≥a对称性对称轴:坐标轴对称中心:原点顶点A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞),其中c =a 2+b 2实虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)1.方程x 2m -y 2n=1(mn >0)表示的曲线(1)当m >0,n >0时,表示焦点在x 轴上的双曲线.(2)当m <0,n <0时,则表示焦点在y 轴上的双曲线.2.方程的常见设法(1)与双曲线x 2a 2-y 2b 2=1共渐近线的方程可设为x 2a 2-y 2b 2=λ(λ≠0).(2)若渐近线的方程为y =±b a x ,则可设双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).3.常用结论1.双曲线的焦点到其渐近线的距离为b .2.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .3.同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ;异支的弦中最短的为实轴,其长为2a .4.若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2tan θ2,其中θ为∠F 1PF 2.5.若P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a .6.等轴双曲线(1)定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.(2)性质:①a =b ;②e =2;③渐近线互相垂直;④等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.7.共轭双曲线(1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.(2)性质:①它们有共同的渐近线;②它们的四个焦点共圆;③它们的离心率的倒数的平方和等于1.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.()(2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.()(3)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.((4).双曲线x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是m (5).若双曲线x )x ±ny =0.( )2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 222.双曲线2x 2-y 2=8的实轴长是=1(此条件中两条双曲线称为共轭双曲线).( )()A .2B .22C .4D .423.(2021·全国甲卷)点(3,0)到双曲线x 216-y 29=1的一条渐近线的距离为()A.95B.85C.65D.454.(教材改编)过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是()A .28B .14-82C .14+82D .825.已知双曲线E :x 216-y 2m 2=1的离心率为54,则双曲线E 的焦距为__________.双曲线的定义的应用例题:(1)已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是()A .椭圆B .双曲线C .抛物线D .圆(2)已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,则动圆圆心M 的轨迹方程为()A.x 22-y 216=1(x ≤-2) B.x 22-y 214=1(x ≥2)C.x 22-y 216=1 D.x 22-y 214=1(3)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为______________(4)已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=__________.(5)已知F 1,F 2是双曲线x 24-y 2=1的两个焦点,P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为()A .1B .52C .2D .5(6).