零件的工艺性分析
- 格式:doc
- 大小:14.90 KB
- 文档页数:5
零件的工艺性分析
零件的工艺性分析是指对零件在制造过程中所需要的工艺技术进行分析和评估。
通过工艺性分析,可以确定零件制造过程中可能出现的问题和难点,找出解决方案,提高零件的生产效率和质量。
工艺性分析通常包括以下几个方面:
1. 材料选择:选择适合零件功能和制造工艺的材料,考虑材料的机械性能、耐磨性、耐腐蚀性等特性。
2. 成型工艺:确定最适合零件形状和尺寸的成型工艺,包括铸造、锻造、压铸、注塑等。
3. 加工工艺:选择合适的加工工艺,如车削、铣削、钻削、磨削等,确保零件加工精度和表面质量要求。
4. 焊接工艺:对于需要焊接的零件,分析合适的焊接工艺和焊接材料,确保焊接质量。
5. 表面处理工艺:对零件的表面进行处理,如镀层、喷涂、热处理等,提高零件的耐腐蚀性和美观性。
6. 装配工艺:分析零件的装配工艺,确保装配的准确性和稳定性。
通过对零件的工艺性进行全面的分析,可以有效地规划和优化零件的制造过程,提高零件的质量和生产效率。
机械零件结构工艺性分析与工艺路线的拟定机械制造是工业生产中的重要方向,而机械零件是机械结构中的组成部分,其质量直接关系到机械产品的使用寿命和性能。
机械零件的制造需要涉及到材料、加工、组装等多个方面,其中结构工艺性分析与工艺路线的拟定是制造过程中的关键环节。
一、机械零件结构工艺性分析机械零件的结构设计应基于产品性能要求和零件本身的加工工艺能力,因此结构工艺性分析是设计和制造过程中的重要环节。
结构工艺性分析需要考虑以下几个方面:1.工艺性分析工艺性分析包括材料性能、加工难易程度、加工方法等因素的分析,对零件的加工难度和生产效率进行评估。
必须考虑每个零件的各个部分,包括设计尺寸和要求,加工难度,工艺可行性,设备的可用性等因素。
2.可靠性分析可靠性分析是对零件在制造过程中是否容易产生质量问题进行评估。
其目的在于找出可能导致零件质量不稳定的因素并加以消除。
3.生产装备和工作环境分析包括零件加工的设备、工作环境、人员技能水平等因素的分析。
二、机械零件工艺路线的拟定一个完整的加工流程应包括以下几个步骤:1.准备工作确定加工顺序、确定加工所使用的原材料、制作加工工装夹具等。
2.机床安装、调整和试运行保证机床和工具的精度和准确性,有利于提高加工质量和生产效率。
3.工艺试样制作进行工序试样制作和取样检测以确认加工参数,保障每个加工工序的质量。
4.批量生产在确定、检查和校验加工参数的基础上,进行批量生产。
在工艺路线的制定过程中,应注意以下几个方面:1.考虑零件的作用,尽量缩短生产周期,提高生产效率,优化生产成本。
2.结合机床的加工能力和机械刀具的切削性能,制定符合实际生产需要的加工路线。
3.严格按照零件要求和质量标准,制定生产计划和加工参数,保证零件的加工精度。
结论机械零件的制造是一个生产过程,需要通过结构工艺性分析和工艺路线的拟定来保障生产质量和效率。
在设计和制造过程中,需要考虑到多个因素,如材料、加工、装备和工作环境等。