(2020·全国卷Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A .1B .2C .4D .8(7)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为()A .215a 2B .15a 2C .30a 2D .15a 2(8)P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线.P 在l上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为()A .1B .2+155C .4+155D .22+1(9)已知双曲线x2-y2=4,F1是左焦点,P1,P2是右支上的两个动点,则|F1P1|+|F1P2|-|P1P2|的最小值是()A.4B.6C.8D.16(10)双曲线C的渐近线方程为y=±233x,一个焦点为F(0,-7),点A的坐标为(2,0),点P为双曲线第一象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.8B.10C.4+37D.3+317双曲线的标准方程求双曲线标准方程的方法:(1)定义法(2)待定系数法①当双曲线焦点位置不确定时,设为Ax2+By2=1(AB<0);②与双曲线x2a2-y2b2=1共渐近线的双曲线方程可设为x2a2-y2b2=λ(λ≠0);③与双曲线x2a2-y2b2=1共焦点的双曲线方程可设为x2a2-k-y2b2+k=1(-b2<k<a2).例题:(1)根据下列条件,求双曲线的标准方程:(1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M(0,12);(3)经过两点P(-3,27)和Q(-62,-7).(2)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为(-3,0),且C 的离心率为32,则双曲线C 的方程为()A.y 24-x 25=1 B.y 25-x 24=1 C.x 24-y 25=1 D.x 25-y 24=1(3)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是()A.7x 216-y 212=1 B.y 23-x 22=1C .x 2-y 23=1D.3y 223-x 223=1(4)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为()A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=1(5)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是()A .x12-y 2=1B .x 29-y 23=1C .x 2-y 23=1D .x 223-y 232=1(6)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为()A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=1(7)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点M 在双曲线的右支上,点N 为F 2M 的中点,O 为坐标原点,|ON |-|NF 2|=2b ,∠ONF 2=60°,△F 1MF 2的面积为23,则该双曲线的方程为__________.双曲线的几何性质求双曲线的渐近线方程例:(1)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则双曲线C 的渐近线方程为()A .y =±3xB .y =±33x C .y =±12xD .y =±2x(2)已知双曲线T 的焦点在x 轴上,对称中心为原点,△ABC 为等边三角形.若点A 在x 轴上,点B ,C 在双曲线T 上,且双曲线T 的虚轴为△ABC 的中位线,则双曲线T 的渐近线方程为()A .y =±153xB .y =±53xC .y =±33x D .y =±55x (3)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2a 2-y 2b 2=12的焦点相同,则双曲线的渐近线方程为()A .y =±3xB .y =±33x C .y =±22x D .y =±2x(4)已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,以F 1F 2为直径的圆与双曲线在第一象限和第三象限的交点分别为M ,N ,设四边形F 1NF 2M 的周长为p ,面积为S ,且满足32S =p 2,则该双曲线的渐近线方程为()A .y =±32x B .y =±233xC .y =±12xD .y =±22x求双曲线的离心率(范围)例:(1)(2021·全国甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A.72B.132C.7D.13(2).已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为__________.(3)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过坐标原点O 的直线与双曲线C 的左、右支分别交于点P ,Q ,若|PQ |=2|QF |,∠PQF =60°,则该双曲线的离心率为()A .3B .1+3C .2+3D .4+23(4)(2020·全国卷Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A .1B .2C .4D .8(5)圆C :x 2+y 2-10y +16=0上有且仅有两点到双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的距离为1,则该双曲线离心率的取值范围是()A .(2,5)B.⎪⎭⎫⎝⎛2535,C.⎪⎭⎫⎝⎛2545,D .(5,2+1)双曲线几何性质的综合应用例:(1)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是()A.⎪⎪⎭⎫⎝⎛-3333, B.⎪⎪⎭⎫⎝⎛-6363,C.⎪⎪⎭⎫⎝⎛-322322, D.⎪⎪⎭⎫⎝⎛-332332,逻辑推理(2020·新高考卷Ⅰ)(多选)已知曲线C :mx 2+ny 2=1.()A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线直线与双曲线的位置关系例题:若双曲线E :x 2a 2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若|AB |=63,求k 的值.双曲线课后练习1.方程x2m+2+y2m-3=1表示双曲线的一个充分不必要条件是()A.-3<m<0B.-1<m<3C.-3<m<4D.-2<m<3 2.在平面直角坐标系中,已知双曲线C与双曲线x2-y23=1有公共的渐近线,且经过点P(-2,3),则双曲线C的焦距为()A.3B.23C.33D.433.设双曲线C:x2-4y2+64=0的焦点为F1,F2,点P为C上一点,|PF1|=6,则|PF2|为()A.13B.14C.15D.224.若双曲线C:x2a2-y2b2=1(a>0,b>0)的渐近线与圆(x-2)2+y2=1相切,则C的渐近线方程为()A.y=±13x B.y=±33x C.y=±3x D.y=±3x5.若双曲线C:x2a2-y2b2=1(a>0,b>0)的右顶点A到一条渐近线的距离为223a,则双曲线的离心率为()A.223B.13C.3D.226.已知双曲线的一个焦点F(0,5),它的渐近线方程为y=±2x,则该双曲线的标准方程为_____________7.已知双曲线x24-y25=1的左焦点为F,点P为其右支上任意一点,点M的坐标为(1,3),则△PMF周长的最小值为()A.5+10B.10+10C.5+13D.9+138.已知直线l与双曲线C:x2-y2=2的两条渐近线分别交于A,B两点,若AB 的中点在该双曲线上,O为坐标原点,则△AOB的面积为()A.12B.1C.2D.49.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线上一点,且|PF 1|=2|PF 2|.若cos ∠F 1PF 2=14,则该双曲线的离心率等于()A.22 B.52C .2 D.3+110.(2020·全国卷Ⅱ)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为()A .4B .8C .16D .3211.双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交双曲线左支于A ,B 两点,△F 2AB 是以A 为直角顶点的直角三角形,且∠AF 2B =30°,若该双曲线的离心率为e ,则e 2=()A .11+43B .13+53C .16-63D .19-10312.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以F 为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M ,且MF 与双曲线的实轴垂直,则双曲线C 的离心率为()A.52 B.5C.2D .213.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实轴长为8,右焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF ,O 为坐标原点,若S △OMF =6,则双曲线C 的离心率为)______________14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,点P 为双曲线上一点,∠F 1PF 2=120°,则双曲线的渐近线方程为__________;若双曲线C 的实轴长为4,则△F 1PF 2的面积为__________.15.