机械零件结构工艺性分析与工艺路线的拟定(doc 38页)目录一、零件结构工艺性分析 (3)1. 零件的技术要求 (3)2. 确定堵头结合件的生产类型 (4)二、毛坯的选择 (5)1.选择毛坯 (5)2.确定毛坯的尺寸公差 (6)三、定位基准的选择 (7)1.精基准的选择 (7)2.粗基准的选择 (8)四、工艺路线的拟定 (8)1.各表面加工方法的选择 (8)2.加工阶段的划分 (9)3.加工顺序的安排 (10)4.具体方案的确定 (10)五、工序内容的拟定 (11)1. 工序的尺寸和公差的确定 (11)2. 机床、刀具、夹具及量具的选择 (13)3. 切削用量的选择及工序时间计算 (14)六、设计心得 (38)七、参考文献 (39)一、零件结构工艺性分析1.零件的技术要求1.堵头结合件由喂入辊轴和堵头焊接在一起。
其中喂入辊轴:材料为45钢。
堵头:材料为Q235-A。
且焊缝不得有夹渣、气孔及裂纹等缺陷。
2.零件的技术要求表:加工表面尺寸及偏差/mm 公差/mm及精度等级表面粗糙度/μm形位公差/mmφ40h7 IT7 3.2喂入辊轴φ50 12.5外圆表面φ40h7 IT7 2.5喂入辊206 12.5轴两端面堵头外圆加工面φ181js7 IT7 3.2堵头内孔加工面φ40H8 IT8 3.2堵头左右外端面φ90 IT7 12.5堵头内部φ70 12.5右端面堵头内壁φ151 12.5φ70 12.5堵头孔外壁堵头内端70 12.5面2. 确定堵头结合件的生产类型根据设计题目年产量为10万件,因此该左堵头结合件的生产类型为大批量生产。
二、毛坯的选择1.选择毛坯由于该堵头结合件在工作过程中要承受冲击载荷,为增强其的强度和冲击韧度,堵头选用锻件,材料为Q235-A,因其为大批大量生产,故采用模锻。
喂入辊轴由于尺寸落差不大选用棒料,材料为45钢。
2.确定毛坯的尺寸公差喂入辊轴:根据轴类零件采用精轧圆棒料时毛坯直径选择可通过零件的长度和最大半径之比查的毛坯直径206L 8.24R 25==查表得毛坯直径为:φ55根据其长度和直径查得端面加工余量为2。
零件的结构工艺性分析零件的结构工艺性是指在满足使用性能的前提下,是否能以较高的生产率和最低的成本方便地加工出来的特性。
为了多快好省地把所设计的零件加工出来,就必须对零件的结构工艺性进行详细的分析。
主要考虑如下几方面。
(1) 有利于达到所要求的加工质量①合理确定零件的加工精度与表面质量加工精度若定得过高会增加工序,增加制造成本,过低会影响机器的使用性能,故必须根据零件在整个机器中的作用和工作条件合理地确定,尽可能使零件加工方便制造成本低。
②保证位置精度的可能性为保证零件的位置精度,最好使零件能在一次安装中加工出所有相关表面,这样就能依靠机床本身的精度来达到所要求的位置精度。
如图4-6(a)所示的结构,不能保证φ80㎜与内孔φ60㎜的同轴度。
如改成图(b)所示的结构,就能在一次安装中加工出外圆与内孔,保证二者的同轴度。
(2) 有利于减少加工劳动量①尽量减少不必要的加工面积(a) (b)减少加工面积不仅可减少机械加工的劳动量,图4-6 有利于保证位置精度的工艺结构而且还可以减少刀具的损耗,提高装配质量。
图(a) 错误(b) 正确4-7(b)中的轴承座减少了底面的加工面积,降低了修配的工作量,保证配合面的接触。
图4-8(b)中减少了精加工的面积,又避免了深孔加工。
(a) (b) (a) (b)图4-7 减少轴承座底面加工面积图4-8 避免深孔加工的方法(a) 错误(b) 正确(a) 错误(b) 正确②尽量避免或简化内表面的加工因为外表面的加工要比内表面加工方便经济,又便于测量。
因此,在零件设计时应力求避免在零件内腔进行加工。
如图4-9所示箱体,将图(a)的结构改成图(b)所示的结构,这样不仅加工方便而且还有利于装配。