已知F 1,F 2分别是双曲线x 2-y 2b 2=1(b >0)的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线的右支于点B ,则△F 1AB 的面积等于_____________16.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线分别交双曲线的左、右两支于M ,N .若以MN 为直径的圆经过右焦点F 2,且|MF 2|=|NF 2|,则双曲线的离心率为____________.17.已知点P (1,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线上,F 为双曲线C 的右焦点,O 为原点.若∠FPO =90°,则双曲线C 的方程为_____________,其离心率为__________.18.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为________.19.(2021·山东淄博二模)已知动点P 在双曲线C :x 2-y 23=1上,双曲线C 的左、右焦点分别为F 1,F 2,下列结论错误的是()A .C 的离心率为2B .C 的渐近线方程为y =±3xC .动点P 到两条渐近线的距离之积为定值D .当动点P 在双曲线C 的左支上时,|PF 1||PF 2|2的最大值为14。
双曲线及其标准方程教材分析双曲线是一种常见的曲线,在数学和物理上有着广泛的应用。
它的优势有很多,并且它的标准方程也深受大家的喜爱。
本文将对双曲线及其标准方程在教育领域中的重要性进行分析。
一、双曲线的性质双曲线是一种圆柱状的曲线,其特别的面积是它的凸度,它的特性是可以拉伸或压缩,以调整曲线的形状。
这一性质使它特别容易与几何中的平面图形以及空间图形结合,从而构成一种新的图形。
另外,双曲线也可以与函数和微积分结合起来,为复杂的数学问题提供解决方案。
二、双曲线的标准方程双曲线的标准方程的形式是[Ax^2 + By^2 + Cxy + Dx + Ey + F = 0]。
A、B、C、D、E、F常数,x 、y变量。
当 A 不等于 0时候,双曲线的标准方程就可以用常数 a、b、c、d、e、f 代替,这样可以使得相同曲线的标准方程变得更加简洁。
在特定情况下,双曲线的标准方程还有另一种形式:[A(x-h)^2 + B(y-k)^2 = r^2]。
这种标准方程表达的是按照圆心 (h , k)、半径 R示意图来定义曲线的性质。
其中 h 与 k圆心的坐标,A、B相关的系数,r 为半径。
双曲线的标准方程是双曲线几何性质的数学表达,它可以帮助我们描述双曲线的几何性质,以及分析双曲线的特征和特性。
三、双曲线在教育领域中的应用双曲线在数学教育中有着重要的意义。
它不仅可以帮助学生理解几何图形,而且还可以引导学生利用函数和微积分知识来解决复杂的问题。
双曲线的几何性质与许多其他概念有着紧密的联系,它们可以帮助学生理解坐标系统、几何变换、立体几何以及三维图形等概念。
另外,学生也可以利用双曲线的标准方程来更好地理解直线、圆、椭圆的几何性质,并让他们看到双曲线和其他几何图形之间的联系。
同时,双曲线在物理和工程科学领域也有着广泛的应用,比如天体力学中的太阳系模型以及电路中的电感器模型。
因此,学习双曲线及其标准方程可以为学生提供实践的机会,让他们得以在理论和实际的挑战中展现自己的能力。
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
简记为:左“+”右“-”。
由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。
22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。
有时为了运算方便,设),0(122n m m ny mx ≠>=+。
双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。
说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。
②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。