再如图4-10所示,将图(a)中件2上的内沟槽a加工,改成图(b)中件1的外沟槽加工,这样加工与测量就都很方便。
(3) 有利于提高劳动生产率①零件的有关尺寸应力求一致,并能用标准刀具加工。
如图4-11(b)中改为退刀槽尺寸一致,则减少了刀具的种类,节省了换刀时间。
第一章--零件的分析第一章零件的分析1.零件图工艺性分析图.1-1零件图1.1零件的作用据资料所示,箱体是机器中的基础零件,它是用来集合各种零件、部件,使它们之间保持一定的运动关系的,所以箱体的刚度和各面间的相互位置精度是个重要指标,本次加工的零件是涡轮箱体它是用来承接蜗轮和蜗杆并且让它们保持垂直,实现蜗轮和蜗杆的正确连接。
1.2零件的工艺分析本零件可从零件图1-1中可知,它有三组加工面,但是没有位置要求,还有五组孔,其中有两组孔有位置和精度。
1、零件件底面,它是毛坯铸造出来之后等待加工的第一个面,此面将作为初基准,表面粗糙度为12.5。
根据表面粗糙度要求我们采取粗铣的加工方式,即节省时间又能达到技术要求。
2、加工底面4个孔,因从正面加工零件会对刀具产生干涉所以它与底面一同加工出来,它将作为精基准以完成以后的加工,为达到设计要求我们采取钻四个孔并铰两个对角孔的工序过程。
为以后的一面两销定位加工做好准备。
3、按照先面后孔的加工理论,Φ132端面的表面粗糙度为6.3,Φ98端面的表面粗糙度为12.5,我们以底面为基面并采用两个定位销构成一面两销原理来粗铣和精铣Φ132的端面,粗铣Φ98的端面即可得到要求。
4、然后再来加工一些次要的面,只要粗铣φ65的左右端面和φ36的端面即可。
5、钻扩铰φ18H7这个比较重要的孔,必须分为粗加工然后再精扩铰此孔,将用钢球检查,即能满足要求。
6、加工好φ18H7孔后再来镗φ132H8和φ74H7孔,因为此孔与φ18孔有位置要求,所以放在后面来加工,以φ18来找正要镗孔的中心线,即可达到加工要求。
7、加工M10螺纹孔,由《机械加工工艺手册》查知底孔为φ8.5,又因为本孔是沉头螺纹孔,考虑到工艺要求我们采取钻、倒角、攻丝三步工序。
8、加工M8螺纹孔,由《机械加工工艺手册》查知底孔为φ6.8,,采用钻、倒角、攻丝三步工序。
在加工的适当工艺过程中我们对产品进行质量检查,以满足工艺要求。
零件的工艺分析工艺分析是指对产品制造或加工的过程进行全面、系统的研究和分析,以确定最佳的工艺路线和操作参数,从而提高产品的质量和生产效率。
在零件制造过程中,工艺分析的重要性不可忽视。
本文将从材料选择、工艺路线和操作参数三个方面来进行零件的工艺分析。
一、材料选择材料的选择对零件的工艺过程以及最终产品的质量和性能有着重要的影响。
在进行材料选择时,需要综合考虑以下几个方面:1.机械性能:根据零件在使用过程中所受到的力学载荷和环境条件,选择具有足够强度和韧性的材料,确保零件在工作时不会出现断裂或变形等问题。
2.耐腐蚀性:对于暴露在恶劣环境下的零件,如汽车发动机零件、化工设备零件等,需要选择具有良好耐腐蚀性的材料,以延长零件的使用寿命。
3.加工性:材料的加工性指的是材料在特定条件下进行切削、成形等加工工艺时的难易程度。
选择加工性良好的材料可以降低生产成本和加工难度。
二、工艺路线工艺路线是指零件加工、制造的具体步骤和方法。
选择合适的工艺路线可以提高生产效率、降低成本并保证产品质量。
下面以机械零件的制造为例,介绍一种常见的工艺路线。
1.零件的切削加工:根据零件的形状和尺寸,选择合适的切削方法,如车削、铣削、钻削等。
在切削加工过程中,需要根据材料硬度和切削力的大小选择合适的切削速度和进给量,以避免刀具磨损过快或零件表面质量不达标。
2.热处理:对于某些要求更高强度或改善材料性能的零件,需要进行热处理。
热处理包括淬火、回火、正火等过程,通过控制加热温度、保温时间和冷却速度等参数,使材料达到理想的组织结构和性能。
3.表面处理:零件表面的处理可以提高零件的耐腐蚀性和装饰效果。
常见的表面处理方法包括喷涂、电镀、镀膜、抛光等。
三、操作参数操作参数是指在具体的加工过程中,需要控制和调整的各项参数。
优化操作参数有助于提高零件的加工精度、降低成本,并缩短加工周期。
以下是一些常见的操作参数:1.切削速度:切削速度是指刀具在单位时间内切削工件的线速度。
数控加工零件的工艺性分析对数控加工零件的工艺性分析,主要包括产品的零件图样分析和结构工艺性分析两部分。
其中4.1.1所述“零件图的审查”内容同样适用于数控加工。
(1) 零件图样分析①零件图上尺寸标注方法应适应数控加工的特点,如图4-30(a)所示,在数控加工零件图上,应以同一基准标注尺寸或直接给出坐标尺寸。
这种标注方法既便于编程,也便于尺寸之间的相互协调,又有利于设计基准、工艺基准、测量基准和编程原点的统一。
零件设计人员在尺寸标注时,一般总是较多地考虑装配等使用特性,因而常采用如图4-30(b)所示的局部分散的标注方法,这样就给工序安排和数控加工带来诸多不便。
由于数控加工精度和重复定位精度都很高,不会因产生较大的累积误差而破坏零件的使用特性,因此,可将局部的分散标注法改为同一基准标注或直接标注坐标尺寸。
(a) (b)图4-30 零件尺寸标注分析(a) 同基准标注 (b) 分散标注②分析被加工零件的设计图纸,根据标注的尺寸公差和形位公差等相关信息,将加工表面区分为重要表面和次要表面,并找出其设计基准,进而遵循基准选择的原则,确定加工零件的定位基准,分析零件的毛坯是否便于定位和装夹,夹紧方式和夹紧点的选取是否会有碍刀具的运动,夹紧变形是否对加工质量有影响等。
为工件定位、安装和夹具设计提供依据。
③构成零件轮廓的几何元素(点、线、面)的条件(如相切、相交、垂直和平行等),是数控编程的重要依据。
手工编程时,要依据这些条件计算每一个节点的坐标;自动编程时,则要根据这些条件对构成零件的所有几何元素进行定义,无论哪一个条件不明确,都会导致编程无法进行。
因此,在分析零件图样时,务必要分析几何元素的给定条件是否充分,发现问题及时与设计人员协商解决。
(2) 零件的结构工艺性分析①零件的内腔与外形应尽量采用统一的几何类型和尺寸,这样可以减少刀具规格和换刀次数,方便编程,提高生产效益。
②内槽圆角的大小决定着刀具直径的大小,所以内槽圆角半径不应太小。
零件的工艺性分析怎么写
零件的工艺性分析主要是对零件的制造工艺进行分析和评价。
下面是一份简单的零件工艺性分析的写作步骤:
1. 确定分析目标:确定对零件工艺性进行分析的目标和范围,明确要分析的关键问题。
2. 零件结构分析:对零件的结构进行分析,了解零件的功能和特点,分析零件的结构特点对工艺性的影响。
3. 材料分析:分析零件所使用的材料,包括材料的物理和化学性质,对材料的加工性能进行评估,了解材料对工艺性的影响。
4. 工艺路线分析:对零件进行加工的工艺路线进行分析,包括工艺方法、加工步骤、工艺装备等。
评估不同工艺路线的优劣,选择最合适的工艺路线。