双曲线及其标准方程一、要点精讲1.双曲线的定义:平面内与两个定点1F 、2F 的距离之差的绝对值等于常数(小于21F F )的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.说明:⑴在双曲线定义中,如果常数212F F a =,则轨迹是以1F 、2F 为端点的两条射线;如果212F F a >,则轨迹不存在; 如果02=a ,则轨迹为线段21F F 的垂直平分线. ⑵双曲线的定义中,“差的绝对值”和“小于21F F ”都十分重要,不可忽视.如果没有“绝对值”,则动点的轨迹只能是双曲线的一支;若1F 、2F 分别是双曲线的左、右焦点,则a MF MF 221=-表示双曲线的右支,a MF MF 221-=-表示双曲线的左支.2.双曲线的标准方程二、课前热身1.已知定点()0,21-F ,()0,22F ,在满足下列条件的平面内动点P 的轨迹中为双曲线的是( )(A) 321±=-PF PF (B) 421±=-PF PF (C) 521±=-PF PF (D) 42221±=-PF PF(A) 4 (B) 2 (C) 8 (D) 162. 设θ是第三象限角,方程θθcos sin 22=+y x 表示( )(A)焦点在x 轴上的椭圆 (B) 焦点在y 轴上的椭圆 (C)焦点在x 轴上的双曲线 (D) 焦点在y 轴上的双曲线3. 已知双曲线的焦距为26,且13252=c a ,则双曲线的标准方程是 (A)11692522=-y x (B) 11692522=-x y (C) 11442522=-y x (D) 11442522=-y x 或11442522=-x y 4.已知双曲线116922=-y x 上一点P 到双曲线的一个焦点的距离为3,则点P 到另一个焦点的距离为 .5. 已知两点()0,51-F ,()0,52F ,动点P 满足621=-PF PF ,求动点P 的轨迹方程.6.求以椭圆192522=+y x 长轴端点作焦点,且过点()3,24的双曲线方程.三、典例精析题型一:双曲线的定义及应用1. 1F 、2F 是双曲线1922=-my x 的左、右焦点,AB 是过1F 的一条弦(A 、B 均在双曲线的左支上),若2ABF ∆的周长为30,则弦长|AB|= .2. 双曲线()0,012222>>=-b a by a x 的焦点为1F 、2F ,弦AB 过1F 且在双曲线的同一支上,若AB BF AF 222=+,则2ABF ∆的周长为( )。
双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。
知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质(1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y 同时换成―x、―y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。
因此双曲线上点的横坐标满足x≤-a或x≥a。
(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。
高三数学第一轮复习:双曲线的定义、性质及标准方程【本讲主要内容】双曲线的定义、性质及标准方程双曲线的定义及相关概念、双曲线的标准方程、双曲线的几何性质【知识掌握】【知识点精析】1. 双曲线的定义:(1)第一定义:平面内与两定点F1、F2的距离之差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距。
(2)第二定义:平面内到一个定点F的距离与到一条定直线l的距离的比等于常数(e>1)的点的轨迹叫做双曲线,定点F为焦点,定直线l称为准线,常数e称为离心率。
说明:(1)若2a等于2c,则动点的轨迹是射线(即F1F2、F2F1的延长线);(2)若2a大于2c,则动点轨迹不存在。
2. 双曲线的标准方程、图形及几何性质:标准方程)0b,0a(1byax2222>>=-中心在原点,焦点在x轴上yaxba b2222100-=>>(,)中心在原点,焦点在y轴上图形几何性质X围x a≤-或x a≥y a≤-或y a≥对称性关于x轴、y轴、原点对称(原点为中心)顶点()()1200A a A a-,、,()()1200A a A a-,、,轴实轴长122A A a=,虚轴长122B B b=离心率ecae=>()1准线2212:,:a al x l xc c=-=2212:,:a al y l yc c=-=实轴、虚轴长相等的双曲线称为等轴双曲线,焦点在x 轴上,标准方程为()2220x y a a -=≠;焦点在y 轴上,标准方程为()2220y x a a -=≠。
其渐近线方程为y=±x 。
等轴双曲线的离心率为e =4. 基础三角形:如图所示,△AOB 中,,,,tan b OA a AB b OB c AOB a===∠=。
5. 共渐近线的双曲线系方程:与双曲线x a y b22221-=(a>0,b>0)有相同渐近线的双曲线系可设为()22220x y a b λλ-=≠,若λ>0,则双曲线的焦点在x 轴上;若λ<0,则双曲线的焦点在y 轴上。
3.2.2双曲线的简单几何性质(基础知识+基本题型)知识点一 双曲线的性质根据双曲线的标准方程22221(0,0)x y a b a b-=>>研究它的几何性质.1.范围,x a y R ≥∈,即,x a x a y R ≥≤-∈或.双曲线位于两条直线x a =±的外侧.讨论双曲线的范围就是确定方程中变量,x y 的范围,由不等式222211x y a b =+≥,得||x a ≥,由222211y x b a--≥-,得y R ∈. 提示双曲线在直线x a =与x a =-之间没有图象,当x 无限增大时,y 也无限增大,所以双曲线是无限伸展的,不像椭圆那样是封闭的.2.对称性双曲线的图象关于x 轴、y 轴成轴对称,关于原点成中心对称,我们把x 轴、y 轴叫做双曲线的对称轴,原点(0,0)O 叫做双曲线的对称中心,简称中心. 提示(1)把双曲线标准方程中的x 换成x -,方程并没有发生变化,说明当点(,)P x y 在双曲线上时,它关于y 轴的对称点1(,)P x y -也在双曲线上,所以双曲线的图象关于y 轴成轴对称.(2)同理,把双曲线标准方程中的y 换成y -,可以说明双曲线的图象关于关于x 轴成轴对称;把双曲线标准方程中的x 换成x -,y 换成y -,可以说明双曲线的图象关于原点成中心对称. (3)如果曲线具有三种对称性的其中两种,那么它就具有另一种对称性.(4)对于任意一个双曲线而言,对称轴是两个焦点的连线所在直线及其垂直平分线,且双曲线的中心是双曲线的对称中心.3.顶点与实轴、虚轴如图所示.(1)双曲线和其对称轴的交点叫做双曲线的顶点,双曲线的顶点为1(,0)A a -,2(,0)A a . (2)线段12A A 叫做双曲线的实轴,线段12B B 叫做双曲线的虚轴.(3)实轴长122A A a =,虚轴长122B B b =,,a b 分别为双曲线的半实轴长和半虚轴长.拓展双曲线中,,a b c 的几何意义及特征三角形:(1)当双曲线焦点在x 轴上时,a 是半实轴长,b 是半虚轴长,且222c a b =+,所以以,,a b c 为三边长可构成直角三角形,如图2.3-10所示,其中22Rt OA B ∆称为双曲线的特征三角形,双曲线的焦点永远在实轴上.(2)当双曲线的焦点在y 轴上时,可得类似的结论.4.渐近线(1)渐近线画法:经过点1(,0)A a -,2(,0)A a 作y 轴的平行线x a =±,经过点1(0,)B b -,2(0,)B b 作x轴的平行线y b =±,四条直线围成一个矩形,矩形 两条对角线,这两条对角线所在的直线即为双曲线的渐近线.双曲线22221x y a b-=的各支向外延伸时,与这两条直线逐渐接近.(2)渐近线方程:by x a =±.拓展(1)双曲线22221x y a b -=的渐近线方程为b y x a =±,双曲线22221y x a b -=的渐近线方程为ay x b=±,两者容易混淆,可先将双曲线方程中的“1”换成“0”,再因式分解即可得渐近线方程,这样就不容易记错了.(2)双曲线与它的渐近线无限接近,但永远不相交.(3)与双曲线22221x y a b -=共渐近线的双曲线方程可设为2222(0)x y a b λλ-=≠;与双曲线22221x y a b-=共焦点的双曲线方程可设为2222221()x y b a a b λλλ-=-<<-+.5.离心率(1)定义:双曲线的焦距与实轴长的比叫做双曲线的离心率,定义式c e e a =⇒(2)范围:1e >.由等式222c a b =+,得b a ==e 越大,b a 也越大,即渐近线b y xa=±的斜率的绝对值越大,这时双曲线的形状就越陡,由此可知,双曲线的离心率越大,它的开口就越开阔. 提示因为c e a =,c ,所以e =,b a222(1)b a e =-,在,,,a b c e 四个参数中,只要知道其中两个,就可以求出另两个,关键要熟悉它们之间的关系. 知识点二 等轴双曲线与共轭双曲线1.实轴和虚轴等长的双曲线叫等轴双曲线,等轴双曲线有如下性质:(1)方程形式为22(0)x y λλ-=≠;(2)渐近线方程为y x =±,它们互相垂直,并平分双曲线实轴和虚轴所成的角;(3.2. 以双曲线的虚轴为实轴,实轴为虚轴的双曲线,与原双曲线是一对共轭双曲线.例如,双曲线22221(0,0)x y a b a b -=>>与22221(0,0)y x a b b a -=>>是一对共轭双曲线,其性质如下: (1)双曲线与它的共轭双曲线有相同的渐近线; (2)双曲线与它的共轭双曲线有相同的焦距. 知识点三 直线与双曲线的位置关系 1. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线.(2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴;②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一个点.2. 当直线与双曲线相交时,先联立直线方程与双曲线方程可求得两个交点的坐标,从而根据距离公式求出弦长,再结合双曲线的定义,还可以求解焦点三角形的周长等.3. 当直线与双曲线相交时,涉及中点问题,可首先设出直线与双曲线两交点的坐标,然后分别代入双曲线方程,最后作差,即得中点坐标与该直线的斜率的关系式.