5. 工艺性评价:对零件的工艺性进行评价,针对零件的制造工艺进行分析,包括加工难度、加工精度、加工效率等方面的评价。
6. 优化建议:根据分析结果,提出针对工艺性问题的改进和优化建议,以提高零件的制造工艺性能。
7. 总结:对整个工艺性分析进行总结,提出对下一步工艺改进的展望。
需要注意的是,零件的工艺性分析是一个复杂的过程,可能会涉及到很多具体的制造工艺和材料的知识。
因此,在进行分析时需要结合具体的制造工艺和材料知识,并根据具体问题进行深入的研究和分析。
数控加工零件的工艺性分析
数控加工零件的工艺性分析包括以下方面:
1. 材料选择:首先需要根据零件的要求和用途,选择合适的材料。
根据材料的特性和硬度,选择合适的刀具和加工参数,以保证加工质量和效率。
2. 工艺路线:根据零件的形状、尺寸和要求,设计合适的工艺路线。
注意加工过程中的工艺顺序、工艺方法和工艺参数的选择,以达到最优的加工效果。
3. 夹紧装置设计:根据零件的形状和尺寸,设计合适的夹紧装置,以保证加工过程中的稳定性和精度。
夹紧装置需要考虑加工过程中的均匀力分布和加工刀具的进给方向等因素。
4. 刀具选择:根据零件的要求和加工材料的性质,选择合适的刀具。
刀具需要考虑切削力、加工精度、寿命等因素。
同时,需要根据加工过程中的不同工序选择不同的刀具。
5. 加工参数设置:根据零件的要求和刀具的特性,设置合适的加工参数。
包括切削速度、进给速度、切削深度和切削宽度等参数。
不同的加工参数可以影响加工效果和刀具使用寿命。
综上所述,数控加工零件的工艺性分析需要考虑材料选择、工艺路线、夹紧装置
设计、刀具选择和加工参数设置等方面,以保证加工质量和效率。
零件的工艺性分析
一、分析研究产品的零件图样和装配图样在编制零件机械加工工艺规程前,首先应研究零件的工作图样和产品装配图样,熟悉该产品的用途、性能及工作条件,明确该零件在产品中的位置和作用;了解并研究各项技术条件制订的依据,找出其主要技术要求和技术关键,以便在拟订工艺规程时采用适当的措施加以保证。
工艺分析的目的,一是审查零件的结构形状及尺寸精度、相互位置精度、表面粗糙度、材料及热处理等的技术要求是否合理,是否便于加工和装配;二是通过工艺分析,对零件的工艺要求有进一步的了解,以便制订出合理的工艺规程。
如图3-8 所示的汽车钢板弹簧吊耳,使用时,钢板弹簧与吊耳两侧面是不接触的,所以吊耳内侧的粗糙度可由原来的设计要求R a3.2 μ m 建议改为R
a12.5 μ m. 。
这样在铣削时可只用粗铣不用精铣,减少铣削时间。
再如图3-9 所示的方头销,其头部要求淬火硬度55~60HRC ,所选用的材料为T 8A ,该零件上有一孔φ 2H7 要求在装配时配作。
由于零件长度只有15mm ,方头部长度仅有4mm ,如用T 8A 材料局部淬火,势必全
长均被淬硬,配作时,φ 2H7 孔无法加工。
若建议材料改用20Cr 进行渗碳淬火,便能解决问题。
二、结构工艺性分析零件的结构工艺性是指所设计的零件在满足使用要求的前提下,制造的可行性和经济性。
下面将从零件的机械加工和装配两个方面,对零件的结构工艺性进行分析。
(一)机械加工对零件结构的要求1 .便于装夹零件的结构应便于加工时的定位和夹紧,装夹次数要少。
图3 -10a 所示零件,拟用顶尖和鸡心夹头装夹,但该结构不便于装夹。
若改为图b 结构,则可以方便地装置夹头。
2 .便于加工零件的结构应尽量采用标准化数值,以便使用标准化刀具和量具。