考点一由方程求双曲线的几何性质例 1 求双曲线22494y x-=-的半实轴长、半虚轴长、焦点坐标、离心率、渐近线方程,并画出该双曲线的草图.解:将双曲线化为221 419x y-=,可知半实轴长4293a=,半虚轴长1b=,于是有2241319c a b=+=+=,所以焦点坐标为13(,离心率为13cea==渐近线方程为by xa=±,即32y x=±.为画出双曲线的草图,首先在平面直角坐标系中画出渐近线32y x =±,且顶点坐标为2(,0)3±,然后算出双曲线在第一象限内一点的坐标,如取1y=,算出230.94x=≈.由题意,知点(0.94,1)±在双曲线上,将三点(0.94,1)-,2(,0)3,(0.94,1)依次连成光滑曲线并让它逐步接近渐近线,画出第一、第四象限内双曲线的一支,最后由对称性可画出双曲线位于第二、三象限内的另一支,得双曲线的草图如图所示.已知双曲线的方程讨论其几何性质时,需先看所给方程是否为标准方程,若不是,需先把方程化为标准方程,这样便于直观写出,a b的值,进而求出c的值及双曲线的焦点坐标、顶点坐标、离心率与渐近线方程.考点二由双曲线的几何性质求标准方程例2求满足下列条件的双曲线的标准方程:(1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为12y x=±,且经过点(2,3)A- .解:(1)由题意,知双曲线的焦点在y 轴上,且13c =,由于135c a =,所以5a =,12b =. 故所求双曲线的标准方程为22125144y x -=.(2)因为双曲线的渐近线方程为12y x =±,若焦点在x 轴上,设所求双曲线标准方程为22221(0,0)x y a b a b -=>>,则12b a =.(Ⅰ)因为点(2,3)A -在双曲线上,所以22491a b -=. (Ⅱ) 联立(Ⅰ)(Ⅱ),无解.若焦点在y 轴上,设所求双曲线标准方程为22221(0,0)y x a b a b -=>>,则12a b =.(Ⅲ)因为点(2,3)A -在双曲线上,所以22941a b -=. (Ⅳ) 联立(Ⅲ)(Ⅳ),解得228,32a b ==. 故所求双曲线的标准方程为221832y x -=.当双曲线的焦点不明确时,方程可能有两种形式,此时应分类讨论.为了避免讨论,也可设双曲线方程为221(0)mx ny mn -=>,从而直接求得.若已知双曲线的渐近线方程为by x a =±,则可设方程为2222(0)x y a b λλ-=≠,避免讨论焦点的位置. 考点三 双曲线的离心率1.求离心率的值例3 已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的两个焦点,PQ 是经过1F 且垂直与x 轴的双曲线的弦,如果0290PF Q ∠=,求双曲线的离心率.解:设1(,0)F c ,将x c =代入双曲线方程,得22221c y a b -=,所以2b y a =±.由22PF QF =,0290PF Q ∠=,知112PF F F =,所以22b c a =,22b ac =,所以2220c ac a --=.即2210e e --=,解得1e =+1e =.故所求双曲线的离心率为1求双曲线离心率的常用方法(1)依据条件求出,a c ,计算c e a=; (2)依据条件建立关于,,a b c 的关系式,一种方法是消去b 转化为关于e 的方程求解;另一种方法是消去c 转化为含b a 的方程,求出ba后利用221b e a =+求解.例4 设双曲线22221(0,0)x y a b a b-=>>的焦距长为2c ,直线l 过点(,0)A a ,(0,)B b 两点,已知原点到直线l的距离为34c ,则双曲线的离心率为 . 解析:如图所示,在△OAB 中,OA a =,OB b =,34OE c =,22AB a b c =+=.因为AB OE OA OB ⋅=⋅, 所以3c ab =223)a b ab +=,两边同除以2a 233()0b b a a -=, 解得3ba=3b a =所以212c b e a a ⎛⎫==+ ⎪⎝⎭.答案:2223)a b ab +=,此方程可称为关于,a b 的齐次方程,转化为以ba为变量的一元二次方程是求解的关键.2.求离心率的范围例5 双曲线22221(1,0)x y a b a b-=>>的焦距为2c ,直线l 过点(,0)a ,(0,)b 两点,且点(1,0)到直线l 的距离与点(1,0)-到直线l 的距离之和45s c ≥,求双曲线的离心率e 的取值范围.解:由题意,知直线l 的方程为1x ya b +=,即0bx ay ab +-=. 因为点(1,0)到直线l 的距离122d a b =+,点(1,0)-到直线l 的距离222d a b =+,所以122abs d d c=+=. 由45s c ≥,得2ab c 45c ≥,即252c .于是得22e ,即22425250e e -+≤.