同时还注意退刀和进刀,易于保证加工精度要求,减少加工面积及难加工表面等。
表3-8b 所示为便于加工的零件结构示例。
3 .便于数控机床加工被加工零件的数控工艺性问题涉及面很广,下面结合编程的可能性与方便性来作工艺性分析。
编程方便与否常常是衡量数控工艺性好坏的一个指标。
例如图3-11 所示某零件经过抽象的尺寸标注方
法,若用APT 语言编写该零件的源程序,要用几何定义语句描述零件形状时,将遇到麻烦,因为B 点及其直线OB 难于定义。
解决此问题需要迂回,即先过B 点作一平行于L 1 之直线L 3 并定义它,同时还要定义出直线AB ,于是方能求出L 3 与直线AB 交点B ,进而定义OB 。
否则要进行机外手工计算,这是应该尽量避免的。
由此看出,零件图样上尺寸标注方法对工艺性影响较大。
为此对零件设计图样应提出不同的要求,凡经数控加工的零件,图样上给出的尺寸数据应符合编程方便的原则。
零件的外形、内腔最好采用统一的几何类型或尺寸,这样可以减少换刀次数,还有可能应用控制程序或专用程序以缩短程序长度。
例如图3 -12a 所示,由于圆角大小决定
着刀具直径大小,很容易看出工艺性好坏。
所以应对一些主要的数控加工零件推荐规范化设计结构及尺寸。
图3-12b 表明应尽量避免用球头刀加工(此时
R=r ),一般考虑为d=2(R-r) 。
此外,有的数控机床有对称加工的功能,编程时对于一些对称性零件,如图3-13 所示的零件,只需编其半边的程序,这样可以节省许多编程时间。
4 .便于测量设计零件结构时,还应考虑测量的可能性与方便性。
图3-14 所示,要求测量孔中心线与基准面A 的平行度。
如图3 -14a 所示的结构,由于底面凸台偏置一侧而平行度难于测量。
在图3-14b 中增加一对称的工艺凸台,并使凸台位置居中,此时则测量大为方便。
(二)装配和维修对零件结构工艺性的要求零件的结构应便于装配和维修时的拆装。
如图3 -15a 左图结构无透气口,销钉孔内的空气难于排出,故销钉不易装入。
改进后的结构如图3 -15a 右图。
在图3-15b 中为保证轴肩与支承面紧贴,可在轴肩处切槽或孔口处倒角。
图3 -15c 为两个零件配合,由于同一方向只能有一个定位基面,故图3 -15c 左图不合理,而右图为合理的结构。
在图3-15d 中,左图螺钉装配空间太小,螺钉装不进。
改进后的结构如图3-15d 右图。
图3-16 为便于拆装的零件结构示例。
在图3 -16a 左图中,由于轴肩超过轴承内圈,故轴承内圈无法拆卸。
图3-16b 所示为压入式衬套。
若在外壳端面设计几个螺孔,如图3-16b 右图所示,则可用螺钉将衬套顶出三、技术要求分析零件的技术要求主要有:1 .加工表
面的形状精度(包括形状尺寸精度和形状公差);
2 .主要加工表面之间的相互位置精度(包括距离尺寸精度和位置公差);
3 .加工表面的粗糙度及其它方面的表面质量要求;
4 .热处理及其它要求。
通过对零件技术要求的分析,就可以区分主要表面和次要表面。
上述四个方面均要求较高的表面,即为主要表面,要采用各种工艺措施予以重点保证。
在对零件的结构工艺性和技术要求分析后,对零件的加工工艺路线及加工方法就形成一个初步的轮廓,从而为下一步制订工艺规程作好准备。
若在工艺分析时发现零件的结构工艺性不好,技术要求不合理或存在其它问题时,就可对零件设计提出修改意见,并经设计人员同意和履行规定的批准手续后,由设计人员进行修改。
(end)。