解得2554e ≤≤.因为1e >,所以e的取值范围是. 求双曲线离心率的范围时,要根据题意挖掘题中隐含的不等关系,构造不等式,从而求出双曲线的离心率的取值范围.例6 双曲线222:1(0)x C y a a-=>与直线:1l x y +=相交于两个不同的点,A B ,则双曲线的离心率e 的取值范围是 .解:由22211x y a x y ⎧-=⎪⎨⎪+=⎩,消去y ,得到2222(1)220a x a x a -+-=,由题意知,24221048(1)0a a a a ⎧-≠⎪⎨+->⎪⎩,解得(0,1)(1,2)a ∈.所以c e a ===,所以(2,)e ∈+∞.答案:(2,)+∞ .利用一元二次方程根的判别式构建不等关系是一种常用的方法,另外也可利用基本不等式构建不等关系,线性规划中的区域符号也可构建不等关系. 考点四 直线与双曲线的位置关系例7 已知双曲线22:1C x y -=及直线:1l y kx =-.若直线l 与双曲线C 有两个不同的交点,求实数则k 的取值范围.解:由2211x y y kx ⎧-=⎪⎨=-⎪⎩,消去y ,得到22(1)220k x kx -+-=,由题意,知2221048(1)0k k k ⎧-≠⎪⎨+->⎪⎩,解得k <,且1k ≠±. 故实数k 的取值范围是(1)(1,1)(1,2)--.直线与双曲线交点问题,常利用直线方程与双曲线方程构成的方程组求解.。
圆锥曲线(抛物线、椭圆、双曲线)标准方程推导几何定义是在平面中,由所有满足到一定点与到一定直线距离相等的点所组成的图形,把这个定点称为焦点(focus)、定直线称为准线(directrix)。
为了方便推导,把这一定点放在x轴正方向上,定直线垂直x 轴放在x轴负半轴上,且原点刚好在两者中间。
上面这些都仅仅是为了推导方便而已。
设曲线上的点坐标为(x,y),于是,\begin{aligned} d(F, P) &=d(P, D) \\ \sqrt{(x-a)^{2}+(y-0)^{2}} &=|x+a| \\ (x-a)^{2}+y^{2}&=(x+a)^{2} \\ x^{2}-2 a x+a^{2}+y^{2} &=x^{2}+2 ax+a^{2} \\ y^{2} &=4 a x \end{aligned}四种不同开口的标准型:二、椭圆(Ellipse)几何意义是在平面中,由所有到两个顶点距离之和为定值的点所组成的图形,把这两个定点称为焦点(foci),也是为了推导的方便,把这两个焦点对称放在x轴正负半轴上,令两段距离之和为2a,根据两点之间距离公式进行如下推导:\begin{aligned} d\left(F_{1}, P\right)+d\left(F_{2}, P\right) &=2 a \\ \sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}} &=2 a \\ \sqrt{(x+c)^{2}+y^{2}}=& 2 a-\sqrt{(x-c)^{2}+y^{2}} \\ (x+c)^{2}+y^{2}=& 4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}} \\ &+(x-c)^{2}+y^{2} \\x^{2}+2 c x+c^{2}+y^{2}=& 4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}} \\ &+x^{2}-2 c x+c^{2}+y^{2} \\ 4 c x-4 a^{2}=&-4 a \sqrt{(x-c)^{2}+y^{2}} \\ c x-a^{2}=&-a\sqrt{(x-c)^{2}+y^{2}} \\ \left(c x-a^{2}\right)^{2}=& a^{2}\left[(x-c)^{2}+y^{2}\right] \\ c^{2} x^{2}-2a^{2} c x+a^{4}=& a^{2}\left(x^{2}-2 cx+c^{2}+y^{2}\right) \\ \left(c^{2}-a^{2}\right)x^{2}-a^{2} y^{2} &=a^{2} c^{2}-a^{4} \\ \left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2} &=a^{2}\left(a^{2}-c^{2}\right) \end{aligned}令 b^2=a^2-c^2 (根据三角形两边之和大于第三边推出c<a)所以,\begin{aligned} b^{2} x^{2}+a^{2} y^{2} &=a^{2} b^{2} \\ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} &=1\end{aligned}常见的两种椭圆标准方程,一种是横躺在x轴上,一种是“站立”着,关键就是看x和y下面哪个数值比较大,哪个大,那么长的对称轴就在哪个方向上。